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Abstract
Cross-lingual representation learning transfers knowledge from resource-rich data to resource-scarce ones to improve
the semantic understanding abilities of different languages. However, previous works rely on shallow unsupervised
data generated by token surface matching, regardless of the global context-aware semantics of the surrounding text
tokens. In this paper, we propose an Unsupervised Pseudo Semantic Data Augmentation (UniPSDA) mechanism for
cross-lingual natural language understanding to enrich the training data without human interventions. Specifically,
to retrieve the tokens with similar meanings for the semantic data augmentation across different languages, we
propose a sequential clustering process in 3 stages: within a single language, across multiple languages of a
language family, and across languages from multiple language families. Meanwhile, considering the multi-lingual
knowledge infusion with context-aware semantics while alleviating computation burden, we directly replace the key
constituents of the sentences with the above-learned multi-lingual family knowledge, viewed as pseudo-semantic.
The infusion process is further optimized via three de-biasing techniques without introducing any neural parameters.
Extensive experiments demonstrate that our model consistently improves the performance on general zero-shot
cross-lingual natural language understanding tasks, including sequence classification, information extraction, and
question answering.
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1. Introduction

Cross-lingual representation learning facilitates
resource-rich information to boost the performance
of under-resourced languages in various down-
stream natural language understanding (NLU)
tasks, such as text classification (Huang, 2022;
Rathnayake et al., 2022; Li et al., 2021), sentiment
analysis (Szolomicka and Kocon, 2022; Sazzed,
2020), information extraction (Huang et al., 2022a;
Ahmad et al., 2021; Wang et al., 2019; Fan et al.,
2019), and question answering (Limkonchotiwat
et al., 2022; Perevalov et al., 2022). Although exist-
ing cross-lingual works (Li et al., 2023; Clouâtre
et al., 2022) share explicit language semantics
across different languages, they generally rely on
supervised parallel corpora and simple, shallow
unsupervised mechanisms such as back transla-
tion (Lam et al., 2022; Nishikawa et al., 2021) and
random deletion (Sun et al., 2022).

The previous data augmentation (DA) ap-
proaches in cross-lingual representation learning
can be roughly divided into two categories: super-
vised parallel data augmenters and unsupervised

Work done when Dongyang Li was doing an intern-
ship at Alibaba Group. Dongyang Li and Taolin Zhang
contributed equally to this work. Correspondence to
Chengyu Wang and Xiaofeng He.

shallow data augmenters.

1. Supervised Parallel Data Augmenter: These
works (Fernando et al., 2023; Lai et al., 2022;
Riabi et al., 2021) utilize annotated parallel
corpora (e.g., bilingual dictionaries and trans-
lation tools) to augment the training data by
aligning the same meanings across different
languages for low-resource tasks. However,
the collection process for these parallel cor-
pora is time-consuming and relies on human
annotation.

2. Unsupervised Shallow Data Augmenter: Un-
like the supervised approaches mentioned
above, these methods employ unsupervised
easy data augmentation (EDA) techniques
(e.g., back translation, random deletion, and
random replacement) to generate additional
training samples for model training (Nishikawa
et al., 2021; Bari et al., 2021; Chen et al., 2021).
These methods focus solely on the surface se-
mantics of the input samples to match cross-
lingual data without considering the deeper
linguistic connections.

As shown in Figure 1, techniques like “random dele-
tion” and “random replacement” may alter the sen-
tence’s intended meaning. Hence, we aim to ex-
pand the multilingual training samples based on a
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Figure 1: Examples of previous data augmentation techniques, including supervised methods that rely on
parallel data, and unsupervised methods which carry the risk of losing sentential semantic coherence.

deep semantic understanding that the model can
automatically derive, such as from the hidden lay-
ers of a pre-trained language model (PLM).

To overcome the issues mentioned above,
we propose an Unsupervised Pseudo Semantic
Data Augmentation (UniPSDA) mechanism, which
mainly consists of two modules:

• Domino Unsupervised Cluster: To provide
high-quality multilingual representations for
performing the subsequent deep unsupervised
data augmentation, we group languages into
a hierarchical structure organized by language
families1 to learn multilingual relations. We
perform the clustering process via the domino
chain process2 to collect semantically similar
words across different languages by compar-
ing the embeddings themselves, a method we
name Domino Unsupervised Cluster. Specifi-
cally, the domino cluster is a chain-rule process
comprised of three different sequential stages:
the single language stage, the language family
stage, and the multi-language stage.

