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Abstract

Evidence-aware fake news detection aims to determine the veracity of a given news (i.e., claim) with external

evidences. We find that existing methods lack sufficient semantic perception and are easily blinded by textual

expressions. For example, they still make the same prediction after we flip the semantics of a claim, which makes

them vulnerable to malicious attacks. In this paper, we propose a model-agnostic training framework to improve the

semantic perception of evidence-aware fake news detection. Specifically, we first introduce two kinds of data aug-

mentation to complement the original training set with synthetic data. The semantic-flipped augmentation synthesizes

claims with similar textual expressions but opposite semantics, while the semantic-invariant augmentation synthesizes

claims with the same semantics but different writing styles. Moreover, we design a novel module to learn better claim

representation which is more sensitive to the semantics, and further incorporate it into a multi-objective optimization

paradigm. In the experiments, we also extend the original test set of benchmark datasets with the synthetic data to

better evaluate the model perception of semantics. Experimental results demonstrate that our approach significantly

outperforms the state-of-the-art methods on the extended test set, while achieving competitive performance on the

original one. Our source code are released at https://github.com/Xyang1998/RobustFND.
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1. Introduction

With the rapid development of the Internet, fake
news is easily fabricated and rapidly propagated
through online media, which manipulates public
opinion and threatens the security of networks and
society (Allcott and Gentzkow, 2017; Naeem and
Bhatti, 2020). In recent years, some researchers
are committed to automatically determining the ve-
racity of a given claim with the guidance of exter-
nal evidences (Popat et al., 2018; Ma et al., 2019;
Vo and Lee, 2021; Xu et al., 2022), i.e., evidence-
aware fake news detection, and achieve continu-
ous improvement on benchmark datasets, such as
Snopes and PolitiFact (Popat et al., 2018) .
Despite the considerable progress in evidence-
aware fake news detection, we observe that ex-
isting methods still lack sufficient awareness of se-
mantics, which makes them vulnerable to malicious
attacks. To provide a more intuitive illustration, we
conduct a case study using GET (Xu et al., 2022).
As shown in Figure 1, we simply add negation to
the original claim "Mccain supports repeal death
tax" to generate a new claim, leaving everything
else unchanged. The semantics of two claims are
diametrically opposite, and the evidences that sup-
port the original one definitely disagree with the
generated one. However, the detection model ig-
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Figure 1: An example on the lack of sufficient se-
mantic perception. We flip the semantics of the
original claim as another one, but the model still
gives the same output and makes wrong prediction.

nores the semantic flip and gives the same output
for two claims. To further analyze the model per-
ception of semantics in a quantitative manner, we
also extend the original test set of the benchmarks
Snopes and PolitiFact via two kinds of data aug-
mentation introduced in this paper. We find that
the detection performance of state-of-the-art meth-
ods significantly decrease on this extended test set.
This pilot experiment is elaborated in Section 3.

We argue that there are mainly two reasons for
this unsatisfactory behavior. First, in the original
datasets collected from a single data source, the

https://github.com/Xyang1998/RobustFND
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statements are usually quite different from each
other in terms of the semantics and textual expres-
sions. During the training process on such datasets,
the model can still make correct predictions even
without fully capturing the semantic details, which
hinders the further improvement of the model’s se-
mantic perception ability. Second, the claim rep-
resentation for final prediction is not sensitive to
semantics. Existing methods usually only apply a
cross-entropy loss for model training, which can-
not explicitly ensure that in the embedding space
the claims with different semantics but similar tex-
tual expressions are completely separated, and the
ones with the same semantics but different writing
styles are fully aggregated.

In this paper, we propose a model-agnostic training
framework to improve the model semantic percep-
tion for robust evidence-aware fake news detection.
Specifically, we introduce two kinds of data aug-
mentation to complement the original dataset with
our synthetic data. Given an instance in the original
dataset, the semantic-flipped augmentation flips
its semantics by just adding negation to it, while
the semantic-invariant augmentation keeps its
semantics unchanged and rewrite it in another style.
Inspired by the recent advances in LLMs, we also
partially employ ChatGPT to implement both two
kinds of augmentation. By adding the synthetic
data into the training process, we force the model
to concentrate on the semantics of a claim behind
its superficial textual expression.

Moreover, we design the semantic-sensitive

claim representation learning module to explic-
itly encourage the separation of claims with differ-
ent semantics and the closeness of claims with the
same semantics in the embedding space. Firstly,
we treat each instance in the original training set
as an anchor sample, and perform the semantic-
flipped and semantic-invariant augmentation on it
to obtain its positive and negative counterparts re-
spectively. Secondly, in the embedding space, we
close the distance between the positive sample and
the anchor sample, and meanwhile separate the
negative sample far away from the anchor sample
in a contrastive-learning manner.

To sum up, our contributions are as follows:

• We find that the existing evidence-aware fake
news detection models lack sufficient semantic
perception, and conduct a pilot experiment on
the extended test set to quantitatively demon-
strate this observation.

