
LREC-COLING 2024, pages 17019–17030
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

17019

Unicode Normalization and Grapheme Parsing of Indic Languages

∗Nazmuddoha Ansary1, 3, ∗Quazi Adibur Rahman Adib2, 3, Tahsin Reasat3, 4,
Asif Shahriyar Sushmit3, Ahmed Imtiaz Humayun3, 5, Sazia Mehnaz3,

Kanij Fatema3, Mohammad Mamun Or Rashid6, Farig Sadeque2, 3
1Apsis Solutions Limited, 2Brac University, 3Bengali.ai, 4Vanderbilt University,

5Rice University, 6Jahangirnagar University
1, 2, 3, 6 Bangladesh, 4, 5USA

{nazmuddoha.ansary.28, greasat, ahmed.imtiaz.prio, saziamorshed, fatemakanij52}@gmail.com
quazi.adibur.rahman.adib@g.bracu.ac.bd, sushmit@ieee.org, mamunbd@juniv.edu

farig.sadeque@bracu.ac.bd

Abstract
Writing systems of Indic languages have orthographic syllables, also known as complex graphemes, as unique
horizontal units. A prominent feature of these languages is these complex grapheme units that comprise conso-
nants/consonant conjuncts, vowel diacritics, and consonant diacritics, which, together make a unique Language.
Unicode-based writing schemes of these languages often disregard this feature of these languages and encode
words as linear sequences of Unicode characters using an intricate scheme of connector characters and font
interpreters. Due to this way of using a few dozen Unicode glyphs to write thousands of different unique glyphs
(complex graphemes), there are serious ambiguities that lead to malformed words. In this paper, we are proposing
two libraries: i) a normalizer for normalizing inconsistencies caused by a Unicode-based encoding scheme for Indic
languages and ii) a grapheme parser for Abugida text. It deconstructs words into visually distinct orthographic
syllables or complex graphemes and their constituents. Our proposed normalizer is a more efficient and effective
tool than the previously used IndicNLP normalizer. Moreover, our parser and normalizer are also suitable tools for
general Abugida text processing as they performed well in our robust word-based and NLP experiments. We report
the pipeline for the scripts of 7 languages in this work and develop the framework for the integration of more scripts.

Keywords: Unicode, Parsing, Preprocessing, Indic, Normalization

1. Introduction

Speakers of languages with Alphasyllabary, Ak-
shara, or Abugida writing systems (also known as
neo-syllabary or pseudo-alphabet) comprise up to
1.3 billion people with a majority being from In-
dia, Bangladesh and Thailand. There is a signifi-
cant academic and commercial interest in develop-
ing Natural Language Processing based systems
and solutions for these languages. In 1992, Faber
suggested “segmentally coded syllabically linear
phonographic script” for these languages, while
Bright used the term Alphasyllabary and Gnanade-
sikan and Rimzhim, Katz, & Fowler have sug-
gested aksara or ksharik (Gnanadesikan, 2017).

In the Abugida family, the closest analog to ‘let-
ters’ are the orthographic syllables or the com-
plex graphemes, which have sequential phonemic
sequences. These segments act as the small-
est written unit in alphasyllabary languages and
are termed as Graphemes (Fedorova, 2013); the
term alphasyllabary itself originates from the alpha-
bet and syllabary qualities of graphemes (Bright,
1999). Each grapheme comprises a grapheme
root, which can be one character or several char-

*These authors share first authorship and con-
tributed equally to this work

Figure 1: Orthographic components in different
languages. Equivalent grapheme constituents
are color-coded according to phonemic correspon-
dence. Alpha-syllabary grapheme segments and
corresponding characters from the different lan-
guages are segregated with the markers. While
characters in English are arranged horizontally ac-
cording to phonemic sequence, the order is not
maintained in the Abugida languages.

acters combined as a conjunct. Root characters
may be accompanied by vowel or consonant dia-
critics– demarcations which correspond to phone-

17020

mic extensions. To better understand the orthog-
raphy, we can compare the English word Proton
to its Indic transliteration েপৰ্াটন [pɾotɔn] (Fig. 1).
While in English the characters are horizontally ar-
ranged according to phonemic sequence, the first
grapheme for both Bangla and Devanagari scripts
has a sequence of glyphs that do not correspond
to the linear arrangement of Unicode characters or
phonemes.

In this paper,

• We discuss a novel orthographic syllable-
based encoding scheme for Abugida text and
based on it, curated the Indic Grapheme
Parser which deconstructs words of 7 Indic
languages into the different visually sequen-
tial complex graphemes. The parser is also
easily customizable for any Abugida script.

• We also discuss the existing issues regarding
the Unicode encoding of these scripts which
hampers both the training and testing perfor-
mance of natural language processing (NLP)
systems, as well as font interpreters, search
engines (Sorensen and Roukos, 2007), and
other text-based technologies.

• We propose a novel unicode normalizer for
the languages to solve the existing issues and
compare the normalizer with previously avail-
able solutions.

• This work is released under the MIT License.
The source code and the experimentation
notebooks are available at Github1,2.

2. Characteristics of Abugida
Orthography

Abugida words can be deconstructed into visually
separable orthographic syllables or graphemes.
Each Abugida word is comprised of segmental
units called orthographic syllables or graphemes
(Kandhadai and Sproat, 2010; Meletis, 2019).
The Abugida writing system has language-specific
vowel and consonant letters along with vowel and
consonant diacritics that are placed up, down,
above, below, or around the letters. In almost all
cases, vowels have their visually distinct diacritic
form. There are also certain consonant diacritics
that are visually distinct from the letter it is repre-
senting. There are some ligatures that either have
i) distinguishable features from the constituent con-
sonants or ii) new conjunct forms. Also, there are
certain allographs of both the consonant conjuncts
and even the complex graphemes.

1https://github.com/mnansary/
bnUnicodeNormalizer

2https://github.com/mnansary/indicparser

2.1. Grapheme Roots and Diacritics
Graphemes in Abugida scripts are constructed by
three components: Grapheme Root (vowel, conso-
nant or consonant conjunct), Vowel Diacritic, and
Consonant Diacritic. Occurrences of 2 and 3 are
optional though both can occur independently in a
complex grapheme/orthographic syllable. For In-
dic languages, these graphemes are often called
Akshara. For different Indic languages, place-
ments of these diacritics can be horizontal or ver-
tically adjacent to the root, or surrounding the root.
These diacritics may join with the grapheme root
and form unique glyphs, from which the constituent
roots and diacritics are not visually distinguishable.
These also pose the issue of allographs (Sekhar,
2022; Sharma, 2001) in these languages.