• Pseudo Semantic Data Augmentation: Con-
sidering that previous data augmentation meth-
ods focus on the surface of naive training sam-
ples, we employ the learned multilingual inter-
nal representations to address the semantic
deficiencies of the training samples. Specif-
ically, the domino clustering-enhanced ulti-
mate multilingual representations directly re-
place the important positions’ hidden states
in training samples, as recognized by the
<subject,verb,object> (SVO) structure. The
potential incompatibility phenomena of insert-
ing clustering multilingual representations may

1https://www.ethnologue.com/browse/families
2https://en.wikipedia.org/wiki/Domino_effect

result in biased parameter learning. To fur-
ther alleviate the misalignment between the
replaced embeddings space and the context
output space of PLMs, we introduce three de-
biasing optimal transport affinity regularization
techniques to make the learning process faster
and more stable.

2. Methodology

2.1. Model Notations
The architecture of UniPSDA is shown in Figure 2.
The goal of cross-lingual natural language under-
standing is to utilize a source language dataset
Dlang = (Xlang,Ylang) to train a model M. Then
we apply the trained model M to tasks in other
target languages Dlang′ = (Xlang′ ,Ylang′), where X
denotes the input samples and Y is the label set.
In our work, each sentence of the training data
is denoted as Si = (wi1, wi2, · · · , wij , · · · , wili),
where wij denotes the j-th word in sentence Si

and li is the maximum word count of the sentence.
The hidden state of word wij is hwij

∈ R|u|×d,
where |u| is the maximum number of tokens con-
tained in the word and d is the dimension of the
hidden state. The hidden state of sentence Si is
hsi ∈ R|Ls|×d, where |Ls| is the sentence’s maxi-
mum token length. The specific notations for the
three clustering stages in the Domino Unsupervised
Cluster are as follows:

• In the single language stage, the words in the
m-th single language GSinm

are clustered into
|GSinm

| clusters. The t-th cluster is denoted as
Clusin

mt.

• In the language family stage, the words in the
n-th language family GFamn

are clustered into

https://www.ethnologue.com/browse/families
https://en.wikipedia.org/wiki/Domino_effect
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Figure 2: Model Overview of UniPSDA. (Best viewed in color)

|GFamn
| clusters. The g-th cluster is denoted

as Clufam
ng .

• In the multi-language stage, all language fam-
ilies are collected into GMul. All the words in
GMul are clustered into |GMul| clusters. The q-th
cluster is denoted as Clumul

q .

2.2. Text Encoder

In this paper, m-BERT (Devlin et al., 2019) is utilized
as our encoder3 to obtain the hidden states, which
are averaged from the embeddings of the first and
last layers. The final hidden state of the j-th word
in sentence Si is formulated as:

hwij =
1

2
(Ffirst (wij) + Flast (wij)) (1)

where Ffirst and Flast denote the representations
from the first and last layers, respectively. We aver-
age these representations to obtain the sentence’s
hidden state hsi .

3Other multilingual pre-trained language models can
also be considered as the backbone.

2.3. Domino Unsupervised Cluster
To enable the model to learn relevant word infor-
mation corresponding to different languages, we
perform three hierarchical, chain-rule-based clus-
tering steps, sequentially applied to representations
of varying language granularities.

2.3.1. Single Language Cluster

In the single language cluster stage, we aim to
group similar words within a specific language. To
refine the clustering process, we clarify that “simi-
lar words” refers not only to semantic similarity but
also to the concordance of part-of-speech (POS)
tags. For instance, verbs with the meaning of “hope”
are grouped together, distinct from nouns with sim-
ilar meanings, thereby incorporating lexical POS
knowledge into the clustering. Initially, we employ
the Universal Dependencies4-based PyTorch tool
Stanza5, to obtain the POS tag for each word. The
training data contains 17 types of POS tags, and we
represent each word with a 17-dimensional one-hot

