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Abstract

Math Word Problem (MWP) is a crucial NLP task aimed at providing solutions for given mathematical descriptions. A
notable sub-category of MWP is the Linear Programming Word Problem (LPWP), which holds significant relevance in
real-world decision-making and operations research. While the recent rise of generative large language models
(LLMs) has brought more advanced solutions to LPWPs, existing evaluation methodologies for this task still diverge
from human judgment and face challenges in recognizing mathematically equivalent answers. In this paper, we
introduce a novel evaluation metric rooted in graph edit distance, featuring benefits such as permutation invariance
and more accurate program equivalence identification. Human evaluations empirically validate the superior efficacy
of our proposed metric when particularly assessing LLM-based solutions for LPWP.
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1. Introduction

Math Word Problem (MWP), a fundamental yet
challenging NLP task, has received considerable
attention recently, aiming to provide solution ex-
pressions for given mathematical problem descrip-
tions (Shen et al., 2021). Most prior research has
focused on elementary arithmetic problems (Roy
and Roth, 2015; Koncel-Kedziorski et al., 2016;
Patel et al., 2021; Cobbe et al., 2021) and alge-
bra problems (Kushman et al., 2014; Huang et al.,
2016) due to their straightforward solvability and
evaluative convenience through methods like preci-
sion/recall (Huang et al., 2016; Wang et al., 2017)
and test solve rate (Cobbe et al., 2021). On the
other hand, Linear Programming Word Problems
(LPWP) (Ramamonjison et al., 2022), closely tied
to real-world decision-making, hold significant po-
tential in operations research (OR) (Tao et al., 2020;
Beairsto et al., 2021; Fan et al., 2024) but remain
under-explored. As shown in Figure 1, a LPWP
typically consists of a textual problem description
paired with its mathematical program, which com-
prises three main elements: decision variables, an
objective, and constraints.

Previous solutions for LPWP often decompose
this task into sub-steps (e.g., entity recognition fol-
lowed by text generation), which leads to inevitable
error accumulation (Ramamonjison et al., 2022;
He et al., 2022; Prasath and Karande, 2023). Re-
cently, generative large language models (LLMs)
have emerged as more advanced, end-to-end alter-

* The first two authors contributed equally to this
work.

Figure 1: An LPWP example sampled from
NL4OPT testing set (Ramamonjison et al., 2023b).
natives for LPWP, leveraging problem descriptions
as instructions to generate textual LPWP answers.
Despite the rapid progress in LPWP task, its evalu-
ation methodologies have not evolved at the same
pace. Previous evaluation metrics (e.g., Canonical
Accuracy (Ramamonjison et al., 2022) and Execu-
tion Accuracy (Prasath and Karande, 2023)) either
do not align with human intuition or fail to recog-
nize mathematically equivalent answers (§2). To
address prior issues in LPWP evaluation, we in-
troduce a simple yet effective evaluation strategy
based on graph edit distance. Specifically, given
the predicted (e.g., by LLMs) and reference (i.e.,
ground-truth) programs in the format of a textual
answer, we initially parse them into a structured
general form. We then convert these general forms
into bipartite graphs, with weighted edges linking up
vertices representing variables and constraints. Fi-
nally, we compute the edit distance between graphs
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Figure 2: Demonstration of the pitfalls of Canonical Accuracy and Execution Accuracy: results highlighted
in red are poorly aligned with human judgment.

corresponding to the predicted and reference pro-
grams, using this as the evaluation metric to assess
the performance of modeling solutions for LPWP.

In summary, our proposed strategy showcases
advancement in the following two aspects:

- Permutation Invariance: Our proposed graph-
based evaluation strategy can accommodate order
discrepancies of variables and constraints between
the predicted and reference programs, as these
order variations do not inherently indicate two pro-
grams are different.
- Exact Match Identification: Our proposal en-
sures that a match between predicted and refer-
ence programs can be confidently considered as
exact equivalence. This addresses the challenge
of the execution measurement (in §2), where two
programs with the same (or an infeasible) optimal
solution might still be inequivalent.

2. Pitfalls of Prior Metrics

Prior research typically employs two evaluation ap-
proaches to evaluate LPWP performance, namely
Canonical Accuracy and Execution Accuracy:
Canonical Accuracy (Ramamonjison et al.,
2022). This evaluation method is based on the
declaration-level matching between predicted and
reference programs, with a declaration represent-
ing either an optimization objective or constraint.
In particular, the canonical accuracy for one LPWP
problem can be calculated as follows:

Acc = 1− min(FPi + FNi, Di)

Di
(1)

where for a given problem i, Di is the number of
actual declarations in the reference program. The
term false positives FPi denotes the number of
declarations in prediction not matched with any
of the actual declarations, while false negatives
FNi denotes the number of actual declarations
not matched with any of the predicted declarations.
As FPi + FNi can possibly exceed Di, the min is
leveraged to prevent negative Acc.