2.2. Consonant Conjuncts or Ligatures
Consonant conjuncts in Abugida scripts are anal-
ogous to ligatures in Latin where two or more con-
sonants are joined to form a glyphs that may or
may not visually or phonetically similar than the
standalone consonant glyphs. In Bangla, up to
four consonants have been found to form conso-
nant conjuncts. A similar is also true for other Indic
Abugida writing systems. Although Unicode allows
joining even more consonants, font interpreters
can only render certain combinations, based on us-
age. Consonant conjuncts may have two (second
order conjuncts, e.g. ষ্ট [ʃto] = শ [ʃɔ] + ট [t]) or three
(third order conjuncts, e.g. ক্ষ্ণ [kʰɔno] = ক [k] + ষ
[ʃɔ] + ন [n]) consonants in the cluster. Changes in
the order of consonants in a conjunct may result in
complete or partial changes in the glyphs. In Ta-
ble 1 we show some of these consonant conjuncts
and the connectors.

2.3. Unique Grapheme Combinations
In languages with the Abugida writing system,
the graphemes or orthographic syllables are con-
structed using grapheme roots and vowel and con-
sonant diacritics, which leads to a large number
of possible graphemes (Alam et al., 2021). Taking
into account the consonants (nc), vowels (nv) and
(n3

c + n2
c) possible consonant conjuncts (consider-

ing 2nd and 3rd order) there can be ((nc − 3)3 +
(nc − 3)2 + (nc − 3)) + 3 = 3, 883, 894 different
grapheme roots possible for Bangla. Grapheme
roots can have any of the different vowel diacrit-
ics (ndv) and consonant diacritics (ndc). There is
only one vowel diacritic in each grapheme, but
there can be multiple consonant diacritics in a sin-
gle one. Although the potential number of possi-
ble complex graphemes is quite high, the actual
number of complex graphemes in usage has been
found to be very low. The number of potential com-

https://github.com/mnansary/bnUnicodeNormalizer
https://github.com/mnansary/bnUnicodeNormalizer
https://github.com/mnansary/indicparser

17021

Script Connector Biconsonantal Tri- and tetra-consonantal conjuncts
Bangla Hosonto: ◌্ (2509) ’ক্স’ [kʃo] = ক [k] + স [ʃɔ] ক্ষ্ম [kʰɔ] = ক [k] + ষ [ʃɔ] + ম [m]
Devnagari Halant: ’◌्’ (2381) ज्ह [ɟɦə] = ह [ɦ] + ह [ɦ] ख्क्ष [kʰkʂ] = ख [kʰ] + क [k] + ष [ʂ]
Gurmukhi Halanta: ’◌੍’ (2637) ਨ੍ਹ [nɦ] = ਨ [n] + ਹ [ɦ] N/A
Gujrati Halanta: ◌્ (2765) Ł [ʂʈʰə] = ષ [ʂ] + ઠ [ʈʰ] N/A
Odiya Halanta: ◌୍ (2893) ୱଖ୍ [wkh] = ୱ [w] + ଖ [kʰa] N/A
Tamil Pulli: ◌் (3021) ேக்ஷ [kʂeˑ] = க [kə] +ஷ் [ʂ] + ஏ [eˑ] க்ஷ [kʂə] = க [kə] +ஷ் [ʂ] + ‘ ’ +அ [ə]
Malaylam Chandrakkala: ◌് (3405) ണ്യ [ɳja] =ണ [ɳ] +യ [j] റ്്റബ്യ [rət ̪ːbja] = റ [r] + റ [r]+ബ [b] +യ [j]

Table 1: Examples of bi/tri/tetra-consonantal conjuncts from various Abugida scripts. Most Abugida
scripts (such as Devanagari, Gurmukhi, Gujrati, Odiya, Tamil, Malayalam etc.) contain a large number
of possible conjuncts which are vastly used but do not have their own Unicode representation. Although
Connectors are used to circumvent this; it can lead to improper formation of conjunct.

plex graphemes may increase in we consider even
higher-order conjuncts.

3. Characteristics of Abugida
Unicode Blocks

The central theme of Unicode-based writing of
Abugida scripts is enabling to write numerous com-
plex graphemes with a limited number of Unicode
characters, that serve as the smallest constituents.
These compact mapping schemes often pose am-
biguities by presenting multiple ways of writing vi-
sually similar complex graphemes. Also, there are
specific complex valid sequences for writing spe-
cific complex graphemes. These also pose chal-
lenges both for font interpreters (broken render)
and also during computational analysis (multiple
encoded versions for the same word). Due to
the non-unique representation of visual grapheme
sequences, different keyboards, and even users
following different norms– which leads to multiple
variations of the same word, with or without intro-
ducing typographic errors.

In Unicode schemes, all the conjuncts are
formed as a sequence of consonants joined by
a connector character. In languages such as
Bangla, Tamil, etc. this connector has another
role: visually indicating that the consonant does
not have an implicit vowel. This dual nature of
an essential constituent creates issues with the
font interpreters and introduces cognitive spelling
errors to an inattentive user. Another prominent
feature of Indic Abugida scripts is the nukta char-
acter (e.g. the bottom dot in Bangla character
র). Characters can be written with or without us-
ing these separate nukta characters (see Section
4) which causes a large number of non-unique
unicode representations as well. As for the con-
juncts, vowel diacritics and consonant diacritics
can be written freely but only a few specific se-
quences are allowed. Legacy characters visually
similar to standard ones present in the Unicode
blocks create even more complications; many key-
boards (both mobile and desktop) allow writing

these characters– and as many of them look simi-
lar to other commonly used characters, unsuspect-
ing users often end up using these characters in-
stead of what they intended. These issues have
pushed us towards prioritizing a proper normaliza-
tion scheme of these texts for their importance in
text analysis, language modeling, and other tasks.

In the next section, we categorically discuss the
issues with the Unicode representation of promi-
nent Indic languages with Abugida writing systems
in detail to demonstrate the issues and the role of
the proposed pipeline to correct non-normalized
texts.

4. Unicode Normalization

4.1. Methodology
Our proposed algorithm takes into account the
word formation rules using Unicode schemes and
fixes seven types of prevalent errors and issues
that lead to major non-normalized text formations
in Indic Abugida scripts. We also cover some
language-specific issues. A previous attempt was
made by Kunchukuttan (2020) in making an In-
dicNLP normalizer; however many of the crucial
issues remained unaddressed. Our normaliza-
tion policy is minimal: going with a less num-
ber of Unicode codes to represent glyphs when
possible while being consistent. We override
the suggestions from the Unicode consortium in
cases when this normalization philosophy contra-
dicts them. The issues that are solved by our pro-
posed algorithm are as follows:

4.1.1. Legacy Symbols Handling

These symbols (present in the Unicode blocks) are
not used anymore, and some of these look visu-
ally similar to widely used characters. Some of
the depreciated/legacy symbols for Bangla are ৺,
৭, ঌ, ৡ, ঽ and for Gurmukhi ੲ, ੳ. These depre-
ciated symbols can cause confusion e.g. ৭ which
is known as ‘Anji’ can be mistaken for ৭ [ʃɐt]̪ (the
digit 7) or ঌ [lɪ]which is the character ‘Li’ can be

17022

mistaken for ৯ [no͡e]̯ (the digit 9) for their close vi-
sual similarity. Similar is also true for legacy sym-
bols present in other Indic scripts. We provide an
option to map these legacy characters to their vi-
sually similar counterpart.