4https://universaldependencies.org/
5Stanza is an off-the-shelf cross-lingual linguistic anal-

ysis package. URL: https://stanfordnlp.github.io/
stanza/

https://universaldependencies.org/
https://stanfordnlp.github.io/stanza/
https://stanfordnlp.github.io/stanza/
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vector vPOS to signify the initial tag representations.
This one-hot vector is then mapped to a context-
aware space by a linear function (WPOSvPOS + bPOS).
The final embeddings hfinal

wij
are obtained by con-

catenating the original word representations with
the projected POS tags:

hfinal
wij

= [hwij || (W
POS

v
POS

+ b
POS

)] (2)

where “||” denotes the concatenation operation.
Words with similar final embeddings are clustered
together using an expectation-maximization algo-
rithm based on Gaussian Mixture Models (GMM).
For the m-th language, we obtain |GSinm

| clusters
at the end of the clustering process:

Clusin
m1, Clusin

m2, . . . , Clusin
m|GSinm | = GMM(

hw1 , hw2 , . . . , hw|GSinm |)
(3)

where |GSinm
| is the total number of words in the

m-th language.

2.3.2. Language Family Cluster

In the Ethnologue6 linguistic categorical tree, each
language is considered a leaf node. Language
families serve as ancestor nodes within this tree
structure, and all descendant nodes of a particu-
lar ancestor node are grouped into the same lan-
guage family. We aggregate the results of single
language clusters within a specific language fam-
ily and calculate the expert weight αmt for each
cluster using a Gate mechanism (Li et al., 2018).
This weight is determined by the proportion of each
cluster’s word count in relation to the total sam-
ple size. In essence, we incorporate the size in-
formation of each cluster into the clustering pro-
cess. The single language stage involves a total
of Nsin = |Clusin

m1| + |Clusin
m2| + · · · + |Clusin

m|GSinm ||
elements, where |Clusin

m1| denotes the number of
elements in cluster Clusin

m1. Thus, the expert weight
for the t-th cluster αmt of language GSinm

is de-
fined as αmt =

|Clusin
mt|

Nsin
. We represent all expert

weights across r languages of the n-th language
family GFamn

as the matrix Asin. The cluster-center
embeddings of single language clusters, denoted
as Censin

mt, are used in the language family cluster
stage. The expert-weighted cluster-center embed-
dings hCensin

mt
∈ R|u|×d are then input into the GMM

clustering process. The matrix Hsin comprises all
cluster-center embeddings across r languages of
the n-th language family GFamn

. GMM clustering
groups semantically similar words from r languages
into a specific cluster Clufam

ng .

Clufam
n1 , Clufam

n2 , . . . , Clufam
n|GFamn | = GMM(

ele(Asin ⊙Hsin))
(4)

6https://www.ethnologue.com/

where the Asin and Hsin matrices are defined as
follows:

Asin =


α11 α12 · · · α1|GSin1 |
α21 α22 · · · α2|GSin2 |...

... . . . ...
αr1 αr2 · · · αr|GSinr |

 ,

Hsin =


hCensin

11
hCensin

12
· · · hCensin

1|GSin1 |

hCensin
21

hCensin
22

· · · hCensin
2|GSin2 |

...
... . . . ...

hCensin
r1

hCensin
r2

· · · hCensin
r|GSinr |


(5)

where ele() denotes the operation of enumerating
every element of the matrix, and ⊙ represents the
element-wise product.

2.3.3. Multi Languages Cluster

Finally, we perform clustering on all language family
cluster-center embeddings obtained from the lan-
guage family cluster stage. For example, the first
cluster-center of cluster Clufam

n1 in the n-th language
family is denoted as Cenfam

n1 . Each cluster-center
embedding is associated with a multi-language ex-
pert weight βng, computed using the same Gate
mechanism as in the language family cluster stage.
We represent all expert-weight elements across z
language families of the multi-language pool GMul
as the matrix Bfam. These expert-weighted cluster-
center embeddings hCenfam

ng
∈ R|u|×d are then used

in the GMM clustering process. The matrix Hfam
contains all cluster-center embeddings across the z
language families of GMul. GMM clustering groups
semantically similar words from the z language fam-
ilies into specific clusters, denoted as Clumul

q .

Clumul
1 , Clumul

2 , . . . , Clumul
|GMul| = GMM(

ele(Bfam ⊙Hfam))
(6)

where the matrices Bfam and Hfam are defined as
follows:

Bfam =


β11 β12 · · · β1|GSin1 |
β21 β22 · · · β2|GSin2 |...