• We propose a model-agnostic framework for
robust evidence-aware fake news detection.
In the framework, we complement the origi-
nal dataset with two kinds of data augmenta-
tion, namely semantic-invariant augmentation
and semantic-flipped augmentation, and learn

the semantic-sensitive claim representation
via our designed module.

• Experimental results show that the proposed
method significantly outperforms the state-of-
the-art methods on our extended test set, while
achieving competitive performance on the orig-
inal one.

2. Related Work

2.1. Fake News Detection

In recent years, researchers have proposed many
approaches (Popat et al., 2016; Dou et al., 2021b;
Popat et al., 2018; Ma et al., 2019; Wu et al., 2021b;
Vo and Lee, 2021; Wu et al., 2021a; Xu et al., 2022)
to automatically detect fake news, which can be
mainly divided into three groups:

Pattern-Based Approaches. This group typically
directs its attention toward the claim itself. For in-
stance, Popat et al. (2016) utilize stylistic features
and the stance of an article to ascertain the verac-
ity of a claim. Similarly, Przybyla (2020) employ
writing style for news classification. Recently, re-
searchers also identify emotional bias in fake news
and explore emotion mining for detection (Zhang
et al., 2021; Giachanou et al., 2019).

Evidence-Based Approaches. This group typi-
cally integrates external evidences into their anal-
ysis of a claim. To the best of our knowledge, De-
ClarE (Popat et al., 2018) is the first to incorporate
evidences into fake news detection. They employ
BiLSTMs to extract semantic features and introduce
an attention mechanism to calculate the attention
score of each word in the evidence. Subsequently,
some researchers have ventured into this direc-
tion and present models such as HAN (Ma et al.,
2019), EHIAN (Wu et al., 2021b), MAC (Vo and
Lee, 2021), CICD (Wu et al., 2021a), GET (Xu et al.,
2022). These works explore different methods for
extracting semantic features and propose various
attention mechanisms to capture the interaction
between the claim and evidences.

PLMs in Fake News Detection. Pre-trained Lan-
guage Models (PLMs) have consistently demon-
strated their superiority in the realm of natural lan-
guage processing. In the field of fake news detec-
tion, some works (Dou et al., 2021a; De and De-
sarkar, 2022) have also leveraged their capabilities.
However, there are few studies exploring the inte-
gration of PLMs into the evidence-aware fake news
detection, where the application of PLMs poses
particular challenges. The excessive length of the
combination of a claim with its corresponding evi-
dences makes it impractical to input the entire text
sequence into Transformer-based models. To ad-
dress this limiation, we first selectively retrieves the
most pertinent sentences from the evidences, effec-
tively curtailing the input length and ensuring com-
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pliance with the input constraints of Transformer-
based models, as elaborated in Sec. 4.5.2.

2.2. Robustness on Fake News Detection

Recently, the robustness of neural models has
drawn much attention. Previous works design differ-
ent simulated attack schemes to evaluate whether
the system can successfully resist attacks (Ab-
delnabi and Fritz, 2022; Schuster et al., 2021; Du
et al., 2022). Du et al. (2022) adversarially ex-
ploit GROVER (Zellers et al., 2019) to generate
fake articles and then inject them into the retrieval
database (e.g. FEVER DB). Abdelnabi and Fritz
(2022) evaluate fake news detection under vari-
ous attacks, such as lexical variation, and omitting
paraphrase. Schuster et al. (2021) propose a new
dataset named VITAMINC. This dataset is struc-
tured adversarially, featuring pairs of evidence for
each claim with nearly identical language and con-
tent, yet one supports the claim while the other
does not. They demonstrate empirically that this
dataset improves the model robustness.
Nevertheless, Hansen et al. (2021) find some seri-
ous issues in several fake news detection models.
For example, evidence-based models may not have
the reasoning ability. Their experiments demon-
strate that only using the claim or the evidence can
yield better performance in certain cases. These
findings point out the importance of trustworthy
tools for fake news detection.

2.3. Contrastive Learning

In recent years, contrastive learning has been suc-
cessfully and widely used in both computer vision
(Chen et al., 2020; Grill et al., 2020) and natural
language processing domains (Fang et al., 2020;
Wang et al., 2021; Chuang et al., 2022). This ap-
proach focuses on constructing pairs of training
samples with the objective of minimizing the dis-
tance between positive samples while simultane-
ously widening the gap between positive and nega-
tive samples in the embedding space. This ensures
that similar samples yield similar representations,
while dissimilar samples produce distinct represen-
tations. Through this methodology, the model ef-
fectively learns the intrinsic structure and patterns
of the data, thereby enhancing its generalization
capability and performance.

3. Pilot Experiment

We conduct a pilot experiment to quantitatively ana-
lyze the semantic perception of two state-of-the-art
methods MAC (Vo and Lee, 2021) and GET (Xu
et al., 2022) in evidence-aware fake news detec-
tion. For completeness, we also extend this anal-
ysis to include two pre-trained language models
BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), and specifically adapt them to this task. The
detailed setup is provided in Sec. 5.3.1.

