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Abstract

This paper addresses the task of temporal activity localization (TAL). Although recent works have made significant
progress in TAL research, almost all of them implicitly assume that the dense frame-level correspondences in each
video-query pair are correctly annotated. However, in reality, such an assumption is extremely expensive and even
impossible to satisfy due to subjective labeling. To alleviate this issue, in this paper, we explore a new TAL setting
termed Noisy Temporal activity localization (NTAL), where a TAL model should be robust to the mixed training data
with noisy moment boundaries. Inspired by the memorization effect of neural networks, we propose a novel method
called Co-Teaching Regularizer (CTR) for NTAL. Specifically, we first learn a Gaussian Mixture Model to divide the
mixed training data into preliminary clean and noisy subsets. Subsequently, we refine the labels of the two subsets
by an adaptive prediction function so that their true positive and false positive samples could be identified. To avoid
single model being prone to its mistakes learned by the mixed data, we adopt a co-teaching paradigm, which utilizes
two models sharing the same framework to teach each other for robust learning. A curriculum strategy is further
introduced to gradually learn the moment confidence from easy to hard. Experiments on three datasets demonstrate
that our CTR is significantly more robust to the noisy training data compared to the existing methods.
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1. Introduction

Temporal activity localization (TAL) aims at retriev-
ing the start and end timestamps of the target mo-
ment in an untrimmed video semantically according
to a sentence query. Figure 1 (a) shows an illus-
trative example of this task. It requires cooperation
from both computer vision and natural language
processing for the precisely semantic alignment,
and has a wide range of applications such as video
summarization (Chu et al., 2015; Jiang and Mu,
2022; Liu et al., 2023a,d,c,b, 2022a,c,e; Liu and
Hu, 2022a,b; Liu et al., 2022b, 2023e, 2020b,a,
2021b,c,a, 2022d, 2024) and video question an-
swering (Gao et al., 2019; Le et al., 2020; Fang
et al., 2022a, 2021a, 2022b, 2020, 2021b, 2023b;
Fang and Hu, 2020; Fang et al., 2023a, 2024).

Prior TAL works either exploit propose-and-rank
frameworks (Anne Hendricks et al., 2017; Gao
et al., 2017; Chen et al., 2018; Zhang et al., 2019b;
Yuan et al., 2019a; Zhang et al., 2020b) which first

†Corresponding author.

generate multiple moment candidates and then
utilize multimodal matching strategy to retrieve
the most relevant candidate for a query, or follow
the boundary-regression frameworks (Chen et al.,
2020; Yuan et al., 2019b; Zeng et al., 2020; Zhang
et al., 2020a; Nan et al., 2021; Zhang et al., 2021)
to directly predict two probabilities (start/end) at
each frame instead of relying on the moment can-
didates. Although the above two types of methods
have achieved promising results, almost all of them
depend on an implicit data assumption, i.e., the mo-
ment boundary labels in training data are correctly
annotated. However, in practical scenarios, it is ex-
tremely expensive and time-consuming to annotate
or collect such dense labeled data. Actually, due to
the subjectivity of different annotators, mixed web
data, or the adversarial attackers, it is inevitable
to collect some biased moment boundaries. As
shown in Figure 1 (b), once such noisy samples
are poisoned into the clean data, it will remarkably
degrade both the robustness and performance of
TAL methods. To the best of our knowledge, such
an important noisy label problem has not been ex-
plored in TAL task yet.

In this paper, we propose a novel TAL subtask
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(a) An illustrative example of TAL and NTAL.

Query: The person goes back to the washing machine and puts clothes in a bag.

(b) Importance of studying localization with noisy labels.

Ground-Truth | |39.40s 45.60sGround-Truth | |39.40s 45.60s

Noisy Label | |34.57s
51.24s

Figure 1: (a) Illustrative example of the TAL task.
(b) Performance comparison on ActivityNet Cap-
tion, where the noisy samples will directly affect the
performance and robustness of the existing TAL
models.

termed Noisy Temporal activity localization (NTAL).
Different from the standard TAL task, the train-
ing data in NTAL contains partially noisy samples,
which corresponds to biased moment boundaries.
Since NTAL problem has seldom been investigated,
there are three main issues that need to be con-
cerned about: 1) There are no extra annotations to
distinguish the clean and noisy video-query sam-
ples. Therefore, it is hard to directly train a robust
model in a fully-clean set. 2) Noisy samples also
provide additional knowledge during the training.
How to rectify their labels for assisting the model
learning is worth investigating. 3) Utilizing a sin-
gle model to distinguish samples and noisy labels
might not be robust enough, since it may prone to
specific mistakes during the training process.