... . . . ...
βz1 βz2 · · · βz|GSinz |

 ,

Hfam =


hCenfam

11
hCenfam

12
· · · hCenfam

1|GFam1
|

hCenfam
21

hCenfam
22

· · · hCenfam
2|GFam2

|

...
... . . . ...

hCenfam
z1

hCenfam
z2

· · · hCenfam
z|GFamz

|


(7)

where ele() denotes the operation of enumerating
each element of the matrix, and ⊙ represents the
element-wise product.

https://www.ethnologue.com/
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2.4. Pseudo Semantic Data
Augmentation

To enrich the training data with diverse linguistic
information, we augment the model with global mul-
tilingual semantics obtained from the last domino
unsupervised cluster module.

2.4.1. Pseudo Semantic Replacement

We propose two approaches for handling sentence
semantics. First, we pass sentences through m-
BERT to generate embeddings for each sentence.
Second, we use Universal Dependencies to extract
syntactic parsing trees for the sentences. To guide
the model toward learning more accurate repre-
sentations of crucial sentence words, we focus on
key elements identified through syntactic parsing.
Given that the subject, verb, and object (SVO) com-
ponents are essential for comprehension in many
tasks (Dai et al., 2017; Zhang et al., 2017), we treat
the SVO as the crucial words of each sentence.
Subsequently, we mark the position of each SVO
component within the sentence:

hsi = [eti1 , eti2 , . . . , ewiS
, . . . ,

ewiV
, . . . , ewiO

, . . . , eti|Ls| ]
(8)

where ewiS
, ewiV

, and ewiO
denote the embeddings

of the sentence’s subject, verb, and object compo-
nents, respectively, and eti1 represents the embed-
ding of the first token in sentence Si. We replace
the original sentence’s SVO word embeddings with
randomly selected candidate embeddings from the
same cluster. These candidate word embeddings
share similar semantics with the SVO words but
come from different languages. Through the re-
placement of crucial words with cross-lingual knowl-
edge, we can guide the model to learn more about
the critical linguistic elements of sentences and
achieve better semantic representations. The up-
dated sentence representation is expressed as:

h
′

si = [eti1 , eti2 , . . . , ecan′
iS
, . . . ,

ecan′
iV
, . . . , ecan′

iO
, . . . , eti|Ls| ]

(9)

where ecan′
iS

, ecan′
iV

, and ecan′
iO

denote the candi-
date embeddings for the subject, verb, and object
components, respectively. After the embedding
replacement, cross-lingual pseudo semantic infor-
mation is introduced to the training data. We then
feed these enhanced representations into trans-
former models with base-level parameter sizes to
refine the embeddings.

2.4.2. De-biasing Optimal Transport Affinity
Regularization

Spatial misalignment exists between the original
sentence and the enhanced sentence, as noted

by (Huang et al., 2022b). To diminish the discrep-
ancy between the replaced sentence embedding
h

′

si and the original sentence embedding hsi , we in-
troduce an integrated regularization term based on
the optimal transport mechanism, named Optimal
Transport Affinity Regularization.

(1) Wasserstein Distance Abbreviation: To
align the space of original sentence representations
with that of cross-lingual knowledge-enhanced sen-
tence representations (Wang and Henao, 2022;
Alqahtani et al., 2021), we employ optimal trans-
port (OT ) to facilitate the adjustment process. We
calculate a transport plan P that maps the original
sentence to the augmented sentence with optimal
cost C ∈ R|Ls|×|Ls|, using the Euclidean distance
(Danielsson, 1980) between the two sentence rep-
resentations as a measure of cost:

C(hsi , h
′
si) =

(
d∑

j=1

∣∣∣hsij − h
′
sij

∣∣∣2) 1
2

(10)

We aim to find the optimal transport plan P ∈
R|Ls|×|Ls| that minimizes the cost C. This prob-
lem is formulated as minimizing the p-Wasserstein
distance dp−Wass. Due to the high computational
complexity of calculating P , we approximate it using
the Sinkhorn algorithm (Altschuler et al., 2017):

K = exp

(
−
C(hsi , h

′
si)

ε

)
(11)

P (hsi , h
′

si) = diag(u)Kdiag(v) (12)

We compute u and v iteratively, starting with v(0) =
1|Ls|, using the following update formulas:

u(l+1) =
a(hsi)

Kv(l)
, v(l+1) =

b(h
′

si)

KTu(l+1)
(13)

where a and b are distribution mapping functions.
The OT loss can be defined as:

lossOT = ⟨P (hsi , h
′

si), C(hsi , h
′

si)⟩ (14)

To mitigate the OT learning biases between the
two sentence representations, we introduce two
auxiliary de-biasing terms to calibrate the loss.