Dataset Model F1-ma F1-mi F1-T F1-F

Snopes

MAC 78.7 83.3 68.7 88.6
GET 80.0 84.6 70.5 89.5
BERT 72.8 78.5 60.4 85.2
RoBERTa 72.2 77.8 59.8 84.7

Snopes
-hard

MAC 58.8 60.3 51.2 66.5
GET 58.7 60.8 49.5 67.9
BERT 54.4 59.6 39.1 69.7
RoBERTa 54.2 58.7 40.0 68.5

Table 1: Performance (%) of state-of-the-art meth-
ods on Snopes and Snopes-hard.

Moreover, We extend the original test set of the
benchmark dataset Snopes into a hard version one,
i.e., Snopes-hard, via two kinds of data augmenta-
tion introduced in this paper. This extension places
a heightened demand on the model perception of
semantics. Details could be found in Sec. 5.1.

The results are displayed in Table 1. Notably, when
contrasting the performance of compared models
on Snopes-hard with that on the standard Snopes
dataset, a significant decline is observed across
all evaluation metrics. This suggests that the cur-
rent SOTA methods exhibit reduced robustness and
struggle to effectively discern the semantic nuances
within a claim based on its textual expression. This
limitation hampers the further enhancement of de-
tection performance and renders them susceptible
to malicious attacks.

4. Methodology

4.1. Preliminaries

We first introduce the classical paradigm of
evidence-aware fake news detection. Given a claim
c and its associated evidences E = {e1,e2,. . . ,en},
a detection model aims to determine the veracity
of the claim based on the provided evidences. It
is commonly practiced to formulate the detection
task as a binary classification problem:

ŷ = f(c,E,Θ), (1)

where ŷ ∈ R
2 is the predicted probability distribu-

tion and Θ represents the trainable model parame-
ters. Given the ground-truth veracity y of the claim
c, the detection model is optimized by minimizing
the cross-entropy loss between y and ŷ.

4.2. Overview

The overview of the proposed framework is shown
in Figure 2. Given a claim c with its corresponding
evidences E = {e1, e2, . . . , en}, we first generate
its semantic-flipped augmentation c− and semantic-
invariant augmentation c+ respectively. Then we
encode the text sequences via the text encoding
layer. Next, we feed the encoded representation
into the semantic-sensitive representation learning
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Evidences
1.Obama pledges to cut nations deficit in half. President obama blames health care costs 
for a rising federal deficit...
2.Obama promises to cut US budget deficit by half.  President barack obama has 
promised...
...

Semantic-Flipped  Claim 
Obama did not promise to cut the 
deficit in half.

Semantic-invariant Claim 
Obama promised to cut the deficit 
in half according to sources.

Original Claim 
Obama promised cut deficit half.

Original Claim 
Obama promised cut 
deficit half.

Text Encoding Layer

SSCRL M
odule

Classification Layer

Augm
entation Layer 

E

Figure 2: The Overview of the proposed framework. It consists of four parts: the augmentation layer that
synthesizes semantic-flipped and semantic-invariant counterparts of the input claim, the text encoding layer
for encoding the input claim with its corresponding evidences, the semantic-sensitive claim representation
learning (SSCRL) module, and the classification layer for claim veracity prediction.

module to calculate the loss Lcon, and simultane-
ously, into the classification layer for claim veracity
classification. Finally, a two-layer MLP is employed
to obtain predicted probability distributions, and
the cross-entropy losses Lori, LSF , and LSI are
computed for c, c−, and c+, respectively. The over-
all loss of the proposed framework is defined as
follows:

Ltotal = Lori + λLcon + µLSF + νLSI , (2)

where λ, µ and ν are weighting coefficients that
regulate the influence of individual losses.

4.3. Semantic-Flipped Augmentation

For a claim in the original dataset, the semantic-
flipped augmentation generates a new one with
a similar textual expression but opposite seman-
tics. Specifically, we achieve this augmentation in
two ways. The first is based on SpaCy1, a widely
used toolkit for NLP. We exploit SpaCy to analyze
the lexicality of each word in the claim, and then
add negation before the verb (or after the aux).
For example, the claim "Mccain opposes repeal
death tax" will be transformed into "Mccain does
not oppose repeal death tax". If the claim already
contains negation, we simply remove the negation
to flip its semantics. Note that there are also some
claims where we could not directly add negation.
In this scenario, we settle for second best and just
select one piece of evidence of the current claim
or another arbitrary claim as the augmented re-
sult, which only guarantees a noticeable semantic
change. The details are elaborated in Alg. 1.
The second is based on ChatGPT. We have devel-
oped a specialized prompt that enables ChatGPT
to generate the semantic-flip version of a claim:

1https://spacy.io/

Algorithm 1 Semantic-Flipped Augmentation
based on SpaCy

Require: The original claim c with evidences E

and ground truth y; A batch of claims B, c ∈ B
Ensure: The new generated claim c− for c
1: if c contains negation then
2: c− ← Remove the negation from c

3: return c−

4: if c can be added negation then
5: c− ← Add negation to c

6: return c−

7: if y is False then
8: c− ← Randomly select e from E

9: else
10: c− ← Randomly select c̃ from B, c̃ ̸= c

11: return c−

Add negation to the following sentences to
flip their semantics.
For example.
Mccain opposes repeal death tax.
Mccain does not oppose repeal death tax.