4.1.2. Broken Vowel Diacritic Fixing

There are multiple occurrences in the Indic Uni-
code scheme where a combination of two vowel di-
acritics is visually similar to another one with a sep-
arate code; resulting in Unicode ambiguity. For ex-
ample, in Bangla the combination of ে◌ and ◌া (ে◌া)
looks exactly like ে◌া. For the Devanagari script, the
combination of ◌ा and ◌े looks exactly like ◌ो.

4.1.3. Broken Nukta Resolution

The Nukta Unicode issue is a prevalent one in
most of the Indic languages. It’s a small dot-
looking diacritic that gets added with the character
to form new ones. There are different nukta signs
for different languages. For example, in Bangla
usually four characters ড়, য়, র, ঢ় (IPA: [ɽ, j, ɾ, ɽʰ])
carry nukta, and for all four of them there are two
possible Unicode representations: one is the stan-
dalone Unicode characters for these, and another
one is ড, য, ব, ঢ (IPA: [d, ɟ, b, dʱ]) + nukta and
both sets are visually identical with different Uni-
code representations. The precomposed forms
are canonical in standard Unicode for the Bangla
nukta issues (Khairullah and Ratul, 2018). In De-
vanagari, we see the same issue. For example
the combination of ज [dʒ] (U+091C Devanagari let-
ter Ja) and ◌़ (U+093C Devanagari nukta sign) is
visually equivalent to ज़ [z] (U+091C Devanagari
letter Za). When handling, available normaliza-
tion produces decomposed forms when using both
NFC and NFD. So both approaches are canoni-
cally equivalent, but the decomposed form is rec-
ommended by the Unicode Standard. This is differ-
ent from how the nukta issue is handled in Bangla,
causing discrepancies in the Unicode processing
pipelines. We convert similar characters for all In-
dic languages into its smallest Unicode sequence
form.

4.1.4. Invalid Unicode Handling

As we allow a set of certain Unicode to be used in
a word, non-glyphs Unicode or Unicode from other
languages are cleaned. For instance, the Bangla
word অজানা্ is not a normalized text; the normalized
version of this text is অজানা [ɔɟɐnɐ]. Previous nor-
malizers sometimes fail to identify this at the end-
ing part of a text.

4.1.5. Invalid Connector Handling

There are connectors characters present in
Abugida Unicode blocks (example: Hoshonto, Ha-
lant, Virama3 etc.) essentially connects two con-
sonants to form conjuncts (e.g. For Bangla, the
connector hoshonto carries the code U+09CD).
These characters can come at places where they
shouldn’t (e.g. it can never come between two vow-
els) and can cause a range of issues. There are
certain cases where one may not even realize that
this problem is actually caused by an invalid con-
nector. One of the examples of this type is Bangla
সং◌ুয্িক্ত. The normalized form of this word is সংযুিক্ত
[ʃɔŋɟuktɪ̪]. If we obtain words with connector char-
acters present in any place in a sequence where it
should not occur (due to typographic or cognitive
errors), we fix the word and remove the connector.

In some Bangla texts, we often have to face un-
wanted middle connectors as well which is also
quite hard to identify. For example, another Bangla
word চু্িক্ত [cuktɪ̪] contains an unwanted middle con-
nector. If we normalize it using previously available
normalizers and decompose it, we will find [চ [c], ◌ু,
◌্, ক [k], ◌্, ত [to̪], ি◌] which is the incorrect form. In
our Bangla unicode normalizer, the decomposed
output is [চ [c], ◌ু, ক [k], ◌্, ত [to̪], ি◌]– free from any
unwanted middle connector (notice the vanished ◌্
after ◌ু).

We also observed that some Bangla text con-
tains Hoshonto that does not have any language-
centric significance. We covered this previously
unhandled issue as well. For example, we
have seen আমার্ which has an unwanted trailing
hoshonto, which we removed (আমার [ɐmɐɾ]).

4.1.6. Diacritic Form Correction

In our pipeline, diacritic form corrections include:

• Cleaning consecutive vowel diacritics in uni-
code: a vowel diacritic can not follow another
vowel diacritic.

• Fixing order of consecutive consonant and
vowel diacritics: a consonant diacritic can not
be followed by a vowel diacritic.

• Cleaning diacritics that follow numbers, punc-
tuations or symbols.

4.1.7. Vowel-Vowel Diacritic Removal

A vowel can not be followed by a vowel diacritic.
We fix this issue by removing the extra diacritic.

3https://en.wikipedia.org/wiki/Virama

https://en.wikipedia.org/wiki/Virama

17023

Issue Example Fix Fix Visibility Potential Sources

Assamese Replacement (AR) বয্ৱহাৰ
[ব, ◌্, য, ৱ, হ, ◌া, ৰ]

বয্বহার [bæbohar]
[ব, ◌্, য, ব, হ, ◌া, ‘র’] Closely Resembles Cognitive

Broken Diacritics (BD) সংস্কৄিত
[স, ◌ং, স, ◌্, ক, ◌,ৄ ত, ি◌]

সংসৃ্কিত [ʃɔŋskɾɪtɪ̪]
[স, ◌ং, স, ◌্, ক, ◌ৃ, ত, ি◌] Little to No Cognitive

Broken Nukta (BN) েকন্দৰ্ীয়
[ক, ে◌, ন, ◌্, দ, ◌্, র, ◌ী, য, ◌়]

েকন্দৰ্ীয় [kendɾ̪ɪo]
[ক, ে◌, ন, ◌্, দ, ◌্, র, ◌ী, য়] No. Keyboard

Complex Root Normalization (CRN) িব্ষ্প্দ
[ব, ি◌, ◌্, ষ, ◌্, প, ◌,্ দ]

িবষ্পদ [bɪʃpod]̪
[ব, ি◌, ষ, ◌্, প, দ] Yes Cognitive

Fix Diacritics (FD) দুুই
[দ, ◌ু, ◌ু, ই]

দুই [du̪͡ɪ]̯
[দ, ◌ু, ই] No. Keyboard

Invalid Connector (IC) দুই্িট
[দ, ◌ু, ই, ◌্, ট, ি◌]

দুইিট [du̪͡ɪt̯ɪ]
[দ, ◌ু, ই, ট, ি◌] Little to No Cognitive

Invalid Unicode (IU) ◌ােটাবােকা
[◌া, ট, ে◌া, ব, ◌া, ক, ে◌া]

েটাবােকা [tobɐko]
[ট, ে◌া, ব, ◌া, ক, ে◌া] Yes Typo

To-hosonto Normalize (THN) উত্ স
[উ, ত, ◌্, স]

উৎস [utʃ̪o]
[উ, ৎ, স]

Depends on
Font Interpreter Cognitive

Vowel-Vowel Diacritic (VDV) একেএ
[এ, ক, এ, ে◌]

একেতৰ্ [ekotɾ̪e]
[এ, ক, ত, ◌্, র, ে◌] Yes Typo and Cognitive

Table 2: Major Unicode Issues in Bangla with Examples. Does not include legacy character issues. CRN
and THN are Bangla-specific, all others are applicable to other writing systems.