To tackle the above issues, we propose a novel
framework, named Co-Teaching Regularizer (CTR).
Our method is based on the memorization effect
of DNNs observed in (Arpit et al., 2017; Xia et al.,
2020), i.e., DNNs tend to learn the simple patterns
before fitting noisy samples. Specifically, we first in-
troduce a Gaussian Mixture Model (GMM) to divide
the video-query data into two data partitions, i.e.,
clean and noisy subsets, based on their loss differ-
ence of a warm-up TAL model. Then, we develop
an adaptive prediction function for label rectifying
so that the false positives and the true positives
could be identified from the clean and the noisy
subsets, respectively. To avoid single model being
prone to its mistakes learned by the mixed data, we
adopt a co-teaching paradigm to utilize two models
sharing the same framework to teach each other
for more robust learning. In addition, we further em-
ploy a dynamic curriculum strategy to learn the rec-
tified samples from easy-to-hard to ease the model
optimization for better predicting the moment confi-
dence. Experimental results show that our CTR is

more robust to the noisy training data compared to
the existing methods.

Our contributions are summarized as follows:

• To achieve robust temporal activity localization
learning, we propose a more practical noisy
TAL setting and make the first attempt to inves-
tigate it.

• We propose a novel Co-Teaching Regularizer
(CTR) model to address corresponding issues
in the NTAL task. Specifically, we develop a
co-teaching paradigm to collaboratively divide
the clean/noisy subsets and introduce a cur-
riculum learning strategy to gradually learn the
rectified samples from easy to hard.

• Experiments on three datasets demonstrate
that our method significantly surpasses exist-
ing methods in the noisy setting. It is worth
noticing that our method still achieves compet-
itive performance on the fully-clean dataset.

2. Related Work

Temporal activity localization. Temporal activ-
ity localization (TAL) is a new task introduced re-
cently (Gao et al., 2017; Anne Hendricks et al.,
2017). Most previous algorithms (Anne Hendricks
et al., 2017; Gao et al., 2017; Chen et al., 2018;
Zhang et al., 2019b; Yuan et al., 2019a; Zhang
et al., 2020b; Liu et al., 2021b) have been proposed
within the propose-and-rank framework, which first
generates moment candidates and then utilizes
multimodal matching to retrieve the most relevant
candidate for a query. Some of them (Anne Hen-
dricks et al., 2017; Gao et al., 2017) take multiple
sliding windows as candidates. To improve the qual-
ity of the candidates, (Zhang et al., 2019b; Yuan
et al., 2019a) pre-cut the video on each frame by
multiple pre-defined temporal scales, and directly
integrate sentence information with fine-grained
video clip for scoring. For instance, Xu et al. (Xu
et al., 2019) introduce a multi-level model to inte-
grate visual and textual features earlier and further
re-generate queries as an auxiliary task. Although
these methods achieve great performance, they
are severely limited by the heavy computation on
proposal matching/ranking, and sensitive to the
quality of pre-defined proposals. Recently, many
methods (Chen et al., 2020; Yuan et al., 2019b;
Zeng et al., 2020; Zhang et al., 2020a; Nan et al.,
2021; Zhang et al., 2021) propose to utilize the
boundary-regression framework. Specifically, they
directly predict two probabilities at each frame by
leveraging cross-modal interactions between video
and query, which indicate whether this frame is a
start/end frame of the ground truth video moment.
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Figure 2: Overview of our proposed CTR framework. (a) In our NTAL setting, the clean annotation is
perturbed by the random noise. To achieve robust training, we first utilize a co-teaching paradigm to
rectify the noisy labels, and then introduce a curriculum learning strategy to iteratively supervise the model
prediction. (b) The co-teaching paradigm first warms up two individual networks and employs the GMM
model on them to divide the training data into clean and noisy subsets. After that, both two models will
co-rectify the labels of each other for training.

Although the above methods have achieved promis-
ing results in recent years, all of them heavily rely on
the correctly aligned multi-modal datasets. There-
fore, it is highly expected to develop method which
is robust against potential noisy correspondence,
which has not been studied as far as we know. To
this end, we make the first attempt to reveal the
noisy label problem in TAL task and propose to
eliminate the negative impact from the noisy sam-
ples.

Learning with noisy labels. Most existing meth-
ods for training DNNs with noisy labels seek to
correct the loss function in the single-modal classi-
fication task (Song et al., 2022; Liu and Tao, 2015),
which can be categorized in two types. The first
type treats all samples equally and correct loss
either explicitly or implicitly through relabeling the
noisy samples. For relabeling methods, the noisy
samples are modeled with directed graphical mod-
els (Xiao et al., 2015), Conditional Random Fields
(Vahdat, 2017) or knowledge graph (Li et al., 2017).
However, they require access to a small set of clean
samples. Recently, (Tanaka et al., 2018; Yi and
Wu, 2019) propose iterative methods which relabel
samples using network predictions. The second
type of correction focuses on reweighting training
samples or separating clean and noisy samples,
which results in correcting the loss function (Thu-
lasidasan et al., 2019; Konstantinov and Lampert,
2019). A common method is to consider samples

with smaller loss as clean ones (Shen and Sang-
havi, 2019). Jiang et al. (Jiang et al., 2018) train
a mentor network to guide a student network by
assigning weights to samples. Arazo et al. (Arazo
et al., 2019) calculate sample weights by model-
ing per-sample loss with a mixture model. Unlike
the above noisy label studies, this paper focuses
on a more challenging noisy label problem which
considers mismatched multi-modal data pairs.