In the above two ways, we finally obtain the
semantic-flipped version c− for each claim c.

4.4. Semantic-Invariant Augmentation

For a claim in the original dataset, the semantic-
invariant augmentation generates a new one with
the same semantics but a different writing style. We
also achieve this goal in two ways. The first is based
on the paraphrase technique, which rewrites sen-
tences with the original semantics reserved. Con-
cretely, we choose PEGASUS (Zhang et al., 2019)
to automatically generate the semantic-invariant
version for a claim. For example, the original claim
is "Obama signs bill forgiving student loan debt",

https://spacy.io/
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and its paraphrase could be "The student loan debt
has been forgiven by Obama through the signing
of a bill".
The second is still based on ChatGPT. We have
also designed a specialized prompt to generate the
semantic-invariant version of a claim:

Rewrite each following sentence in a differ-
ent writing style. Note that you need to keep
the original semantics.

With the above two approaches, we finally obtain
the semantic-invariant version c+ for each claim c.

4.5. Text Encoding Layer

After obtaining two kinds of augmentation for a
claim, we exploit the text encoding layer to encode
the original claim c and its augmentation c−, c+ into
high-level representation h, h− and h+ for further
veracity prediction. The corresponding evidences
E are also encoded and incorporated into the rep-
resentation. For completeness, we construct the
text encoding layer in two ways, i.e., a graph-based
one and a PLM-based one respectively. Next, we
will take the original claim c as an example to illus-
trate the encoding process, and its augmentation
c−, c+ is encoded in the same manner.

4.5.1. Graph-Based Text Encoding
For the graph-based one, we first represent the
claim c as a graph. Specifically, we treat each word
in the claim as a graph node and construct the
adjacency matrix by sliding a fixed-sized window
over the text sequence. Then, we further encode
the obtained graph into the low-level representa-
tion g via Graph-Gated Neural Networks (GGNN).
Finally, we incorporate the evidences into the rep-
resentation via an attentive readout layer, resulting
in the high-level representation h. The implemen-
tation of this encoder adheres to the previous work
(Xu et al., 2022) and please refer to it for a more
comprehensive understanding.

4.5.2. PLM-Based Text Encoding
In the context of evidence-aware fake news de-
tection, it is challenging to employ a PLM-based
structure for text encoding. This is because the
combined word count of the input claim c and its
corresponding evidences E far exceeds of the in-
put limit of Transformer-based models. To address
this issue, we devise a two-stage strategy in which
we first retrieve the most relevant sentences from
the evidences and then encode the concatenation
of the claim with these selected sentences.
Retrieval. We employ BERT as the backbone of
our sentence retrieval model, following the previous
work (Liu et al., 2020). For each sentence s from
the evidences E, we first pair it with the claim c

and then utilize BERT to encode the sentence pair

(c, s). Subsequently, we feed the [CLS] represen-
tation into an MLP layer to derive a ranking score
as follows:

ranking_score = tanh(MLP(BERT(c, s))). (3)

We optimize the retrieval model using Pairwise Loss
function. Finally, we sort the ranking scores of
all the sentence pairs and concatenate the top 5
sentences as S for the second stage.
Encoding. We first concatenate the claim with the
five top-ranked sentences to form a text sequence
{[CLS], c, [SEP],S, [EOS]}, and then feed it into a
pre-trained language model as input. In this paper,
we employ RoBERTa to encode the text sequence,
and take the last hidden state of [CLS] as the high-
level representation h.

4.6. Claim Verification Prediction

After obtaining the high-level representation h for
the claim, we feed it into a two-layer MLP to predict
the probability distribution ŷ. Finally, we compute
the cross-entropy loss Lori as follows:

Lori = −(y log ŷ + (1− y) log(1− ŷ)). (4)

Note that in the above procedure, we can simply
replace the claim representation h with its aug-
mentation h− or h+, and assign the corresponding
ground-truth veracity to calculate LSF or LSI .

4.7. Semantic-Sensitive Claim
Representation Learning Module

We argue that the claim representation learned by
existing models is not sensitive to the semantics,
which leads to the lack of semantic perception and
thus hinders the detection performance. To solve
this problem, we propose a semantic-sensitive rep-
resentation learning approach to explicitly promote
differentiation among claims with distinct semantics
and meanwhile facilitate the aggregation of those
with similar semantics in the embedding space.
Specifically, after obtaining the low-level claim rep-
resentation g, g+ and g− in the graph-based encod-
ing process, we learn the semantic-sensitive claim
representation in a contrastive-learning manner as
follows:

Lcon = −log
e
sim(g,g+)/τ

esim(g,g+)/τ +
∑

g̃∈N esim(g,g̃)/τ
, (5)

where τ is a temperature hyper-parameter, and
sim(·, ·) denotes the cosine similarity function.
In Eq. 5, for an original sample g, the positive
sample is its semantic-invariant version g+, while
the setN of negative samples includes its semantic-
flipped version g−. Inspired by the self-supervised
contrastive learning, we also add the other samples
in the same batch with their augmentation into N
during the training phase, since all of them have
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Algorithm 2 Semantic-Sensitive Claim Represen-
tation Learning on Graph-Based Text Encoding

Require: The original sample g with its augmen-
tation g+, g−; A batch of samples B, where
g ∈ B; The empty set N

Ensure: Lcon

1: initialize N = {g−}
2: for each sample g̃ ∈ B do
3: if g̃ ̸= g then
4: g̃+ ← semantic-invariant version of g̃
5: g̃− ← semantic-flipped version of g̃
6: Add g̃, g̃+, g̃− into N
7: Compute Lcon by Eq. 5
8: return Lcon

different semantics from the original sample. The
details are elaborated in Alg. 2.

In the PLM-based encoding process, the model
directly obtains the high-level claim representation
h, without the presence of its low-level counter-
part g as in the graph-based encoding process.
To facilitate adaptive adjustments, we conduct the
semantic-sensitive claim representation learning
based on h as follows:

Lcon = −log
e
sim(h,h+)/τ

esim(h,h+)/τ + esim(h,h−)/τ
. (6)

5. Experiments

5.1. Experimental Setup

Datasets We evaluate the model performance on
two common benchmark datasets, i.e., Snopes and
PolitiFact (Popat et al., 2018). We allocate 10% of
the entire dataset as the fixed validation set, while
the remaining data is split into training and test sets
in a 4:1 ratio. All experimental results were aver-
aged over five-fold cross-validation, consistent with
prior studies (Vo and Lee, 2021; Xu et al., 2022).

To facilitate a more accurate and efficient assess-
ment of the semantic perception, we also extend
the two datasets into their corresponding hard ver-
sions, i.e., Snopes-hard and PolitiFact-hard for
model evaluation. Specifically, for each claim within
the original dataset, we generate augmentations in
both semantic-invariant and semantic-flipped forms,
subsequently integrating them into the dataset.

Hyperparameter Settings For the graph-based
model, we set the temperature parameter τ to 0.1,
and the weight coefficients λ, µ, and ν to 0.5, 0.2,
and 0.1 respectively. In the case of the PLM-based
model, the temperature parameter τ is set to 0.3,
while the weight coefficients λ, µ, and ν are set to
0.5, 1.0, and 1.0 respectively. Further implementa-
tion details are available in the appendix.

Evaluation The evaluation metrics include macro
F1 (F1-ma), micro F1 (F1-mi), F1 score on true
category (F1-T) and false category (F1-F).

Data Version Augmentation Rating Score

conv-hard
Invariant 136.4±17.2

Flipped 182.7±8.8

gpt-hard
Invariant 174.8±12.6

Flipped 185.0±8.1

Table 2: Human evaluation on Politifact-hard.
"conv-hard" means data generated with conven-
tional approaches, and "gpt-hard" means data gen-
erated using ChatGPT. We report the average
score with the standard deviation.

5.2. Human Evaluation on Extend Test
Sets

To ensure the quality of our extend test sets, we ran-
domly selected from Politifact-hard 100 claims as
well as their corresponding semantic-invariant and
semantic-flipped augmentations for human eval-
uation. We invite 7 English proficient evaluators
to rate the two kinds of augmentations. The rat-
ing scale ranges from 0 to 2. Here, we employ
the semantic-flipped augmentation as an illustra-
tive example to explain the scoring criteria, with
the criteria for the semantic-invariant augmentation
following a similar pattern. Firstly, a score of “2” is
assigned when the sentence’s semantics are en-
tirely reversed. Secondly, when the semantics shift
without becoming the opposite, a score of “1” is
assigned. Thirdly, a score of “0” is assigned when
the semantics remain entirely unchanged.

The results of human evaluation are displayed in
Table 2, underscoring the overall quality of our ex-
tended test sets. Additionally, as mentioned in Sec.
4.3 and Sec. 4.4, we generate each kind of aug-
mentation in two ways. We observe that data gen-
erated using ChatGPT exhibit higher quality com-
pared to the conventional approach.

5.3. Comparison with State-of-the-Arts

5.3.1. Baselines

We compare the proposed method with various
state-of-the-art methods in Table 3, including two
traditional models MAC (Vo and Lee, 2021) and
GET (Xu et al., 2022), and two pre-trained language
models BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019). Note that we employ the large
versions of BERT and RoBERTa, and the encoding
process of textual content adheres to Sec. 4.5.2.