(2) De-biasing Eigenvectors Shrinkage: We
utilize a linear orthogonal mapping parameter W ∈
R|Ls|×|Ls| to approximate the replaced embeddings
to the original ones, hsi ≈ Wh

′

si . Singular value
decomposition (SVD) is directly applied to compute
W (Xing et al., 2015):

UΣVT = SVD(h
′T
si hsi) (15)

W = VUT (16)
We initialize the linear mapping function with weight
W to simplify the learning process. However, eigen-
vectors with small singular values can lead to poor
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transformations if not suppressed (Chen et al.,
2019). Thus, we penalize the smallest k singular
values of Σ, which is ordered by magnitude. The
eigenvectors shrinkage loss is defined as:

losseig = −η

k∑
r=1

σ2
r (17)

where η is a hyper-parameter to control the degree
of penalty, and σr is the r-th smallest singular value.

(3) De-biasing Distance Shrinkage: To guide
the framework’s learning direction towards minimiz-
ing the discrepancy, we add a term based on the
distance between the two embeddings to the loss
function. The distance shrinkage loss is defined
as:

lossdis = 1− sim(hsi , h
′

si) (18)
where sim() represents the similarity measure.

Finally, the auxiliary OT affinity regularization is
given by:

lossReg = ρ1lossOT + ρ2losseig + ρ3lossdis (19)

where ρi denotes the controlled weight of each
regularization component, with the constraint that
the sum of ρi equals 1.

2.5. Training Objective
Our training objective combines the task-specific
loss with the OT affinity regularization. The overall
objective function is formulated as:

losstotal = λ1losstask + λ2lossReg (20)

where λi controls the relative contribution of each
component, and the sum of λi is constrained to be
1.

3. Experiments

3.1. Tasks and Datasets
Sequence Classification tasks include text classi-
fication and sentiment analysis. We selected the fol-
lowing datasets for these tasks: MLDoc (Schwenk
and Li, 2018) for text classification, and the Multi-
Booked Catalan and Basque (Barnes et al., 2018)7

for sentiment analysis. The evaluation metrics for
these tasks are accuracy and macro F1.

For Information Extraction, we focus on Rela-
tion Extraction as a representative task. Here, the
goal is to predict the correct relation type present
in the data. We use the ACE2005 dataset (Walker
et al., 2006), which spans three languages: En-
glish, Chinese, and Arabic. The performance is
measured using micro F1.

7We refer to these datasets collectively by the term
“OpeNER”.

Question Answering involves retrieving an-
swers for specific questions from a given passage.
We conduct experiments on the cross-lingual ques-
tion answering dataset BiPaR (Jing et al., 2019),
which is commonly used for evaluating such sys-
tems. The evaluation metrics for this task are Exact
Match (EM) and micro F1.

3.2. Experiment Settings
Given computational resource constraints, we em-
ploy the base-level version of multilingual BERT
(m-BERT) to obtain hidden states for words and
sentences. The encoder consists of 12 Trans-
former layers with 12 self-attention heads, and
the hidden state dimension is set to 768. Dur-
ing training, we experiment with learning rates in
{1e−5, 2e−5, 3e−5, 1e−6, 2e−6, 3e−6}. AdamW
is chosen as the optimizer, with a learning rate of
1e− 3 and weight decay of 1e− 5. For the Wasser-
stein distance, we set p = 1, while the Sinkhorn
algorithm’s control parameter ε is 0.1. The last
k = 300 singular values are used in the De-biasing
Eigenvectors Shrinkage section, with η in the losseig
formula being 0.001. The weight ρ of lossReg is set
to {0.4, 0.2, 0.4}, and the λ of the total loss is set
to {0.5, 0.5} independently. Statistical results are
based on 5 runs, and t-tests confirm that improve-
ments are statistically significant, with p < 0.05 for
all results.8

3.3. Baselines
We compare our approach against a variety of base-
lines:

MLDoc (Schwenk and Li, 2018) introduces a
cross-lingual text classification dataset, with base-
line results from basic neural network models.

BLSE (Barnes and Klinger, 2018) presents a
model for the sentiment analysis task, relying on
supervised parallel bilingual data.