This canonical measurement strongly assumes
that predicted programs must follow the same vari-

able order as those in the ground-truth program.
In other words, even though a ·X + b · Y ≤ c and
a ·Y +b ·X ≤ c (where X and Y permutes) are fun-
damentally equivalent, the canonical measurement
still deem them as different due to the altered order
of variables. As shown in Figure 2(a), the predicted
program merely swaps variables and constraints
compared to the reference one, which should be
regarded as equivalent. However, the canonical
metric yields a problematically low score, which
ideally should be 1.0.
Execution Accuracy (Prasath and Karande,
2023). Similar to the standard evaluation for code
generation that emphasizes functional correctness
(Chen et al., 2021), the execution evaluation for
LPWP measures the correctness of the mathemat-
ical program via comparing the optimal solutions
between predicted and reference programs. Specif-
ically, we parse the mathematical program in Fig 1
into an MPS1 file format and then use a solver to
obtain the optimal objective. Equal optimal objec-
tive values between the predicted and reference
program indicate a successful LPWP prediction.

Nonetheless, this evaluation scheme cannot
serve as a flawless indicator of program equiva-
lence. As shown in Figure 2(b), even if the pre-
dicted program overlooks a considerable number
of constraints, it may still match the reference’s op-
timal value. Furthermore, two different programs
both identified as “infeasible" by the solver will be
mistakenly regarded as a match even the predicted
program greatly differs from the reference one.

3. Evaluation via Graph Edit Distance

This section introduces a simple yet effective evalu-
ation strategy grounded on the graph edit distance.
This strategy tackles the pitfalls of prior metrics
and aligns more closely with human sense, as a
smaller edit distance indicates fewer mistakes in
the predicted program w.r.t the reference program.

Generally, this evaluation strategy can be un-
folded as three steps: (1) Converting the initial tex-

1An MPS (Mathematical Programming System) file is
an industry-standard format for linear and mixed integer
programs (Wikipedia, 2021) .
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Figure 3: An example of graph representation.
tual form of the predicted and reference programs
into Linear Programs (LPs) in general forms; (2)
Transforming the predicted and reference LPs into
bipartite graphs; (3) Calculating the graph edit dis-
tance between the predicted and reference graphs.
LP in General Form. The general form is
widely adopted by various LP solvers including
CPLEX (Cplex, 2009) and Gurobi (Gurobi Optimiza-
tion, LLC, 2022). Formally, an LP with n variables
and m constraints can be represented as:

min
x∈Rn

c⊤x

s.t. ℓs ≤ Ax ≤ us

ℓx ≤ x ≤ ux,

(P)

where A ∈ Rm×n is the constraint matrix, c ∈ Rn

is the cost vector, x ∈ Rn is the decision variables.
Extended real domains are denoted by R = R ∪
{−∞} and R = R∪{∞}. ℓx ∈ Rn and ux ∈ Rn are
lower/upper bound of the decision variable x, and
ℓs ∈ Rm and us ∈ Rm are lower/upper bound of the
constraint. The type of constraint includes equality,
two-sides or one-side inequality. For the one-side
inequality constraint, we prefer the right-side over
the left-side one, by multiplying a constant −1.

For this step, we implement a robust rule-based
parser to convert the initial textual math program
into the LP in such general form.
Graph representation. It is well known that LP
can be represented as an attributed bipartite graph,
(Gasse et al., 2019; Fan et al., 2023), denoted as
G = (S ∪ X,E) (Figure 3). This graph consists
of two disjoint vertex sets S = {si|i ∈ [m]} and
X = {xj |j ∈ [n]}, and a collection E = {eij |i ∈
[m], j ∈ [n]} of edges. Here, notation [·] means a
set of consecutive numbers. Vertex si corresponds
to the i-th constraint ℓsi ≤ a⊤

i x ≤ us
i , with its at-

tribute being attr(si) = [ℓsi , u
s
i ]

⊤. The notation xj

is overloaded in the graph context to represent the
vertex xj that corresponds to the decision variable
xj . Its attribute attr(xj) = [ℓxj , u

x
j , cj ]

⊤ contains the
bounds (ℓxj , ux

j ) and objective coefficient (cj). The
topology of G is determined by A, i.e., edge eij ex-
ists iff Aij ̸= 0. The attribute of this edge is simply
the weight Aij , i.e., attr(eij) = [Aij ].

One significant advantage of representing LP
as an attributed bipartite graph is its permutation
invariance. It refers that two LPs are equivalent

even if the constraints are permuted, or if the deci-
sion variables (and correspondingly, the cost vector
and columns in the matrix A) are permuted. Using
this bipartite graph representation, we can uniquely
convert any LP in general form into an attributed
bipartite graph.
Graph edit distance (GED). GED is the minimum
cost required to transform one graph into another
by a sequence of operations including inserting,
deleting, and substituting vertices and/or edges (as
shown in Fig 4). For generality, all these operations
are viewed as matching, e.g., deleting vertex is to
match this vertex to an empty vertex, denoted by ϵ.