4.1.8. Language Specific Treatment

In addition to these seven, we provide four more
operations to be used specifically for Bangla. They
are:

Unwanted doubles Due to mistyping or key-
board issues, unwanted double diacritics can be
found in a Bangla text. For instance, normalized
form of যুুদ্ধ is যুদ্ধ [ɟudd̪̪h o]. It is really hard to distin-
guish these words– but they are, as we will see,
and our proposed normalizer can solve this issue.
The decomposed version of a normalized form is
[য [ɟo], ◌ু, দ [d]̪, ◌্, ধ [d̪ɦ ɔ]]. Previous efforts are
unable to handle this type of case: their version of
the decomposed form is [য [ɟo], ◌ু, ◌ু, দ [d]̪, ◌্, ধ
[d̪ɦ ɔ]], which, unfortunately, is not correct.

Complex root normalization Complex
grapheme roots are normalized by allowing
popular combination of connected Unicode. For
example, in Bangla language ক্ক্ক্ক্ক is a valid combi-
nation in terms of Unicode but this combination is
never used in real life so the allowed form ’ক্ক’ [kk]
is provided as the normalized form. Randomized
connectors are also normalized through complex
roots such as িব্ষ্প্দ = ব+ি◌+◌্+ষ+◌্+প+◌্+দ, which is
normalized as িবষ্পদ [biʃpɔd]̪ = ব[b]+ি◌+ষ[ʃ]+◌্+প
[po]+দ[d]̪ in Bangla language.

Grammatically, It is impractical to get multiple
Fola (curtailed consonants) in a row. For instance,
in Bangla language ন্দব্ব্ব্ব্ব্ does not carry any linguis-
tic value whatsoever, yet it is a writable grapheme.
So, It is necessary to remove this and provide
a normalized form. Our developed normalizer is
able to handle this case which was ignored previ-
ously.

Our normalizer can normalize even more com-
plex roots which were not normalized by previ-
ous efforts. For example, for Bangla আকাক্ক্ঙ্ষা’s
normalized form is আকাক্কঙষা [ɐkɐɐɐŋʃɐ] but it was

normalized as আকাক্ক্ঙ্ষা which is inaccurate. A
combination of multiple conjunct diacritics that re-
quires a language-specific order is addressed in
our pipeline.

Assamese character replacement for Bangla
Assamese and Bangla both share the Eastern Na-
gri script and hence have the same Unicode block.
Sometimes characters are found in Bangla text
that closely resembles Bangla but is in fact As-
samese. We cleaned these characters from the
Bangla scripts.

To-hoshonto normalization
ৎ [æ] symbol which is formed from ত [to̪] and

◌্ and no space char (u200c) should be replaced
with ৎ (Constable, 2004). We normalized [ত [to̪],
◌্] as ৎ [æ]. This structure holds the actual sense
of ৎ [æ] and was not previously done.

Table 2 shows the explanations of the different
normalization schemes. Of these, 4 are specific
to Bangla and the others are general and valid for
any Abugida script written on unicode-based key-
boards.

4.2. Word Level Experiments
We tested the effectiveness of our normalizer on
Indic texts collected from the Internet. We ran our
normalizer on words collected from the OSCAR
online multilingual corpus (Abadji et al., 2022).
This corpus contains texts from diverse online do-
mains such as blogs, newspapers, social media,
etc. thus containing commonly occurring issues
in digitally written texts using widely available key-
boards for seven Indic Abugida languages. Table
3 contains some basic information on this corpus;
for example, the corpus had 6,885,008 unique
Punjabi words, and 214,242 of those were sub-
jected to modification by the normalizer, which is

17024

Language Total Affected %

Bangla 2,883,731 369,348 12.81
Devanagari 2,887,725 257,615 8.92

Gujarati 1,119,927 28,512 2.55
Odiya 417,483 36,267 8.69
Tamil 6,885,008 214,242 3.11

Punjabi 421,537 132,993 31.55
Malayalam 6,021,714 932,314 15.48

Table 3: Summary of the OSCAR Abugida lan-
guage corpus. It shows how many, out of the total
unique words, our pipeline was able to capture as
unnormalized words

3.11% of the Punjabi words, written using the Gur-
mukhi script.

4.3. NLP Experiments

We compare our proposed normalizer with Indic-
NLP (Kunchukuttan, 2020). We ran experiments
on a Bangla multi-class NER (Ashrafi et al., 2020)
dataset and a Hindi Sentiment Analysis (Kak-
wani et al., 2020) dataset (HSA) to evaluate the
performance of the proposed Unicode normalizer
for different languages and different downstream
tasks. The models are based on BERT (Devlin
et al., 2018) and the implementations are detailed
in (Ashrafi et al., 2020; Kakwani et al., 2020). The
NER dataset contains 66,194 sentences which
were divided into 62,712 train and 3,482 test sam-
ples. The HSA dataset has 4,705 sentences (each
classified into 3 class categories) which were di-
vided into 4182 train samples and 523 test sam-
ples. The NER dataset is evaluated using preci-
sion, recall, and F1 score while the HSA dataset is
evaluated using accuracy, F1 score, and Matthews
Correlation Coefficient (MCC).

The effect of the normalization on the perfor-
mance metrics was observed by applying the nor-
malization on the train-test partitions both concur-
rently and also in a mutually exclusive manner. To
measure robustness inject noise into the test set
and use the normalizers to denoise the data and
measure performance on the denoised data; serv-
ing as a heuristic for the performance of the nor-
malizer. We simulate various types of noisy texts
by deploying the following random attack opera-
tions on the individual words:

• introducing connector and non-glyphs Uni-
code (p = 0.3)

• breaking nukta Unicode (p = 0.5)

• breaking diacritics (p = 0.5)

• adding vowel diacritics after vowels (p = 0.5)

We assign 0.3 to 0.5 probability for each oper-
ation and run the error injection protocol multiple
times to vary the intensity of attacks. We denote
the attack intensity by attack-x°, where x denotes
the number of times the injection protocol was ap-
plied on each word. For both the task, each exper-
iment is repeated three times and the average of
the results are reported.