For completeness, we also introduce several addi-
tional baselines on the ChatGPT-version extended
test set. To investigate whether the effectiveness of
our method solely arises from exposure to synthetic
data, we incorporate two kinds of augmentations
into the original training set to optimize the GET
model (i.e., GET+DA) and the RoBERTa model
(i.e., RoBERTa+DA), respectively. Additionally, we
include ChatGPT as a baseline for comparison.
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Data Version Model
PolitiFact Snopes

F1-ma F1-mi F1-T F1-F F1-ma F1-mi F1-T F1-F

original

MAC 68.6 69.1 71.8 65.5 78.7 83.3 68.7 88.6

GET 69.1 69.4 72.3 66.0 80.0 84.6 70.5 89.5

BERT 62.8 63.1 64.0 61.5 72.8 78.5 60.4 85.2

RoBERTa 62.1 65.3 64.6 59.7 72.2 77.8 59.8 84.7

Ours (conv aug & graph enc) 68.8 69.2 72.2 65.3 76.8 81.9 66.0 87.6

Ours (gpt aug & graph enc) 68.0 68.3 70.6 65.3 77.2 81.8 66.9 87.5

conv-hard

MAC 56.2 56.2 56.4 56.0 58.1 60.6 48.2 68.0

GET 56.9 57.1 58.9 54.9 58.1 60.6 48.0 68.2

BERT 54.8 55.2 54.8 54.9 55.1 59.5 41.1 69.1

RoBERTa 53.5 54.0 53.5 53.5 54.6 58.9 40.6 68.6

Ours (conv aug & graph enc) 61.6 61.6 62.5 62.1 77.8 78.3 74.6 81.0

Ours (conv aug & PLM enc) 64.3† 64.4† 65.3† 63.4† 78.6† 79.3† 74.7† 82.4†

gpt-hard

MAC 55.4 55.6 57.8 53.0 58.8 60.3 51.2 66.5

GET 56.5 56.7 58.1 54.9 58.7 60.8 49.5 67.9

BERT 53.6 54.1 55.2 52.0 54.4 59.6 39.1 69.7

RoBERTa 53.1 53.8 51.8 54.4 54.2 58.7 40.0 68.5

GET+DA 56.7 56.7 56.7 56.7 74.0 74.6 69.8 78.1

RoBERTa+DA 56.7 57.2 54.2 59.3 75.7 76.4 71.9 79.6

ChatGPT 58.4 58.5 57.8 59.2 58.5 61.5 47.3 69.7

Ours (gpt aug & graph enc ) 61.2 61.2 61.8 60.5 80.1† 80.6† 77.0† 83.2†

Ours (gpt aug & PLM enc) 62.1† 62.2† 63.0† 61.3† 77.9 78.5 74.2 81.6

Table 3: Performance (%) on Snopes and Politifact. The notation “Data Version” refers to the version
of test sets, where "original" means the original test sets of Politifact and Snopes, and "conv-hard" and
"gpt-hard" means their corresponding hard-version test sets extended by conventional approaches and
ChatGPT respectively. The notation † indicates that the performance improvement is significant with
p-values< 0.05.

This model utilizes a meticulously designed prompt
to determine the veracity of a claim. Please consult
the appendix for details regarding the prompt.

In the proposed framework, both the augmentation
layer and the text encoding layer are achieved in two
ways. Therefore, we implement several variants of
our method Ours for comparison. The notations
"conv aug" and "gpt aug" denote augmentation
based on the conventional techniques and Chat-
GPT respectively, while the notations "graph enc"
and "PLM enc" represent that text sequences are
encoded in a graph-based and PLM-based manner
respectively.

5.3.2. Results Analysis

We evaluate various methods on different versions
of test sets, and the results are displayed in Table 3.
First, we observe that our method outperforms all
the baselines on both kinds of extended test sets.
We utilize the competitive ChatGPT as a reference
to conduct a thorough performance comparison
on the extended test sets of the "gpt-hard" version.
On Snopes, our method with a graph-based en-
coder achieves significant improvement by +21.6%
on F1-ma and +19.1% on F1-mi respectively. On
PolitiFact, our method with a PLM-based encoder
exhibits a notable increase of +3.7% on both F1-ma
and F1-mi. This demonstrates the effectiveness of
our approach and shows that it really improves the
model perception of semantics.

Second, the proposed method exhibits competi-
tive performance on the original test sets, which

indicates that the model achieves a favorable bal-
ance between the original data and the sythetic
data, showing effective generalization without be-
ing overly influenced by data biases.

Thirdly, despite employing a similar encoding archi-
tecture, GET+DA generally performs better than
GET, and RoBERTa+DA significantly outperforms
RoBERTa. This observation validates the efficacy
of the proposed data augmentation. Moreover, our
approaches with a graph-based encoder and a
PLM-based encoder exhibit remarkable superiority
over GET+DA and RoBERTa+DA, respectively. For
instance, on the "gpt-hard" version of Snopes, our
method improves over GET+DA by +6.1% on F1-
ma and +6.0% on F1-mi, respectively. Similarly, on
the "gpt-hard" version of PolitiFact, it outperforms
RoBERTa+DA by +5.4% on F1-ma and +5.0% on
F1-mi, respectively. This underscores that the su-
periority of our method does not solely rely on ex-
posure to synthetic data during training, and the full
potential of data augmentation can only be realized
through our multi-objective optimization paradigm.