Any well-established GED algorithm (Abu-
Aisheh et al., 2015; Riesen et al., 2020; Gao et al.,
2010) can be employed once the costs of matching
operations are determined. Although various cost
definitions can exist, our proposed definition abides
by a straightforward principle: each operation on
an attribute in graph incurs a unit cost of 1. Follow-
ing this principle and given the graph of predicted
program Gp = (Sp ∪Xp, Ep) and the graph of refer-
ence program Gr = (Sr ∪Xr, Er), the vertex cost
matrix Cv is formally defined as:

sri′ ∈ Sr xr
i′ ∈ Xr ϵ

spi ∈ Sp #msm(spi , s
r
i′) ∞ #attr(spi )

xp
i ∈ Xp ∞ #msm(xp

i , x
r
i′) #attr(spi )

ϵ #attr(sri′) #attr(sri′) ∞

Due to the space limit, we details only a few
entries highlighted in gray above. (1) Substituting
constraint vertex spi to sri′ equals to editing attributes
of one vertex to match another, so the cost of such
operation is the number of mismatched attributes
between two vertices, denoted by Cv(s

p
i → sri′) =

#msm(spi , s
r
i′). Given that GED accounts for the

interaction between vertices and edges, here only
current pairs of vertices need consideration. (2) Re-
gardless of how attributes are edited, a constraint
vertex will never convert to a variable vertex, so
their substitution cost is ∞. (3) The deletion cost of
a constraint vertex sri equals to the number of its at-
tributes, i.e., Cv(s

r
i → ϵ) = #attr(sri ). Analogously,

the insertion cost can be deemed as converting an
empty vertex ϵ into the vertex being inserted.

Similarly, the edge cost matrix Ce is defined as:
erij ∈ Er ϵ

epij ∈ Ep #msm(epij , e
r
ij) #attr(epij)

ϵ #attr(erij) ∞

While GED(Gp,Gr) can measure the similarity be-
tween predicted and reference programs, it is sen-
sitive to graph size. A larger graph, representing
a predicted program with more variables and con-
straints, is more prone to errors, thereby leading to
larger GED w.r.t the reference program. To address
this issue, we further normalize GED(Gp,Gr) by
the graph size, as NGED(Gp,Gr) = GED(Gp,Gr)

max(|Gp|,|Gr|) ,
where |G| =

∑
e∈E #attr(e) +

∑
v∈S∪X #attr(v). Ul-

timately, NGED forms the core of our proposed
evaluation metric for LPWP. Furthermore, graphs
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Figure 4: Exemplar graph edit path from the graph associated with the predicted program to the reference
program in Figure 2(b). Blue and yellow vertices are respectively constraint and variable vertices.

Figure 5: Ranking distributions of human judge-
ments on the NL4OPT test set.

of larger scale also require the scalability of our
GED-based evaluation metric to be both stable and
robust. Therefore, we discuss the computational
complexity of our metric in detail in Appendix A.

4. Experiments and Analysis

4.1. Experimental Setup
Datasets. We employ the recently introduced
NL4OPT (Ramamonjison et al., 2022), the first-ever
LPWP dataset, in our experiments. This dataset
contains 713 training, 99 validation, and 289 test-
ing data points. Each data point consists of both a
problem description and a human-composed math-
ematical program (as the example in Figure 1).
Language Models. To assess the effectiveness
of evaluation metrics comprehensively, we con-
sider four LLMs, all rooted in the foundational ar-
chitecture of the widely-explored, open-sourced
Llama family (Touvron et al., 2023; Rozière et al.,
2023) but with different settings to obtain diverse
LPWP modeling. Specifically, we include three
Llama-based models: (1) Llama-2-Chat (13B),
(2) Code-Llama-Instruct (34B), and (3) Llama-2-
Chat (70B). Additionally, we also fine-tune Llama-
2-Chat (13B) with the training set of NL4OPT and
name it as Llama-2-SFT (13B). Except for Llama-
2-SFT (13B), all three other LLMs are under the
one-shot in-context learning (ICL) setting, where a
validation datapoint is randomly selected and uti-
lized as the one-shot example for all inferences.
More details about the prompt template we used
can be found in Appendix B.
Human Evaluation. We collected human judg-
ments from three OR experts within our institution.
The annotation task is structured as follows: for

Language Models Execution(↑) Canonical(↑) Ours(↓)
Llama-2-Chat (13B) 0.07 (4) 0.24 (4) 0.52 (4)
Code-Llama-Instruct (34B) 0.35 (2) 0.54 (2) 0.25 (2)
Llama-2-Chat (70B) 0.21 (3) 0.31 (3) 0.41 (3)
Llama-2-Chat-SFT (13B) 0.53 (1) 0.64 (1) 0.14 (1)