4.3.1. Results

The experiment results for normalization and ro-
bustness performance are detailed in Table 4. We
demonstrate that the normalization improves the
performance of the downstream task and does not
have any adverse effect. We saw that the pro-
posed normalization method is approximately in-
dependent of the degree of noise injection for both
tasks respectively, whereas the performance of
IndicNLP deteriorates significantly, for both tasks.
We observe this in Table 4 where the performance
metric for the Bangla NER task (F1 score) de-
grades with increasing degrees of attack (0.80,
0.77, and 0.73 respectively); but applying the pro-
posed normalizer on the noisy data, we are able to
retrieve a higher and consistent F1-score of 0.89.
The IndicNLP method does not defend well against
the different degrees of attack (0.84, 0.81, and
0.75 F1-score respectively.) We observe the same
for the sentiment analysis task, too.

5. Proposed Grapheme Parser

For an Indic language grapheme parser, we need
three things: a list of vowel diacritics, a connector
and a list of consonant diacritics. A Connector for
any given Indic language is defined as the specific
Unicode that combines two consonants and cre-
ates consonant conjuncts. Table 1 shows a list of
connectors for the Indic languages that we used in
our work.

5.1. Parsing Algorithm
Our proposed algorithm for grapheme parsing is
as follows:

• For a given text t, get the list of Unicode, w =
u0, u1, u2,, un−1

• Create a list C with k elements that has the
positions of connector present in w in ascend-
ing order. Here k is the total number of con-
nectors in w and for every element i ∈ C:
0 < i < n−1 and ui−1 , ui+1 ∈ Consonants

• Create k lists, D maintaining the ascending
order of C, where each list has 3 consecutive
numbers . A list d that is an element of D is

17025

Train Norm. Test Norm. NER Sentiment Analysis
Precision Recall F1 Accuracy F1 MCC

None None 0.90±0.01 0.91±0.011 0.91±0.02 0.78±0.013 0.79±0.014 0.65±0.021
Normalization Performance

None IndicNLP 0.87±0.021 0.89±0.011 0.89±0.012 0.79±0.013 0.79±0.014 0.65±0.021
Ours 0.89±0.012 0.90±0.01 0.89±0.011 0.78±0.013 0.79±0.013 0.65±0.021

IndicNLP None 0.90±0.01 0.90±0.012 0.90±0.011 0.78±0.002 0.78±0.002 0.64±0.002
IndicNLP 0.91±0.018 0.91±0.021 0.91±0.011 0.78±0.001 0.78±0.001 0.63±0.001

Ours None 0.90±0.005 0.90±0.006 0.90±0.013 0.78±0.009 0.78±0.008 0.64±0.011
Ours 0.90±0.003 0.90±0.015 0.90±0.007 0.78±0.009 0.78±0.008 0.64±0.011

Robustness

None
att-1° 0.82±0.004 0.83±0.004 0.79±0.039 0.77±0.014 0.77±0.013 0.61±0.021
att-2° 0.81±0.02 0.82±0.021 0.77±0.012 0.75±0.008 0.75±0.008 0.59±0.02
att-5° 0.79±0.012 0.80±0.016 0.73±0.011 0.74±0.006 0.74±0.006 0.56±0.01

IndicNLP
att-1° 0.82±0.023 0.84±0.002 0.81±0.003 0.76±0.012 0.76±0.012 0.60±0.019
att-2° 0.81±0.02 0.83±0.013 0.78±0.02 0.74±0.012 0.74±0.012 0.57±0.02
att-5° 0.78±0.021 0.81±0.012 0.74±0.013 0.73±0.004 0.73±0.004 0.56±0.006
att-1°+I 0.84±0.021 0.85±0.013 0.84±0.019 0.76±0.011 0.76±0.012 0.60±0.019
att-2°+I 0.82±0.012 0.84±0.003 0.81±0.013 0.74±0.011 0.74±0.011 0.57±0.019
att-5°+I 0.79±0.005 0.81±0.012 0.75±0.015 0.73±0.004 0.73±0.004 0.56±0.007

Ours
att-1° 0.82±0.003 0.84±0.028 0.80±0.013 0.80±0.005 0.77±0.004 0.61±0.005
att-2° 0.81±0.01 0.82±0.021 0.77±0.022 0.74±0.006 0.74±0.007 0.57±0.012
att-5° 0.78±0.012 0.81±0.011 0.73±0.021 0.73±0.014 0.73±0.013 0.56± 0.02
att-1°+O 0.89±0.011 0.90±0.005 0.89±0.002 0.78±0.008 0.78±0.008 0.64±0.011
att-2°+O 0.89±0.012 0.89±0.004 0.89±0.004 0.78±0.008 0.78±0.008 0.63±0.012
att-5°+O 0.89±0.011 0.89±0.016 0.89±0.007 0.76±0.007 0.76±0.007 0.61±0.011

Table 4: Effect of Train-Test set normalization on NER and Sentiment Analysis task. Also, robustness to
noise is compared for our (O) proposed method and IndicNLP (I). Noise (att-x°, here x ∈ {1, 2, 5} denotes
the intensity of the attack) is introduced to the test set and denoised data via corresponding unicode
normalization. Our normalization method is more robust to noise and provides consistent results. We
also provide uncertainty values for the Sentiment Analysis task to demonstrate the consistency of our
results.

formed as: (ij−1, ij , ij+1) where 0 =< j =<
k − 1

• Two lists are merge-able if and only if ij +1 =
ij+1 − 1. The new merged list d ∈ D will now
have 5 elements (ij−1, ij , ij+1, ij+1, ij+1+1).
Merge lists in D recursively until the lists are
not merge-able anymore maintaining the as-
cending order in C. At the end of recursion,
we will end up having a new list D′, having p
lists where each list d′ ∈ D′ will have varying
lengths. The lengths will be odd natural num-
bers >= 3

• For every d′ which has consecutive numbers
in ascending order, merge the Unicode in cor-
responding positions in w and construct w′.
Elements in w′ can only be of 3 categories:
pure vowel diacritics vd, pure consonant dia-
critics cd, or a mix of grapheme root and con-
junct diacritic gc.

• To get the list of graphemes G, we add a gc
with the next element in w, if and only if the

next element is either a vd or cd.

In Appendix section A, Figure 3 shows an exam-
ple of grapheme and component parsing following
the algorithm.