LASER (Artetxe and Schwenk, 2019) proposes
a system utilizing a BiLSTM to learn sentence rep-
resentations across 93 languages, assessed on
natural language understanding (NLU) tasks.

m-BERT (Devlin et al., 2019) offers a language
model pre-trained on over 100 languages, generat-
ing representations for different languages.

XLM-R (Conneau et al., 2020) is a transformer-
based masked language model known for its strong
cross-lingual performance.

mUSE (Yang et al., 2020b) is pre-trained in 16
languages to project multilingual corpora into a sin-
gle semantic space.

CoSDA-ML (Qin et al., 2020) proposes a model
using shallow string surface data augmentation

8The source code and data are available at https:
//github.com/MatNLP/UniPSDA

https://github.com/MatNLP/UniPSDA
https://github.com/MatNLP/UniPSDA
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Model en de zh es fr it ja ru Average
MLDoc 87.2 71.7 73.5 65.3 70.2 65.1 69.8 56.9 69.9(±0.7)

LASER 86.5 86.0 70.4 71.3 73.9 65.6 58.5 63.4 72.0(±0.5)

m-BERT 92.1 74.3 72.5 67.0 70.5 61.8 69.7 61.5 71.2(±0.3)

XLM-R 90.7 78.5 70.3 66.4 67.8 63.9 64 64.0 70.7(±0.6)

ZSIW 91.3 82.8 79.6 71.7 78.1 67.0 68.5 64.3 75.4(±0.5)

DAP 94.1 86.7 81.7 76.2 84.3 67.6 73.9 66.7 78.9(±0.2)

SOGOcos 93.2 87.0 81.8 76.2 82.5 68.7 73.7 63.9 78.4(±0.1)

X-STA 93.8 86.4 81.7 77.2 84.3 68.4 73.4 64.8 78.8(±0.2)

CoSDA-ML 92.4 79.1 72.7 69.9 74.5 64.3 70.6 66.9 73.8(±0.6)

UniPSDA 94.5 87.1 82.3 77.4 84.4 69.4 74.0 65.5 79.3(±0.2)

Table 1: General results of text classification in terms of accuracy (%) on the MLDoc dataset.

to include various language strings in the training
data.

CCCAR (Nguyen et al., 2021) designs a model
for information extraction tasks, leveraging datasets
in three target languages.

ZSIW (Li et al., 2021) introduces a zero-shot
instance-weighting model for cross-lingual text clas-
sification.

HERBERTa (Seganti et al., 2021) uses an uncon-
ventional two-BERT-model pipeline for information
extraction.

X-METRA-ADA (M’hamdi et al., 2021) employs
meta-learning for cross-lingual transfer capability
enhancement.

SSDM (Wu et al., 2022) proposes a siamese se-
mantic disentanglement model to separate syntax
knowledge across languages.

LaBSE (Feng et al., 2022) is a BERT-based sen-
tence embedding model supporting 109 languages.

DAP (Li et al., 2023) integrates sentence-level
and token-level dual-alignment for cross-lingual pre-
training.

SOGOcos (Zhu et al., 2023) employs saliency-
based substitution and a novel token-level align-
ment strategy for cross-lingual spoken language
understanding.

X-STA (Cao et al., 2023) leverages an attentive
teacher, gradient disentangled knowledge sharing,
and multi-granularity semantic alignment for cross-
lingual machine reading comprehension.

3.4. General Experimental Results
Sequence Classification: The results for se-
quence classification are presented in Table 1 for
text classification and Table 2 for sentiment anal-
ysis. We observe that: (1) Our approach outper-
forms strong baselines and nearly reaches state-of-
the-art performance for each task. (2) The perfor-
mance of the text classification task is significantly
improved by leveraging the Domino Cluster to se-
lect appropriate candidates and injecting pseudo
semantic knowledge into critical components of

Model en eu ca Average
BLSE 86.1 88.5 73.9 82.8(±0.4)

m-BERT 89.9 87.9 75.2 84.3(±0.2)

mUSE 88.7 90.0 75.1 84.6(±0.3)

XLM-R 87.9 87.6 71.7 82.4(±0.2)

DAP 90.5 91.7 74.9 85.7(±0.1)

SOGOcos 90.1 91.2 75.0 85.4(±0.1)

X-STA 90.4 90.1 74.9 85.1(±0.1)

CoSDA-ML 90.4 91.6 74.6 85.3(±0.5)

UniPSDA 90.7 91.9 75.3 86.0(±0.1)

Table 2: General experimental results of sentiment
analysis in terms of macro F1 (%) and baselines
on the OpeNER dataset.

the sentences. We achieve an average accuracy
of 79.3%, with a particularly notable improvement
for French, where accuracy increases by approx-
imately 10% (from 74.5% to 84.4%) compared to
the method proposed by (Qin et al., 2020). (3) In
the sentiment analysis task, our UniPSDA model
boosts the average macro F1 score to 86.0, as
shown in Table 2. This represents the best reported
result for cross-lingual sentiment analysis on the
OpeNER dataset.