Note that, it is impossible to directly adopt pre-
vious noise label learning methods to solve our
multi-modal noisy correspondence problem due to
the following two reasons: First, most of the noisy
label learning methods propose to use the model’s
prediction for label rectifying in the scenario of clas-
sification, while it is intractable to directly predict the
aligned moment boundaries of given multi-modal
pairs in TAL models. Second, even if we can rectify
the noisy moment boundaries, the refined moment
proposals are imbalanced and still hard to learn. To
this end, we propose a novel co-teaching paradigm
with curriculum learning strategy to address above
issues.

3. Proposed Method

3.1. Overview

Problem formulation. Given the multi-modal train-
ing data D = {Vn,Qn,Yn}Nn=1, each untrimmed
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video Vn is represented as Vn = {vn,t}Tt=1 clip-
by-clip, where vn,t is the t-th clip of n-th video
and T is the number of total clips. Similarly, the
sentence query Qn with M words is denoted as
Qn = {qn,m}Mm=1 word-by-word. For each video-
query pair (Vn,Qn), TAL aims to retrieve a specific
moment Yn = (γs

n, γ
e
n) starting at timestamp γs

n

and ending at timestamp γe
n in video Vn, which

corresponds to the same semantic as query Qn.
To simulate the practical labeling process of the
NTAL setting, for noisy labeling samples, the target
moment boundaries are randomly perturbed, i.e.,
(γs

n, γ
e
n) is practically disturbed by adding random

offsets (δsn, δ
e
n) as (γs

n + δsn, γ
e
n + δen).

Overall framework. Our proposed CTR frame-
work consists of four major steps: Step 1: Model
initialization. Given the mixed training data, we first
initialize two individual networks A,B sharing the
same architecture shown in Figure 2 (a) and warm
them up. Step 2: Clean/noisy subset identification.
Then, we utilize the GMM model to divide the clean
and noisy subsets based on the computed losses of
each network. Step 3: Label refinement. After that,
we co-rectify the labels of two networks to recall
the possible true positives from noisy subset and
eliminate the negative impact of the possible false
positives from clean subset. Step 4: Co-updating
with curriculum strategy. At last, we introduce an
adaptive curriculum strategy to re-train the two net-
works in a swapping way from easy to hard till con-
vergence to get the optimum.

3.2. Preliminary

Feature extraction. Given an untrimmed video Vn
and a sentence queryQn, we first encode them into
feature vectors. To be specific, the video Vn is en-
coded with a pre-trained 3D convolutional network
(Tran et al., 2015; Carreira and Zisserman, 2017),
and represented as Vn = {vn,t}Tt=1 ∈ RT×dv ,
where vn,t denotes the t-th clip feature of n-th video
and dv refers to its feature dimension. For the
query Qi, each word is embedded using GloVe
(Pennington et al., 2014) and represented as Qn =
{qn,m}Mm=1 ∈ RT×dm , where dm is the word feature
dimension. After that, we utilize two linear layers to
project both video features Vn and query features
Qn to the same dimension d. As position encoding
offers a flexible way to embed a sequence when
the sequence order matters, we first incorporate a
position embedding to every input of both video and
query sequences. Then we refer to previous works
(Yuan et al., 2019b; Zhang et al., 2020a, 2021) and
use four convolutions layers, a multi-head attention
layer, and a feed-forward layer to generate contex-
tualized representations V ′

n = {v′
n,t}Tt=1 ∈ RT×d

and Q′
n = {q′

n,m}Mm=1 ∈ RT×d.
2D-Map based localization. To localize the tar-
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Figure 3: Left: Directly training our TAL model to
fit the noisy labels, where the losses of clean and
noisy samples are different at the beginning. Right:
The probability density function (PDF) on the clean
and noisy samples. We can find that GMM fits their
distribution well and can be utilized to distinguish
them.