5.2. Theoretical Proof of Grapheme
Parser’s Accuracy

The proposed grapheme parsing algorithm will
always provide accurate results. To prove it we
need to introduce some properties and definitions
for graphemes.

p1: A complete word can not have incom-
plete graphemes [property]

p2: A word is a successive summation of
graphemes [definition]

e1: if w ∈ W is a complete word,
w = g1 + g2 + g3 + + gn =

∑n
i=1 gi ; where

g ∈ G = grapheme

17026

(a) Bangla (b) Hindi (c) Gujrati (d) Odiya

Figure 2: Time taken for our parser to process examples vs. time taken by IndicNLP syllabifier. Time is
shown as a logarithmic function, and the example count is in scale of 106.

p3: A grapheme g ∈ G is defined as a com-
bination of root r ∈ R OR complex-root cr ∈ CR
AND diacritics (both vowel diacritic vd ∈ V D
and consonant diacritic cd ∈ CD in a successive
single or combinatorial form, or no diacritics ∅)
[definition]

p4: A root r ∈ R can be a consonant con-
junct cc ∈ CC OR a single vowel v ∈ V OR a
single consonant c ∈ C [definition]

p5: A complex-root cr ∈ CR can be a (con-
sonant conjunct cc ∈ CC OR a consonant c ∈ C)
AND conjunct diacritic cjd ∈ CJD [definition]

e2: g = gc + e where gc ∈ R ∪ CR =
V ∪ CC ∪ C ∪ CC-CJD ∪ C-CJD and
e ∈ V D ∪ CD ∪ CD + V D ∪∅

p6: A consonant conjunct cc ∈ CC is a suc-
cessive combination of two or more consonants
with a connector in between the consonants
[definition]

p7: A Conjunct diacritic cjd ∈ CJD is de-
fined as a consonant conjunct with a leading
connector [definition]

e3: cc = c1 + o + c2 + o + c3 + ... + cm and
cjd = o+c1+o+c2+o+c3+ ...+cm; where o ∈ O
= connector, cj ∈ C

e4: c-cjd OR cc-cjd = c1+o+c2+o+c3+ ...+cm
[follows by definition and e3]

e5:

g = gc+e =


v + e → x1,

c+ e → x2,

c1 + o+ c2 + o+ ...+ cm + e → x3

Hence, w = gc1 + e1 + gc2 + e2 + ...+ gcn + en →
(Definitional Property −DP)

Now let’s approach this from a methodologi-
cal perspective:

• For a given text t, get the list of Unicode w =
u0, u1, u2, , un−1

• Create a list C with k elements that has the po-
sitions of connector present in w in ascending
order. Here k is the total number of connec-
tors in w and for every element i ∈ C: 0 < i <
n−1 and ui−1, ui + 1 ∈ Consonants → x3

• Create k lists, D maintaining the ascending
order of C, where each list has 3 consecu-
tive numbers . A list d ∈ D is thus formed
as: (ij−1, ij , ij + 1) where 0 ≤ j ≤ k−1 → x3

• Two lists are merge-able iff ij + 1 = ij+1 − 1.
The new merged list d ∈ D will now have 5
elements ij − 1, ij , ij + 1, ij+1, ij+1 + 1.

• Merge lists in D recursively until the lists are
not merge-able anymore maintaining the as-
cending order in C. At the end of recursion,
D′ will end up having p lists where each list
d′ ∈ D′ will have varying lengths. The lengths
will be odd natural numbers ≥ 3 → x3

• For every d′ which has consecutive numbers
in ascending order, merge the Unicode in cor-
responding positions in w′ and construct w′.
Elements in w′ can only be of 3 categories:
pure vowel diacritics V D, pure consonant di-
acritics CD, or a mix of grapheme root and
conjunct diacritic gc.

Hence we reach the definitional property, w′ =
gc1 + e11 + gc2 + e2 + ... + gcn + en →
(Methodological Property −MP)

From the above conditions, we can see that
there exists a counter-argument only when MP ̸=
DP . But it is evident that MP = DP under all
circumstances. So, we are able to prove that pro-
posed grapheme parser will provide correct results
in all circumstances.

5.3. Experiments
The core point of introducing our grapheme parser
is its efficiency. To measure the efficacy of the sys-
tem along with the runtime, we perform grapheme
parsing on the unique words (table 3) found in the
OSCAR corpus (Abadji et al., 2022). We obtain su-
perior performance in terms of runtime. We also

17027

reconstruct the words from the constituents to ver-
ify a successful parsing and found the parser to be
accurate. We compare the runtime of our parser
with the current state-of-the-art Indic NLP syllabi-
fier (Kunchukuttan and Bhattacharyya, 2016) for
Bangla, Hindi, Gujrati, and Odiya language. The
results in Figure 2 show that our grapheme parser
is orders of magnitude faster compared to the ex-
isting parsers for all the languages.

6. Conclusion

In this article we present a state-of-the-art Indic
Unicode normalizer that corrects various recurring
issues present in Indic Abugida scripts’ internet
word corpus and NLP tasks. Our proposed Uni-
code normalizer is much more robust than previ-
ously available methods under varying degrees of
noise. Additionally, we have proposed a grapheme
parser which is both accurate and efficient when
compared with the currently existing orthographic
syllabifier. The main goal of this study was to de-
velop trustworthy low-resource language tools for
Abugida scripts that will help future researchers in
the field of natural language processing of many
low-resource Indic languages with Abugida scripts
by resolving the longstanding Unicode issues, and
we believe our pipeline will do that. We leave the
addition of more Indic scripts as a future task and
make the framework open for easy integration.

Limitations

Our Unicode Normalizer has a higher runtime com-
pared to the current implementations of normal-
izers due to the sophisticated handling of differ-
ent cases from different languages. It is purely
a heuristic-based string operation and we plan to
shift the core operation to matrix based operation
so that we can utilize modules like Numba (Lam
et al., 2015) which can provide us with JIT (Just in
time) compilation and hence bring down the pro-
cessing time significantly.

Currently, we restrict our module to only work
with separate words. A downside of this separate
word-based handling is we can not normalize punc-
tuations with any rigorous certainty.

While covering Bangla complex roots, we have
only considered frequently occurring consonant
conjuncts, and hence our algorithm may fail to nor-
malize rarely used complex roots. We plan to do
the same for the other Indic languages in the next
versions.

Also to properly establish the supremacy of nor-
malizing the Unicode, it is required that the MLM
task is also done with normalized data. We have
only fine-tuned normalized data. So far there are

no language models trained solely on properly nor-
malized data for the Indic languages.

Ethics Statement

As text normalization and effective parsing are cru-
cial steps for any language processing tool out
there, we believe this work will facilitate future In-
dic language research. Like all languages, Indic
ones are quite complex and have some inherent
idiosyncrasies: hence, there may be some issues
that were not addressed in this study. The data
we used in this work is from a public dataset and
does not include any privacy issues regarding data
acquisition. Our proposed methodology does not
make assumptions about individuals or pass judg-
ment on them, and it does not produce any offen-
sive or biased reactions.

7. Bibliographical References

Julien Abadji, Pedro Ortiz Suarez, Laurent
Romary, and Benoît Sagot. 2022. To-
wards a Cleaner Document-Oriented Multilin-
gual Crawled Corpus. arXiv e-prints, page
arXiv:2201.06642.

S. Acharya, A. K. Pant, and P. K. Gyawali. 2015.
Deep learning based large scale handwritten de-
vanagari character recognition. In Proc. 9th Int.
Conf. SKIMA), pages 1–6.

Alfred V. Aho and Jeffrey D. Ullman. 1972. The
Theory of Parsing, Translation and Compiling,
volume 1. Prentice-Hall, Englewood Cliffs, NJ.