Information Extraction: The results for infor-
mation extraction are shown in Table 3. The find-
ings demonstrate that: (1) Our methodology is ef-
fective for the relation extraction task, achieving
more accurate cross-lingual representations as ev-
idenced by higher macro F1 scores compared to
prior work. (2) The enhanced focus on acquiring
pertinent cross-lingual knowledge regarding crucial
sentence components has led to a solid average
F1 score of approximately 44.1 in our experiments,
marking an improvement of 2.7.

Question Answering: Table 4 presents the per-
formance of our question answering framework.
The results suggest that: (1) Despite the zero-shot
experimental setup, the pseudo data augmentation
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Model en zh ar Average
m-BERT 57.1 44.8 21.5 41.1(±0.5)

XLM-R 54.9 45.2 21.7 40.6(±0.4)

LaBSE 55.1 45.8 26.6 42.5(±0.2)

HERBERTa 54.5 45.7 26.4 42.2(±0.3)

CoSDA-ML 58.3 45.5 20.4 41.4(±0.5)

DAP 59.0 46.2 26.2 43.8(±0.2)

SOGOcos 58.7 46.2 26.5 43.8(±0.3)

X-STA 57.9 45.7 26.2 43.3(±0.1)

CCCAR 56.6 43.9 18.3 39.6(±0.3)

UniPSDA 59.1 46.3 26.8 44.1(±0.1)

Table 3: General experimental results of informa-
tion extraction in terms of micro F1 (%) and base-
lines on the ACE2005 dataset.

Model en zh Average
EM F1 EM F1

m-BERT 31.9 44.3 23.5 26.1 31.5(±0.6)

XLM-R 32.3 45.0 23.3 26.2 31.7(±0.3)

LaBSE 33.7 43.4 24.2 25.7 31.8(±0.5)

CoSDA-ML 34.2 44.5 24.7 25.9 32.3(±0.2)

X-METRA-ADA 33.9 44.9 23.8 26.8 32.4(±0.1)

SSDM 34.1 45.8 24.1 26.2 32.6(±0.2)

DAP 34.3 45.9 24.6 27.1 33.0(±0.3)

SOGOcos 34.2 45.5 24.7 27.1 32.9(±0.2)

X-STA 33.8 44.9 24.2 26.7 32.4(±0.2)

UniPSDA 34.4 45.7 25.0 27.3 33.1(±0.2)

Table 4: General experimental results of question
answering and baselines on the BiPaR dataset.

mechanism employed by our framework demon-
strates a robust transfer capability. This translates
to effective performance on the BiPaR dataset, with
our work producing more accurate representations
than most of the baselines. (2) The scores obtained
in the two languages evaluated affirm the efficacy
of UniPSDA. However, our F1 scores for English
are lower than those achieved by SSDM (Wu et al.,
2022) and DAP (Li et al., 2023). This discrepancy
can be attributed to the fact that SSDM and DAP
utilize specific parallel data for training, which was
not the case in our approach.

4. Detailed Analysis

4.1. Ablation Study
In our ablation study, we independently remove key
components—namely, the Domino Unsupervised
Cluster module and the Pseudo Semantic Data
Augmentation module—to evaluate their individual
contributions to the framework’s performance. The
results of the ablation experiments are presented
in Table 5. We draw two main conclusions: (1)
The Domino Unsupervised Cluster module is cru-

Model OpeNER MLDoc ACE05 BiPaR
UniPSDA 86.0 79.3 44.1 45.7

-Dom. Unsup. 85.8 74.9 41.9 45.1
-Pse. Seman. 85.1 73.7 41.1 44.8
-Aff. Regul. 84.2 71.1 40.9 44.0

Table 5: Ablation study of our work on four datasets.
“-” means returning to the original setting.
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Figure 3: The words representations of five different
semantics after t-SNE dimensional reduction.

cial for generating precise representations, while
the Pseudo Semantic Data Augmentation module
significantly enhances the model’s performance by
providing additional cross-lingual information. (2)
The absence of the cluster module leads to a notice-
able decline in performance across all downstream
tasks. Specifically, in text classification, accuracy
falls by 4.4% (from 79.3% to 74.9%). This indicates
that clustering based on semantic embeddings is
more beneficial to the model than clustering based
on shallow string representations. The removal of
the Pseudo Semantic Data Augmentation module
also results in a marked decrease in performance
due to the lack of cross-lingual knowledge.