get video moment, we follow previous propose-
and-rank framework to first define multiple moment
proposals within the video and then choose the
best matched one as the final prediction. Specif-
ically, we enumerate all the possible consecutive
video clips as proposals by constructing a 2D
proposal feature map Fn = {fn,a,b}a=T,b=T

a=1,b=1 ∈
RT×T×d like (Zhang et al., 2020b), where each
moment proposal fn,a,b of n-th video is obtained
by maxpooling its contained clips as fn,a,b =
maxpool(v′

n,a,v
′
n,a+1, ...,v

′
n,b), and a, b represent

the indexes of start and end video clips of the pro-
posal. To interact each query and proposal pair,
we first apply a LSTM layer on Q′

n to generate
sentence-level feature and then employ a low-rank
bilinear function (Kim et al., 2016) for cross-modal
fusion as:

f ′
n,a,b = W1(W2LSTM(Q′

n)⊙W3fn,a,b), (1)

where W1,W2,W3 ∈ Rd×d are learnable embed-
ding matrices and ⊙ is the Hadamard product op-
erator. After that, we utilize the temporal adjacent
network (Zhang et al., 2020b) over the fused 2D
feature map F ′

n = {f ′
n,a,b}

a=T,b=T
a=1,b=1 ∈ RT×T×d with

a scaled function to generate the 2D score map
On = {on,a,b}a=T,b=T

a=1,b=1 ∈ RT×T . During the training,
we employ a binary cross entropy loss to learn the
model as:

Ln =

a=T,b=T∑
a=1,b=1

yn,a,blog(on,a,b)+(1−yn,a,b)log(1−on,a,b),

(2)

L =
1

N × T × T

N∑
n=1

Ln, (3)

where yn,a,b is the ground-truth score.

3.3. Co-Teaching Learning Paradigm
Preliminary dividing data by GMM. When inject-
ing the noisy labels into the clean dataset, some
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early empirical studies (Arpit et al., 2017; Xia et al.,
2020) show that DNNs tend to first learn simple
samples and then gradually fit the noisy samples
as the noisy labels are somewhat hard samples.
This so-called memorization effect of DNNs will
lead to a relatively low loss for the clean samples
and a higher loss for the noisy samples. To inves-
tigate the training procedure of NTAL models, we
plot the loss results of clean and noisy samples
in Figure 3 (left). It shows that noisy labels take
longer to learn than clean labels. Therefore, one
can infer from the loss value that a sample is more
likely to be clean or noisy.

To avoid fitting noisy labels, we first divide the
mixed data into two preliminary accurate data par-
titions, i.e., “clean" and “noisy" subsets, based on
the loss difference. Specifically, we follow the mix-
ture models like (Ma and Leijon, 2011; Han et al.,
2018; Yu et al., 2019) to utilize the difference of loss
distribution between the clean and noisy samples
to divide the training data. As shown in Figure 3
(right), the loss distribution of our TAL model can
be well approximated by a Gaussian Mixture Model
(GMM) (Permuter et al., 2006) due to its flexibility
in the sharpness of distribution. Therefore, we fit
the per-sample loss Ln in Eq.(2) of all training data
by using a two-component (clean-noisy) GMM, and
compute corresponding probability density function
(pdf) of K components (K=2) as:

p(Ln) =

K∑
k=1

αkp(Ln|k), (4)

where αk and p(Ln|k) are the mixture coefficient
and the probability density of the k-th component,
respectively. Based on the memorization effect of
DNNs, we treat the component with a smaller mean
value (i.e., smaller loss) as the clean set, and the
other as the noisy set. We utilize the Expectation-
Maximization algorithm (Moon, 1996) to optimize
the GMM model, and compute the posterior prob-
ability as the clean probability wn of each sample
as:

wn = p(k|Ln) =
p(k)p(Ln|k)

p(Ln)
, (5)

where k is the Gaussian component with the
smaller mean. In this way, we can divide the train-
ing data into a clean subset and a noisy subset by
setting a threshold τ1 on {wn}Nn=1.

Directly training a single model using the data
divided by itself could lead to confirmation bias (i.e.,
the model is prone to confirm its mistakes (Tar-
vainen and Valpola, 2017)), as noisy samples that
are wrongly grouped into the clean subset would
keep having lower loss due to the model overfitting
to their labels. Therefore, we adopt a co-teaching
paradigm to avoid such error accumulation. Being
diverged offers the two networks distinct abilities

to filter different types of error, making the model
more robust to noise. Specifically, we individually
train two networks A and B of the same architec-
ture as in Sec.3.2 with different initializations and
batch sequences. Following the observation in Fig-
ure 3 (a), these two networks are first trained on
all training data to achieve initial convergence by
Eq.(2)(3). Then, at each latter epoch, network A or
B will model its per-sample loss distribution with a
GMM and divide the dataset into clean and noisy
subsets which are used for training each other.
Refine the noisy labels. For either of model A
and B, the mixed data D will be divided into the
clean subset Dk

c = {Vc,k
n ,Qc,k

n ,Yc,k
n }

Nc
n=1 and the

noisy subset Dk
i = {Vi,k

n ,Qi,k
n ,Yi,k

n }
Ni
n=1, where k ∈

{A,B}.
As for the clean subset Dk

c , we tend to refine its
labels to eliminate the negative impact of the pos-
sible false positives. Specifically, for each sample
Vc,k
n ,Qc,k

n ,Yc,k
n , we first transform the label Yc,k

n into
a 2D score map Y c,k

n = {yc,kn,a,b}
a=T,b=T
a=1,b=1 ∈ RT×T ,

and then refine each sub-label yn,a,b by:

ỹc,kn,a,b = wk
ny

c,k
n,a,b + (1− wk

n)o
c,k
n,a,b, (6)

where oc,kn,a,b is the network prediction. Considering
that only few moment proposals in 2D map are most
closed to the Yc,k

n , we further apply a sharpening
function on the refined labels within each video to
reduce their smoothness as:

ŷc,kn,a,b =
(ỹc,kn,a,b)

1
λ∑a=T,b=T

a=1,b=1 (ỹc,kn,a,b)
1
λ

, (7)

where hyperparameter λ is set to 0.5.
As for the noisy subset Dk

i , we tend to refine
its labels to recall the possible true positives. In
particular, we discard the original labels (noise)
and rectify the labels by averaging the predictions
of both two models A and B as:

ŷi,kn,a,b =
oi,An,a,b + oi,Bn,a,b

2
. (8)

Here, we do not apply the sharpen function since
there is no true label for the noisy data.
Co-updating the two models. After obtaining the
refined labels Ŷ A

n , Ŷ B
n based on two models, we

feed corresponding updated datasets D̂A, D̂B to
train the network B and A in a swapping way. Such
co-updating process makes two models more ro-
bust to noise by teaching each other implicitly.

3.4. Curriculum Learning with Refined
Labels

However, directly training each model (A or B)
with the refined labels of each video-query pair
via Eq.(2) may suffer from two challenging issues:
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Figure 4: Illustration of the unbalanced easy and
hard moment proposals.

1) The confidence scores of some query-related
moment proposals are rectified from small to high.
It is hard to directly fit its distribution by a single
learning step. 2) The numbers of query-relevant
and -irrelevant moments are imbalance. Optimizing
the average scores of all moments may fail to cap-
ture and learn the sharp rectified moment scores.
To this end, we propose an adaptive curriculum
learning strategy like (Bengio et al., 2009) by con-
sidering two aspects: 1) For 2D score map, most
moment proposals are query-irrelevant with lower
confidence scores, while a few proposals are query-
related but are ambiguous to determine which is
the best (especially the adjacent proposals). There-
fore, the irrelevant proposals can serve as the easy
instances and the relevant proposals can serve
as the hard instances for gradually network learn-
ing. 2) The imbalance problem of query-irrelevant
and -relevant proposals can be addressed by ap-
plying balanced weights. Specifically, we utilize
a threshold τ2 to distinguish both query-irrelevant
and -relevant moment proposals, and then apply
corresponding balanced weights with easy-hard
controllers η1, η2 to loss function as:

L′
n =

a=T,b=T∑
a=1,b=1

η1
Ntotal

NOn≥τ2

ŷn,a,blog(on,a,b)

+ η2
Ntotal

NOn<τ2

(1− ŷn,a,b)log(1− on,a,b),

(9)
where Ntotal is the total moment number, η1, η2
are dynamically changed during the iterative learn-
ing steps via η1 = e(ŷn,a,blog(on,a,b))/(1+0.2∗step) and
η2 = e((1−ŷn,a,b)log(1−on,a,b))/(1+0.2∗step). Specifi-
cally, lower evaluation loss in η1, η2 indicates a less
satisfactory learning status (hard examples) of the
current proposal, and will lead to a lower weight
to be learned. In reverse, the easy samples will
obtain higher weights at the beginning and be grad-
ually weakened by the decay schedule, while the
hard samples will gradually get increasing weights
during the co-updating. The overall co-teaching
strategy is illustrated in Algorithm 1.

Algorithm 1 Co-teaching Strategy
Input: A mixed training data D, two localization

models A and B sharing the same 2D-Map
based framework

1: Warm-up two models A and B using Eq.(2)
2: for epoch=1:num_epoch do:
3: (DA

c ,DA
i )← divide data by GMM(D, A)

4: (DB
c ,DB

i )← divide data by GMM(D, B)
5: for k = {A,B} do:
6: (D̂k

c , D̂k
i )← refine labels by Eq.(6)(7)(8)