Samiul Alam, Tahsin Reasat, Rashed Moham-
mad Doha, and Ahmed Imtiaz Humayun. 2018.
Numtadb - assembled bengali handwritten dig-
its. arXiv preprint arXiv:1806.02452.

Samiul Alam, Tahsin Reasat, Asif Shahriyar Sush-
mit, Sadi Mohammad Siddique, Fuad Rahman,
Mahady Hasan, and Ahmed Imtiaz Humayun.
2021. A large multi-target dataset of common
bengali handwritten graphemes. In International
Conference on Document Analysis and Recog-
nition, pages 383–398. Springer.

Jawad H. AlKhateeb. 2015. A database for ara-
bic handwritten character recognition. Procedia
Computer Science, 65:556 – 561.

American Psychological Association. 1983. Publi-
cations Manual. American Psychological Asso-
ciation, Washington, DC.

http://arxiv.org/abs/2201.06642
http://arxiv.org/abs/2201.06642
http://arxiv.org/abs/2201.06642

17028

Rie Kubota Ando and Tong Zhang. 2005. A frame-
work for learning predictive structures from mul-
tiple tasks and unlabeled data. Journal of Ma-
chine Learning Research, 6:1817–1853.

Galen Andrew and Jianfeng Gao. 2007. Scal-
able training of L1-regularized log-linear models.
In Proceedings of the 24th International Confer-
ence on Machine Learning, pages 33–40.

Imranul Ashrafi, Muntasir Mohammad,
Arani Shawkat Mauree, Galib Md Azraf Nijhum,
Redwanul Karim, Nabeel Mohammed, and
Sifat Momen. 2020. Banner: a cost-sensitive
contextualized model for bangla named entity
recognition. IEEE Access, 8:58206–58226.

David Berthelot, Nicholas Carlini, I. Goodfellow,
Nicolas Papernot, A. Oliver, and Colin Raffel.
2019. Mixmatch: A holistic approach to semi-
supervised learning. In Proc. NeurIPS, 2019.

Mithun Biswas, Rafiqul Islam, Gautam Kumar
Shom, Md Shopon, Nabeel Mohammed, Sifat
Momen, and Md Anowarul Abedin. 2017.
Banglalekha-isolated: A comprehensive bangla
handwritten character dataset. arXiv preprint
arXiv:1703.10661.

William Bright. 1999. A matter of typology: Alpha-
syllabaries and abugidas. Written Language &
Literacy, 2(1):45–65.

Ashok K. Chandra, Dexter C. Kozen, and Larry J.
Stockmeyer. 1981. Alternation. Journal
of the Association for Computing Machinery,
28(1):114–133.

STUDIES IN ANCIENT ORIENTAL CIVILIZATION.
The oriental institute of the university of chicago.

Peter Constable. 2004. Encoding of bengali
khanda ta in unicode.

James W. Cooley and John W. Tukey. 1965. An
algorithm for the machine calculation of com-
plex Fourier series. Mathematics of Computa-
tion, 19(90):297–301.

Peter T Daniels and William Bright. 1996. The
world’s writing systems. Oxford University Press
on Demand.

Jiankang Deng, Jia Guo, Niannan Xue, and Ste-
fanos Zafeiriou. 2019. Arcface: Additive angular
margin loss for deep face recognition. In Proc.
2019 IEEE/CVF Conf. CVPR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Terrance DeVries and Graham W Taylor. 2017.
Improved regularization of convolutional neu-
ral networks with cutout. arXiv preprint
arXiv:1708.04552.

Chenchen Ding, Masao Utiyama, and Eiichiro
Sumita. 2018. Simplified abugidas. In Proc. 56th
Annu. Meeting ACL, volume 2, pages 491–495.
Association for Computational Linguistics.

K. Dutta, P. Krishnan, M. Mathew, and C. V. Jawa-
har. 2018. Offline handwriting recognition on de-
vanagari using a new benchmark dataset. In
Proc. 13th IAPR Int. Workshop DAS, pages 25–
30.

Kartik Dutta, Praveen Krishnan, Minesh Mathew,
and C. V. Jawahar. 2018. Offline handwriting
recognition on devanagari using a new bench-
mark dataset. In DAS.

Reza Farrahi Moghaddam, Mohamed Cheriet,
Mathias M. Adankon, Kostyantyn Filonenko,
and Robert Wisnovsky. 2010. Ibn sina: A
database for research on processing and under-
standing of arabic manuscripts images. In Proc.
9th IAPR Int. Workshop DAS, page 1118.

Liudmila Fedorova. 2013. The development
of graphic representation in abugida writing:
The aksharas grammar. Lingua Posnaniensis,
55(2):4966.

Amalia E Gnanadesikan. 2017. Towards a typol-
ogy of phonemic scripts. Writing Systems Re-
search, 9(1):14–35.

Santhoshini Gongidi and CV Jawahar. 2021. iiit-
indic-hw-words: A dataset for indic handwrit-
ten text recognition. In International Conference
on Document Analysis and Recognition, pages
444–459. Springer.

Dan Gusfield. 1997. Algorithms on Strings, Trees
and Sequences. Cambridge University Press,
Cambridge, UK.

Ethan Harris, Antonia Marcu, Matthew Painter,
Mahesan Niranjan, Adam Prügel-Bennett, and
Jonathon Hare. 2020. FMix: Enhancing Mixed
Sample Data Augmentation. arXiv e-prints,
page arXiv:2002.12047.

J. Hu, L. Shen, and G. Sun. 2018. Squeeze-and-
excitation networks. In Proc. IEEE/CVF Conf.
CVPR, 2018, pages 7132–7141.

Divyanshu Kakwani, Anoop Kunchukuttan,
Satish Golla, Gokul N.C., Avik Bhattacharyya,
Mitesh M. Khapra, and Pratyush Kumar. 2020.
IndicNLPSuite: Monolingual Corpora, Evalua-
tion Benchmarks and Pre-trained Multilingual

https://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
https://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
https://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
https://dl.acm.org/doi/abs/10.1145/1273496.1273501
https://dl.acm.org/doi/abs/10.1145/1273496.1273501
https://doi.org/10.1145/322234.322243
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.cambridge.org/core/books/algorithms-on-strings-trees-and-sequences/F0B095049C7E6EF5356F0A26686C20D3
https://www.cambridge.org/core/books/algorithms-on-strings-trees-and-sequences/F0B095049C7E6EF5356F0A26686C20D3
http://arxiv.org/abs/2002.12047
http://arxiv.org/abs/2002.12047

17029

Language Models for Indian Languages. In
Findings of EMNLP.

Padmapriya Kandhadai and Richard Sproat. 2010.
Impact of spatial ordering of graphemes in al-
phasyllabic scripts on phonemic awareness in
indic languages. Writing Systems Research,
2(2):105–116.