Finally, when employing a similar PLM-based en-
coding architecture, our approach consistently out-
performs traditional models like MAC and GET,
whereas BERT and RoBERTa typically exhibit in-
ferior performance compared to these two models.
This observation demonstrates the effectiveness
of our proposed framework in fully harnessing the
potential of pre-trained language models.
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text encoding # Lori Lcon LSF LSI F1-ma F1-mi F1-T F1-F

graph-based

1 ✓ 58.7 60.8 49.5 67.9

2 ✓ ✓ 59.3 61.5 49.8 68.8

3 ✓ ✓ ✓ 71.2 71.8 67.1 75.2

4 ✓ ✓ ✓ ✓ 80.1 80.6 77.0 83.2

PLM-based

5 ✓ 54.4 59.6 39.1 69.7

6 ✓ ✓ 76.9 77.1 74.4 79.3

7 ✓ ✓ ✓ 78.2 78.8 74.6 81.7

8 ✓ ✓ ✓ ✓ 78.6 79.4 74.8 82.5

Table 4: Ablative performance (%) on the ChatGPT version of Snopes-hard.

Model
PolitiFact Snopes

F1-ma F1-mi F1-T F1-F F1-ma F1-mi F1-T F1-F

MAC
base 55.4 55.6 57.8 53.0 58.8 60.3 51.2 66.5

+Ours 59.4 (↑4.0) 59.4(↑3.8) 59.4(↑1.6) 59.4(↑6.4) 78.3(↑19.5) 78.9(↑18.6) 74.8(↑23.6) 81.8(↑15.3)

GET
base 56.5 56.7 58.1 54.9 58.7 60.8 49.5 67.9

+Ours 61.2(↑4.7) 61.2(↑4.5) 61.8(↑3.7) 60.5(↑5.6) 80.1(↑21.4) 80.6(↑19.8) 77.0(↑27.5) 83.2(↑15.3)

BERT
base 53.6 54.1 55.2 52.0 54.4 59.6 39.1 69.7

+Ours 61.7(↑8.1) 61.8(↑7.7) 60.8(↑5.6) 62.7(↑10.7) 78.6(↑24.2) 79.4(↑19.8) 74.8(↑35.7) 82.5(↑12.8)

RoBERTa
base 53.1 53.8 51.8 54.4 54.2 58.7 40.0 68.5

+Ours 62.1(↑9.0) 62.2(↑8.4) 63.0(↑11.2) 61.3(↑6.9) 77.9(↑23.7) 78.5(↑19.8) 74.2(↑34.2) 81.6(↑13.1)

Table 5: Performance (%) of different model architectures on the ChatGPT version of PolitiFact-hard
and Snopes-hard. The notation "base" denotes the original method, and "+Ours" denotes applying the
proposed framework to the corresponding architecture.

5.4. Ablation Study

As shown in Table 4, we conduct an ablation
study to demonstrate the contributions of individ-
ual losses in the proposed multi-objective optimiza-
tion paradigm. For completeness, we employ two
variants of our method with different text encoding
architectures for this study.

In the PLM-based variant, comparing Row 6 with
Row 5, we observe a substantial improvement in
model performance with the introduction of Lcon.
For example, the inclusion of Lcon results in an im-
pressive +22.5% enhancement on F1-ma and a
notable +17.5% increase on F1-mi. This substanti-
ates the effectiveness of semantic-sensitive claim
representation learning.

In the graph-based variant, comparing Row 2 with
Row 1, we observe that the detection performance
slightly improves by adding Lcon. Furthermore,
comparing Row 2 with both Row 3 and Row 4, both
LSF and LSI further significantly improve the de-
tection performance. This suggests that despite
the construction of semantic-sensitive claim repre-
sentations, further explicit supervisory signals are
still required to fully exploit these representations.

In summary, in both two variants, the model per-
formance gradually improves as one more loss is
incorporated, which indicates that each individual
loss is indispensable and demonstrates the superi-
ority of the multi-objective optimization.

5.5. Model Agnostic Study

Since the proposed framework is model-agnostic,
we incorporate it into different model architectures
to evaluate its effectiveness. The results are dis-
played in Table 5. Our method consistently and
significantly improves the performance on both
Politifact-hard and Snopes-hard. For instance,
when compared to RoBERTa, our method yields re-
markable improvements on PolitiFact-hard, with
a substantial increase of +9.0% on F1-ma and
+8.4% on F1-mi, respectively. On Snopes-hard,
our method demonstrates even more substantial
gains, with a significant enhancement of +23.7%
on F1-ma and +19.8% on F1-mi. This indicates
that our framework can be effectively integrated
into different architectures to enhance the model
robustness.