7: for (η1, η2) in 1:step do:
8: train the other model on (D̂k

c , D̂k
i ) with

easy-hard controller (η1, η2) by Eq.(9)
Output: Well-trained models A and B

4. Experiments

4.1. Datasets

ActivityNet Caption. Activity Caption (Krishna
et al., 2017) contains 20000 videos with 100000
descriptions from YouTube (Caba Heilbron et al.,
2015). Since the test split is withheld for competi-
tion, following public split (Gao et al., 2017), we use
37421, 17505, and 17031 sentence-video pairs for
training, validation, and testing respectively.
TACoS. TACoS is collected by (Regneri et al., 2013)
for video grounding and dense video captioning
tasks. For fair comparisons, we follow the same
split of the dataset as (Gao et al., 2017), which
has 10146, 4589, and 4083 video-query pairs for
training, validation, and testing respectively.
Charades-STA. It is built upon the Charades (Sig-
urdsson et al., 2016) dataset. Following previous
work (Gao et al., 2017), we utilize 12408 video-
query pairs for training and 3720 pairs for testing.

4.2. Implementation Details

We pre-extract vision feature using the C3D (Tran
et al., 2015) model for ActivityNet Caption and
TACoS, and I3D (Carreira and Zisserman, 2017)
model for Charades-STA. We use GloVe (Penning-
ton et al., 2014) to extract word embeddings for
each word. We set the kernel size of the convo-
lution layer of the encoder to 7 and the head size
of multi-head attention to 8. The joint video-query
embedding dimension d is set to 512. The random
offsets of each perturbed sample are constrained to
be smaller than the segment length. To divide the
data, we set the threshold τ1 to 0.5. To distinguish
the query-relevant and query-irrelevant moment
proposals, we set the threshold τ2 to 0.55. The
iterative step of curriculum learning is set to 10. We
warm-up two localization models for 50 epochs. We
train the whole network using the Adam optimizer
with learning rate set to 0.0004. At the inference
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Noise
Ratio Method

ActivityNet Caption TACoS Charades-STA
R@1, R@1, R@5, R@5, R@1, R@1, R@5, R@5, R@1, R@1, R@5, R@5,

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

0%

SCDM (Yuan et al., 2019a) 36.75 19.86 64.99 41.53 26.11 21.17 40.16 32.18 54.44 33.43 74.43 58.08
VSLNet (Zhang et al., 2020a) 43.22 26.16 - - 29.61 24.27 - - 54.19 35.22 - -
CMIN (Zhang et al., 2019b) 43.40 23.88 67.95 50.73 24.64 18.05 38.46 27.02 - - - -

2DTAN (Zhang et al., 2020b) 44.51 26.54 77.13 61.96 37.29 25.32 57.81 45.04 39.81 23.25 79.33 51.15
DRN (Zeng et al., 2020) 45.45 24.36 77.97 50.30 - 23.17 - 33.36 53.09 31.75 89.06 60.05
MMN (Wang et al., 2022) 48.59 29.26 79.50 64.76 39.24 26.17 62.03 47.39 47.31 27.28 83.74 58.41

CTR 46.74 28.39 79.62 64.15 39.97 27.86 60.73 47.28 45.04 27.91 89.50 58.77

20%

SCDM (Yuan et al., 2019a) 23.95 11.09 52.51 32.04 16.47 13.05 29.73 25.34 44.12 26.23 71.92 47.57
VSLNet (Zhang et al., 2020a) 31.17 17.72 - - 18.94 14.83 - - 43.84 26.66 - -
CMIN (Zhang et al., 2019b) 33.56 16.35 56.48 40.39 15.33 10.26 28.19 18.65 - - - -

2DTAN (Zhang et al., 2020b) 35.24 19.07 66.94 53.21 26.06 18.48 45.96 36.81 31.16 19.32 69.01 40.43
DRN (Zeng et al., 2020) 33.31 14.49 64.37 40.86 - 17.33 - 25.98 42.58 23.74 75.76 46.28
MMN (Wang et al., 2022) 36.83 21.44 64.75 52.72 28.80 18.62 49.53 37.15 36.39 21.05 71.11 45.64

CTR 45.10 26.57 78.29 62.45 38.64 26.39 59.38 45.72 44.60 27.03 88.71 56.95

50%

SCDM (Yuan et al., 2019a) 12.27 4.90 22.31 14.28 12.04 9.88 16.19 13.56 29.25 12.57 30.73 20.62
VSLNet (Zhang et al., 2020a) 19.14 10.38 - - 12.27 10.52 - - 28.64 13.16 - -
CMIN (Zhang et al., 2019b) 21.85 10.52 26.76 22.44 12.59 8.71 15.45 9.30 - - - -

2DTAN (Zhang et al., 2020b) 24.36 14.01 38.26 31.80 23.92 14.35 30.41 23.28 16.26 8.94 27.85 14.39
DRN (Zeng et al., 2020) 22.03 10.47 35.72 25.19 - 12.67 - 15.88 22.47 11.51 30.73 18.99
MMN (Wang et al., 2022) 25.58 15.65 36.94 31.93 26.06 15.11 35.74 24.52 18.72 10.09 29.38 18.60

CTR 40.92 23.86 74.37 59.17 34.29 22.93 55.44 41.96 41.18 23.51 84.64 53.27

Table 1: Performance comparison on ActivityNet Caption, TACoS, and Charades-STA datasets.