Md Khairullah and Md Abu Shahriar Ratul. 2018.
Steganography in bengali unicode text. SUST J.
Sci. Technol.

F. Kimura, N. Kayahara, Y. Miyake, and M. Shrid-
har. 1997. Machine and human recognition of
segmented characters from handwritten words.
In Proc. 4th ICDAR, volume 2, pages 866–869
vol.2.

Oddur Kjartansson, Supheakmungkol Sarin, Knot
Pipatsrisawat, Martin Jansche, and Linne Ha.
2018. Crowd-sourced speech corpora for
javanese, sundanese, sinhala, nepali, and
bangladeshi bengali. In Proc. 6th Intl. Workshop
SLTU, pages 52–55.

Anoop Kunchukuttan. 2020. The IndicNLP Li-
brary. https://github.com/anoopkunchukuttan/
indic_nlp_library/blob/master/docs/indicnlp.
pdf.

Anoop Kunchukuttan and Pushpak Bhattacharyya.
2016. Orthographic syllable as basic unit for
SMT between related languages. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages
1912–1917, Austin, Texas. Association for Com-
putational Linguistics.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seib-
ert. 2015. Numba: A llvm-based python jit com-
piler. In Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC,
pages 1–6.

Yann LeCun, Corinna Cortes, and
CJ Burges. 2010. Mnist handwritten digit
database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou
Tang. 2015. Deep learning face attributes in the
wild. In Proc. ICCV.

Sabri A. Mahmoud, Irfan Ahmad, Wasfi G. Al-
Khatib, Mohammad Alshayeb, Mohammad Tan-
vir Parvez, Volker Märgner, and Gernot A. Fink.
2014. Khatt: An open arabic offline handwritten
text database. Pattern Recognition, 47(3):1096
– 1112.

Dimitrios Meletis. 2019. The grapheme as a uni-
versal basic unit of writing. Writing Systems Re-
search, 11(1):26–49.

Sk Md Obaidullah, Chayan Halder, Nibaran Das,
and Kaushik Roy. 2016. A new dataset of word-
level offline handwritten numeral images from
four official indic scripts and its benchmarking
using image transform fusion. Int. J. Intell. Eng.
Inform., 4(1):120.

AKM Shahariar Azad Rabby, Sadeka Haque,
Md. Sanzidul Islam, Sheikh Abujar, and
Syed Akhter Hossain. 2019. Ekush: A multipur-
pose and multitype comprehensive database
for online off-line bangla handwritten characters.
In RTIP2R, pages 149–158.

Mohammad Sadegh Rasooli and Joel R. Tetreault.
2015. Yara parser: A fast and accurate depen-
dency parser. Computing Research Repository,
arXiv:1503.06733. Version 2.

Ram Sarkar, Nibaran Das, Subhadip Basu, Ma-
hantapas Kundu, Mita Nasipuri, and Dipak Ku-
mar Basu. 2012. Cmaterdb1: a database of
unconstrained handwritten bangla and bangla–
english mixed script document image. IJDAR,
15(1):71–83.

Niladri Sekhar. 2022. Bangla script: A structural
study.

JC Sharma. 2001. Language and script in india:
Some challenges. Language of India, 1.

Manjira Sinha and Anupam Basu. 2016. A study
of readability of texts in bangla through machine
learning approaches. Education and Informa-
tion Technologies, 21(5):1071–1094.

Jeffrey S Sorensen and Salim Roukos. 2007.
Rethinking full-text search for multi-lingual
databases. IEEE Data Eng. Bull., 30(1):5–16.

Mingxing Tan and Quoc Le. 2019a. EfficientNet:
Rethinking model scaling for convolutional neu-
ral networks. volume 97 of Proceedings of
Machine Learning Research, pages 6105–6114,
Long Beach, California, USA. PMLR.

Mingxing Tan and Quoc Le. 2019b. EfficientNet:
Rethinking model scaling for convolutional neu-
ral networks. In PMLR, volume 97, pages 6105–
6114.

S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and
J. Choe. 2019. Cutmix: Regularization strat-
egy to train strong classifiers with localizable fea-
tures. In Proc. ICCV, 2019, pages 6022–6031.

https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://doi.org/10.18653/v1/D16-1196
https://doi.org/10.18653/v1/D16-1196
http://arxiv.org/abs/1503.06733
http://arxiv.org/abs/1503.06733
https://doi.org/10.1007/s10639-014-9368-y
https://doi.org/10.1007/s10639-014-9368-y
https://doi.org/10.1007/s10639-014-9368-y
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html

17030

Hongyi Zhang, Moustapha Cisse, Yann N
Dauphin, and David Lopez-Paz. 2017. Mixup:
Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412.

J. Zhu, T. Park, P. Isola, and A. A. Efros. 2017. Un-
paired image-to-image translation using cycle-
consistent adversarial networks. In Proc. ICCV,
2017, pages 2242–2251.

A. Appendix

A.1. Illustration of Proposed Grapheme
Parser Algorithm

Figure 3: The workflow of our proposed grapheme
parser algorithm. Here t is a given sentence.

Here, Figure 3 shows the workflow of our pro-
posed grapheme parser algorithm. Initially, it de-
constructs the sentence t to w and creates a list
of positions/index of connectors C (i.e., Bangla:
Hosonto [‘◌্’]). After that, we created a list D which
consists of a set of list that contains the index of
each connector’s index ij and its adjacent indices
(ij −1, and ij +1). Here j is the sublist index of list
D. After that D will transform to D′ which will recur-
sively merge adjacent list merge-able if and only if
ij + 1 = ij+1 − 1. The new merged list d ∈ D will
now have 5 elements (ij−1, ij , ij+1, ij+1, ij+1+1).
From D′, we will create w′ that has consecutive
numbers in ascending order, merge the Unicode
in corresponding positions in w and construct w′.
Elements in w� can only be of 3 categories: pure
vowel diacritics vd, pure consonant diacritics cd, or
a mix of grapheme root and conjunct diacritic gc.
After that we will create G. Here, we add a gc with
the next element in w, if and only if the next ele-
ment is either a vd or cd.

	Introduction
	Characteristics of Abugida Orthography
	Grapheme Roots and Diacritics
	Consonant Conjuncts or Ligatures
	Unique Grapheme Combinations

	Characteristics of Abugida Unicode Blocks
	Unicode Normalization
	Methodology
	Legacy Symbols Handling
	Broken Vowel Diacritic Fixing
	Broken Nukta Resolution
	Invalid Unicode Handling
	Invalid Connector Handling
	Diacritic Form Correction
	Vowel-Vowel Diacritic Removal
	Language Specific Treatment

	Word Level Experiments
	NLP Experiments
	Results

	Proposed Grapheme Parser
	Parsing Algorithm
	Theoretical Proof of Grapheme Parser's Accuracy
	Experiments

	Conclusion
	Bibliographical References
	Appendix
	Illustration of Proposed Grapheme Parser Algorithm