4.2. Influence of Domino Unsupervised
Cluster

We employ t-SNE (van der Maaten and Hinton,
2008) to project the high-dimensional word repre-
sentations into a two-dimensional space, facilitating
the visualization of the embeddings. The result-
ing plots compare word embeddings clustered by
the Domino Unsupervised Cluster and the naive
K-Means algorithm. As depicted in Figure 3, the
domino unsupervised cluster gathers similar word
embeddings more compactly, whereas the naive
K-Means approach results in a more diffuse distri-
bution of similar word embeddings.
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Figure 4: Results comparison of different data aug-
mentation skills in Pseudo Semantic Data Augmen-
tation module.

4.3. The Influence of Pseudo Semantic
Data Augmentation

To examine the effect of Pseudo Semantic Data
Augmentation on the information extraction task,
we experiment with three distinct replacement
strategies on the English test set. The comparative
results are illustrated in Figure 4.

Observations indicate that replacements using
random word strings or random word embeddings
are less effective than those leveraging pseudo se-
mantic methods. The pseudo semantic data aug-
mentation approach demonstrates a superior abil-
ity to preserve the semantic integrity of sentences,
leading to more meaningful augmentations and po-
tentially better model performance.

5. Related Work

5.1. Cross-Lingual Pre-trained Models
Recent cross-lingual pre-trained language models
(PLMs) can be categorized into two groups:

1. Monolingual Training Data Models: Multilin-
gual BERT (m-BERT) (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) utilize mono-
lingual corpora for training with a masked lan-
guage modeling task.

2. Multilingual Training Data Models: Exten-
sions of XLM-R by Jiang et al. (2022); Häm-
merl et al. (2022); Chi et al. (2022); Barbi-
eri et al. (2022) demonstrate improvements
with high-quality static embedding alignments.
Tools facilitating bilingual language alignment
(Tran et al., 2020; Chi et al., 2021; Yang et al.,
2020a; Schuster et al., 2019) enable the learn-
ing of additional languages. These models
often depend on parallel data and alignment
tools to enrich the corpus diversity.

5.2. Cross-Lingual Data Augmentations
Cross-lingual data augmentation approaches are
typically divided into:

1. Supervised Data Augmentation: Methods
such as CoSDA-ML (Qin et al., 2020) and
MulDA (Liu et al., 2021) utilize parallel cor-
pora to integrate knowledge from other lan-
guages. Dong et al. (2021) employ parallel
language alignments for shared representa-
tional spaces.

2. Unsupervised Data Augmentation: Tech-
niques like adversarial training and cross-
lingual sample generation are employed by
Riabi et al. (2021); Bari et al. (2021); Dong
et al. (2021); Guo et al. (2021) to improve
multilingual model performance. Nishikawa
et al. (2021) use back translation for enhancing
word embeddings, while Cheng et al. (2022)
replace words based on a probabilistic distri-
bution. Chen et al. (2021) focus on sentence
selection from low-resource languages. These
models tend to prioritize surface string varia-
tions, often overlooking the rich, context-aware
semantics.

We address this limitation by incorporating global
cross-lingual semantics into monolingual training
data, thereby enriching the diversity of language
knowledge.

6. Conclusion

In this work, we introduce UniPSDA, an unsuper-
vised data augmentation mechanism that leverages
semantic embeddings to enrich cross-lingual nat-
ural language understanding (NLU) tasks with di-
verse linguistic information. The Domino Unsuper-
vised Cluster module identifies semantically similar
cross-lingual content, while the Pseudo Semantic
Data Augmentation module injects context-aware
semantics into the training corpus. Furthermore,
affinity regularization serves to minimize the repre-
sentational gap between original and augmented
sentences. Through extensive experimentation,
our methods demonstrate superior performance rel-
ative to other strong baselines, underscoring their
effectiveness in enhancing cross-lingual NLU.
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