Model Co-Teaching Paradigm Curriculum Learning R@1, R@1, R@5, R@5,
Divide data Refine label Warm-up Balanced weights Controllers IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Backbone × × × × × 23.82 15.25 39.14 32.37
① ✓ × ✓ × × 31.47 18.71 58.93 46.59
② × ✓ ✓ × × 25.63 15.19 42.38 33.43
③ ✓ ✓ × × × 3.94 0.85 16.46 11.71
④ ✓ ✓ ✓ × × 35.88 21.02 65.60 51.92
⑤ ✓ ✓ ✓ ✓ × 38.96 22.74 71.23 56.25
⑥ ✓ ✓ ✓ ✓ ✓ 40.92 23.86 74.37 59.17

Table 2: Main ablation study on the ActivityNet Caption dataset with 50% noise ratio.

Noise Method R@1, R@1, R@5, R@5,
Level IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

0.0

2DTAN (Zhang et al., 2020b) 44.51 26.54 77.13 61.96
DRN (Zeng et al., 2020) 45.45 24.36 77.97 50.30
MMN (Wang et al., 2022) 48.59 29.26 79.50 64.76

CTR 46.74 28.39 79.62 64.15

0.2

2DTAN (Zhang et al., 2020b) 32.88 17.31 63.46 51.32
DRN (Zeng et al., 2020) 31.06 12.38 63.19 38.60
MMN (Wang et al., 2022) 34.35 19.84 61.57 50.51

CTR 43.69 25.80 76.83 61.07

0.5

2DTAN (Zhang et al., 2020b) 19.21 10.15 32.98 27.35
DRN (Zeng et al., 2020) 16.85 7.46 30.04 20.73
MMN (Wang et al., 2022) 20.17 11.39 31.82 27.06

CTR 38.33 21.81 71.20 56.73

Table 3: Performance comparison on the Activi-
tyNet dataset with different noise level.

stage, we average the similarities predicted by two
networks for the localization evaluation.

4.3. Comparisons to the
State-of-The-Arts

As shown in Table 1, we report the results with three
different noise ratios (denoting the percentages of
video-query pairs containing noise), i.e., 0%, 20%,
and 50%. When the noise rate is 0%, we directly

refer to the results reported in the corresponding pa-
pers. For the noisy cases, we re-train the compared
models with our noisy setting. From this table, we
can find that our method is very competitive in the
0% noise. Moreover, when increasing the noise
ratio in the training data, all compared methods are
very sensitive to the noisy labels and degenerate
the performance a lot. Instead, our CTR is more
robust to the noisy labels and remarkably outper-
forms all the baselines by a large margin on all
three datasets under different noise settings.

We also report the results with three different
noise level (denoting the amount of noise in each
video-query pair), i.e., 0.0, 0.2, and 0.5. As shown
in Table 3, the experiments are conducted on Ac-
tivityNet, where we denote the noise level on each
sample as the 1 − IoU(gt, noise_label) ( i.e., the
larger the noise level, the lower IoU score with GT).
It shows that our CTR is much more robust.

4.4. Ablation Study
We perform ablation studies of our CTR on the
ActivityNet Caption dataset with 50% noise.
Main ablation. To investigate the effectiveness of
both co-teaching and curriculum learning modules
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Module Change R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Divide data

w/. GMM 40.92 23.86 74.37 59.17
w/. BMM 35.37 20.65 68.24 55.91
τ1 = 0.4 37.75 21.44 70.18 56.83
τ1 = 0.5 40.92 23.86 74.37 59.17
τ1 = 0.6 39.03 22.61 71.94 57.50

Refine clean w/. sharpen 40.92 23.86 74.37 59.17
subset w/o. sharpen 39.01 22.34 72.11 57.62

Refine noisy w/. sharpen 38.87 22.45 71.79 57.14
subset w/o. sharpen 40.92 23.86 74.37 59.17

Table 4: The ablation study of the co-teaching
paradigm on the ActivityNet Caption dataset with
50% noise ratio.