5.6. Case Study

We present qualitative examples in Figure 3 for com-
paring our method with GET and RoBERTa. We ob-
serve that the veracity of the original claim is consis-
tently predicted accurately across various models.
However, when dealing with semantic-invariant and
semantic-flipped versions of the claim, GET and
RoBERTa consistently make incorrect predictions.
This underscores the insufficient semantic aware-
ness of existing methods, leading to inaccuracies in
their predictions. Our approach, incorporating data
augmentation and Semantic-Sensitive Claim Rep-
resentation Learning Module, successfully capture
semantics, resulting in accurate predictions.
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Claim Version The Content of the Claim GET Ours

Original
Photograph shows bathroom unusually 

painted floor.

False

✓

False

✓

Semantic- 

invariant

The photograph depicts a bathroom with 

an unusually painted floor.

True

✗

False

✓

Semantic-

Flipped

Photograph does not show a bathroom

with an unusually painted floor.

False

✗

True

✓

Claim Version The Content of the Claim RoBERTa Ours

Original
Obama charge 28 percent tax on home 

sales.

False

✓

False

✓

Semantic-

invariant
Obama imposes a 28% tax on home sales.

True

✗

False

✓

Semantic- 

Flipped

Obama does not charge 28 percent tax on 

home sales

False

✗

True

✓

(a) An example on models with a graph-based text encoder

(b) An example on models with a PLM-based text encoder

Figure 3: Case study on the veracity predictions of
different claim versions, which are made by com-
pared methods. Green indicates correct predic-
tions, while red indicates incorrect predictions.

6. Conclusion

In this paper, we present a model-agnostic training
framework for robust evidence-aware fake news
detection, aiming to enhance the model semantic
perception. We introduce semantic-flipped aug-
mentation and semantic-invariant augmentation to
complement the original datasets. Additionally, we
propose the semantic-sensitive claim representa-
tion learning module, which improves the sensitiv-
ity of claim representation to semantics. These
components collaboratively form a multi-objective
paradigm. Experiments show that our method sig-
nificantly outperforms the state-of-the-art methods
on our extended test sets, while achieving competi-
tive performance on the original one.
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A. Experimental Details

A.1. Software and Hardware

We use Python 3.9.13 and PyTorch 1.12.1, and
conduct experiments on a Linux server equipped
with AMD Ryzen 9 5900X and NVIDIA RTX A6000
and 64GB of RAM.

A.2. Implementation Details

For the graph-based model, we primarily adhere to
the methodology outlined in previous research (Xu
et al., 2022). We employ GloVe word embeddings
with an embedding dimension of 300. Additionally,
the embedding dimension for claim speakers and
evidence publishers is set to 128. The attention
mechanism utilizes 3 heads for claims and 1 head
for evidence on PolitiFact, while on Snopes, it em-
ploys 5 heads for claims and 2 heads for evidence.
We train with a batch size of 32 for a maximum
of 200 epochs, utilizing the Adam optimizer with a
learning rate of 0.0001.

As for the PLM-based model, we use a smaller
batch size of 4 and train for a maximum of 10
epochs. The learning rate is set to 3× e−6 to fine-
tune the pre-trained language model.

A.3. Evaluation Metrics

We use the API of the sklearn library to cal-
culate our evaluation metrics. F1-macro, F1-
micro, F1-True, F1-False are calculated by calling
sklearn.metrics.f1_score().

A.4. Links to Baseline Methods

• BERT: https://github.com/

google-research/bert

• MAC: https://github.com/

nguyenvo09/EACL2021

• GET: https://github.com/

CRIPAC-DIG/GET

A.5. The Prompt for ChatGPT Baseline

We demonstrate the prompt for directly utilizing
ChatGPT in fake news detection as follows:

You are a fact checker and your task is to
determine the validity of a claim based on
the evidence provided. You must provide a
reasoning process to support your decision,
whether claim be True or False.
Here are some rules for labeling.
1.If the evidence proves the claim is true,
label it as "True".
2.If the facts described in the evidence con-
flict with the claim, it should be classified as
"False".
Using the following format:
Reasoning: <reasoning process>
Label: <label>
There is the claim and evidence. Claim:[the
input claim] Evidences:[the input evidences,
separated by "\n"]

A.6. Datasets

Snopes PolitiFact

True 1164 1867
False 3177 1701

Speakers N/A 664
Evidences 29242 29556
Publishers 12234 4542

Table 6: Dataset statistics.

The data statistics of original Snopes and
Politifact are shown in Table 6. Both
datasets are publicly available at https:

//github.com/nguyenvo09/EACL2021/

tree/main/formatted_data/declare.
Snopes The claims and their corresponding la-
bels from Snopes (Popat et al., 2018) are obtained
by crawling the fact-checking website2, while the
evidences and their publishers are collected by
querying the claims through a search engine.
PolitiFact The claims and their corresponding la-
bels from PolitiFact (Popat et al., 2018) are from an-
other fact-checking website3, while the evidences
and their publishers are also obtained through
search engines. Unlike Snopes, PolitiFact also pro-
vides information about speakers for claims. We
follow previous work (Popat et al., 2018) and merge
the true, mostly true, half true into true and false,
mostly false, pants on fire into false.

2https://www.snopes.com/
3https://www.politifact.com/
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