Table 1: Evaluation scores on test set via 3 metrics
for 4 models. ↑ means larger is better. ↓ means
lower better. Models’ ranks are in brackets.

each test sample, an annotator is provided with its
reference program and 4 anonymized programs
predicted by the aforementioned 4 LLMs. The an-
notator then compares predicted programs with the
reference program and ranks them in descending
order according to their deviation from the reference
program (e.g., LLM1 = LLM2 > LLM4 > LLM3).
It is worth noting that annotators have the option to
use “=” if two predicted programs appear equally
similar to the reference program. As shown in Fig-
ure 5, four LLMs exhibit diverse performance and
the performance ranking by human is “llama-13b-
sft > code-llama-34b > llama-70b > llama-13b".

4.2. Experimental Results
Performance of LLMs. Table 1 presents the eval-
uation results obtained from our proposed graph-
based metric alongside two baseline metrics (i.e.,
execution accuracy and canonical accuracy in §2),
averaged across 289 test samples . The rankings of
LLMs based on these three metrics are consistent
with human judgment shown in Figure 5, indicating
that all three evaluation metrics can effectively as-
sess language models’ capability to solve LPWP to
some extent. However, this does not suggest that
they align equally well with human judgement. For
the majority of test samples, which are either dis-
tinctly easy or challenging for specific LLMs, the dis-
crepancies between their predicted and reference
programs can be easily quantified by all metrics.
Correlation with Human Evaluation. To more
comprehensively measure the alignment between
human evaluation and three automatic evaluation
metrics for LPWP, we delve deeper by looking into
the ranking match for each test sample. Specifically,
we define two types of matching rates: coarse-
grained rate (C-Match) and fine-grained rate (F-
Match). Given two ranking lists obtained by human
judgment and the automatic metric, we call it “lists
exactly match” if these two ranking lists are iden-
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Metrics C-Match F-Match
Execution 9 / 289 716 / 1734
Canonical 64 / 289 1336 / 1734
Ours 178 / 289 1641 / 1734

Table 2: Ranking match rate between automatic
evaluation metrics and human judgements.

tical. the C-Match measures the percentage of
instances where the human and automatic ranking
lists exactly match. On the other hand, the F-match
decomposes ranking lists into individual ranking
pairs and then calculates the match rate at the pair
level. As shown in Table 2, our proposed evaluation
metric consistently achieves the highest match rate
with human evaluations at both granularities. This
highlights the enhanced reliability and alignment
with human judgment of our proposal, especially
when conducting evaluation in a pairwise manner
(comparing merely two models LLM1 and LLM2).

5. Conclusion and Future Work

In this paper, we present a graph-based evalua-
tion metric for LPWP, emphasizing permutation in-
variance and exact match identification. Experi-
ments show superior alignment with human eval-
uation. In future work, we aim to extend this met-
ric to other mathematical programming word prob-
lems like quadratic and mixed-integer ones, which
can also be graph-represented. Furthermore, we
also tend to use this metric as a reward function to
enhance LLMs’ RLHF training for such problems
and to incorporate it into relevant operations re-
search modeling applications (Ramamonjison et al.,
2023a), thereby enhancing their efficacy and utility.
Additionally, we intend to utilize our proposed met-
ric to conduct a more thorough evaluation of LLMs’
performance on LPWPs, particularly in in-context
settings (Xiong et al., 2024).
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A. Discussion about Computational
Complexity

We adopted the exact algorithm proposed in Abu-
Aisheh et al. (2015), which is a branch-and-bound
algorithm with tailored pruning and branching strat-
egy. Given two bipartite graphs with n1 and n2
nodes respectively, the worst-case complexity is
O((n1∗n2)n1+n2). Practically, as the predicted and
ground-truth graphs usually share similar character-
istics, such as easily identifiablely identical nodes,
the algorithm scales well, e.g., processing graphs
with 15 nodes within 60 seconds. Admittedly, a
limitation is its inability to scale to larger numbers
of nodes. However, as mentioned in section 3, we
can benefit from various existing algorithms since
we frame the computation of the evaluation metric
as a graph edit distance problem. One possible
solution is to use an approximate algorithm, such
as the one in Riesen and Bunke (2009) with cubic
complexity O(max{n1, n2}3). However, this topic
and a more detailed exploration are left for future
work.

B. Prompt Templates

Figure 6 is the complete prompting formulation that
we use identically across all four LLMs in our ex-
periments (section 4.1).

Figure 6: The prompt templates we applied for four
Llama-based language models in section 4.1. The
randomly sampled one-shot example is not added
for Llama-2-SFT (13B).
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