Module Change R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

τ2 = 0.45 36.37 21.09 68.75 54.96
Distinguish τ2 = 0.50 38.84 22.51 71.82 57.54
proposals τ2 = 0.55 40.92 23.86 74.37 59.17

τ2 = 0.60 39.65 24.08 74.14 59.13
step = 5 39.16 22.35 72.25 57.84

Iterative step = 10 40.92 23.86 74.37 59.17
learning step = 15 41.03 23.79 74.42 58.99

step = 20 40.85 23.47 74.16 58.64

Table 5: The ablation study of the curriculum learn-
ing on the ActivityNet Caption dataset with 50%
noise ratio.

in this paper, we conduct the main ablation study as
shown in Table 2. Here, we remove the above two
modules of CTR to build the baseline. This table
shows that the baseline model achieves poor per-
formance (similar to existing methods in Table1) on
the noise setting. By adding the whole co-teaching
paradigm module on the baseline, model ④ brings
significant improvement of 12.06%, 5.77%, 26.46%
and 19.55% on all metrics. It demonstrates that co-
teaching paradigm helps to distinguish and rectify
the noisy labels in the mixed training data. Model
①, ② and ③ also illustrate the contributions of dif-
ferent progress steps (i.e., divide data, refine label,
warm-up) in the co-teaching module. From model
⑤ and ⑥, we can find that the balanced weights and
easy-to-hard controllers of curriculum learning mod-
ule also contribute a lot to the final performance.
Overall, Table 2 demonstrates that our designed
modules are the keys to improve the model robust-
ness to the noisy labels.
Investigation on the co-teaching paradigm. As
shown in Table 4, we investigate different settings
for each component in the co-teaching paradigm.
As for dividing the clean and noisy data subsets,
we find that GMM performs better than BMM. This
is because BMM tends to produce undesirable flat
distributions and may fail when the label noise is
asymmetric, while GMM is flexible in the sharpness
of distribution. The model achieves the best per-
formance with GMM when the dividing threshold
τ1 is set to 0.5. As for refining the labels of clean
data, utilizing sharpen function helps to reduce the
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Figure 5: Left: The probability density function
(PDF) on the clean and noisy sample when we
re-train the model with 20 epochs. Right: The PDF
when we re-train the model with 30 epochs.

Query: The person jumps up on a skateboard and grinds a rail.

Ground-Truth | |5.91s 13.70s
Noisy Label | |12.18s 17.06s
2DTAN | |12.63s 17.01s
MMN | |10.85s 16.72s
Ours | |7.20s 14.33s

Query: The person jumps up on a skateboard and grinds a rail.

Ground-Truth | |5.91s 13.70s
Noisy Label | |12.18s 17.06s
2DTAN | |12.63s 17.01s
MMN | |10.85s 16.72s
Ours | |7.20s 14.33s

Query: The man cleans again with soap and water the car for the second time.

Ground-Truth | |31.16s 64.91s
Noisy Label | |18.72s 80.58s
2DTAN | |21.37s 73.63s
MMN | |25.54s 76.86s
Ours | |30.03s 62.79s

Figure 6: Qualitative examples on the noisy sam-
ples of the mixed training data. Our method is more
robust.

smoothness among the moment proposals for bet-
ter optimization. Instead, sharpen function does
not work on the noisy labels. We think this reason
is that sharpen function may break the correspon-
dence among the proposals and guide wrong focus
on the negative proposals.
Investigation on the curriculum learning. As
shown in Table 5, we also investigate different set-
tings of each component in the curriculum learning
module. As for distinguishing the query-relevant
and query-irrelevant moment proposals, the model
achieves the best results when the threshold τ2 is
set to 0.55. As for the iterative optimization strat-
egy in curriculum learning, the model with either
10 steps or 15 steps achieves great performance.
To balance the overall effectiveness and efficiency,
we choose step=10 in our all experiments.

4.5. Qualitative Results
We first investigate the influence of the label refine-
ment in our method. As shown in Figure 5, we carry
out experiments by visualizing the loss distribution
of different epochs. It shows that losses of the
rectified soft labels of most clean pairs gradually
become smaller while those of most noisy labels
gradually become larger. Besides, the densities
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of the former gradually become larger while those
of most noisy labels gradually become smaller. It
demonstrates that our model enforces the similarity
of true positives larger than that of the negatives
during training, thus eliminating the negative im-
pact of the noisy labels and then rectifying them for
assisting the model learning. As shown in Figure 6,
we further show the localization results on the noisy
samples of the mixed training data. It illustrates that
previous methods are not robust and tend to fit the
noisy labels during the model training. Instead, our
framework is able to recognize and rectify the noisy
labels for better learning.

5. Conclusion

In this paper, we investigate a new but challenge
problem of temporal activity localization (TAL), i.e.,
learning TAL with noisy labels. To achieve this goal,
we propose a novel Co-Teaching Regularizer (CTR)
framework, to divide and rectify the noisy labels with
two parallel models in a co-teaching manner. It can
also tackle the problem of the partial data labelling
by giving random boundaries to the unknown data.
Experiments on three datasets demonstrate our
effectiveness and robustness.
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