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Abstract

Large language models (LLMs) have achieved significant performance in various natural language reasoning tasks.
However, they still struggle with performing first-order logic reasoning over formal logical theories expressed in
natural language. This is because the previous LLMs-based reasoning systems have the theoretical incompleteness
issue. As a result, it can only address a limited set of simple reasoning problems, which significantly decreases
their generalization ability. To address this issue, we propose a novel framework, named Generalizable and Faithful
Reasoner (GFaiR), which introduces the paradigm of resolution refutation. Resolution refutation has the capability to
solve all first-order logic reasoning problems by extending reasoning rules and employing the principle of proof by
contradiction, so our system’s completeness can be improved by introducing resolution refutation. Experimental
results demonstrate that our system outperforms previous works by achieving state-of-the-art performances in
complex scenarios while maintaining performances in simple scenarios. Besides, we observe that GFaiR is faithful to
its reasoning process.
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The natural language-based logical reasoning task
requires the model to understand the abstract log-
ical relationships within statements expressed in
natural language to deduce a conclusion. For exam- @ 7

1
: [Ru le1: Round, kind people are rough. ]

ple, as shown in Figure 1a, the task is to determine {Hypothesish Bob is not kind. (Answer: True) }
the value of the hypothesis (True, False, Unknown)

based on a natural language theory (NL Theory) b [ Round, kind people are rough. } [Ery is d]
which consists of a set of rules and facts explicitly ZRound() v 2KAG) ¥ Rough) Round®
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stated in natural language. This task is increasingly

gaining attention (Sun et al., 2021; Kazemi et al., [Eve'{°;:;;h‘;2§ “’“g"‘} [EV"{“K";;*(,;";ﬁizj,fgx;““g"}

2023), as it bridges the natural language with ab- \/

stract logical thinking, which plays a pivotal role in e ———\ | cfutation

complex problem-solving and cognitive reasoning. [Ev”yi',‘é,za‘;“""d'] [ e pa:

Bob is not kind.

Recently, transformer-based LLMs have
achieved significant performance in various natural
language reasoning tasks (Wei et al., 2022;
Qiao et al., 2022). Theoretical analyses have
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Figure 1: (a) Example of an NL Theory and a hy-

resolution

also demonstrated that transformers have the
potential to perform logical reasoning over formal
theories (Schlegel et al., 2022; Zhang et al., 2023).
However, it still remains challenging for the present
LLMs (Pan et al., 2023; Kazemi et al., 2023),
even for the State-of-the-Art models including
ChatGPT (Bang et al., 2023). This is because of
the hallucination problem (Golovneva et al., 2023;
Ribeiro et al., 2023), i.e., LLMs may hallucinate
incorrect intermediate reasoning steps to draw
the final conclusions. As a result, the inference
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pothesis with gold answers. Note that the meaning
of these statements are not related to the common
sense. (b) For hypothesis 1, the reasoning process
using the method of resolution refutation is shown.
The process of refutation is reflected from "hypoth-
esis’ to "Bob is kind" and the grey box represents
the process of resolution at the natural language
level.

results are not faithful to be trusted (Lyu et al.,
2023; Creswell and Shanahan, 2022). Moreover, if
regarding large language models as inference sys-
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tems, hallucination will affect their completeness.
A complete inference system means that all the
hypotheses with determined labels can be inferred
by applying valid reasoning rules contained in
the inference system. However, the hallucination
problem prevents the LLMs from correctly wielding
reasoning rules to draw conclusions, thus leading
to incompleteness inference systems.

To reduce hallucination and improve faithfulness
for LLMs, previous works mainly enhance the rea-
soning process of LLMs by a stepwise inference
paradigm. According to the direction of reasoning,
these works can be divided into two groups. The
forward chaining approach (Sanyal et al., 2022)
starts from known rules to check if there exists any
rule whose conditions are all satisfied by the given
facts, if so, we apply the reasoning rule of forward
chaining to derive a new conclusion, this procedure
continues until no new conclusions can be drawn or
the hypothesis is proved. The backward chaining
approach (Qu et al., 2022) starts from the hypothe-
sis and reasons in an opposite direction to derive a
set of facts that need to be satisfied, then querying
if these inferred facts overlap the known facts. By
introducing intermediate steps, faithfulness can be
improved.

However, the performance of these methods in
complex logical reasoning scenarios is still unsat-
isfying. In some cases, their performance may
be lower than using LLMs alone, or even lower
than random guesses. This is caused by the inher-
ent deficiency of these methods that the forward
or backward reasoning method is incomplete. It
means that there will be some hypotheses with de-
termined values that are considered Unknown by
the model. As a result, it can only accommodate
relatively simple scenarios. Take forward chaining
as an example, forward chaining is incomplete be-
cause it is capable of reasoning if and only if "all
the conditions of a certain rule can be proven to be
true based on known facts’ (condition 1). However,
In the process of reasoning, there are some excep-
tional cases where forward chaining cannot reason.
For the Hypothesis 1 in Figure 1a, forward chain-
ing is unable to complete this type of reasoning
since the condition of the rule “kind people” can-
not be proven to be true by the facts. Hence, no
conclusions can be drawn and hypothesis 1 will be
considered Unknown. For the backward chaining,
inference also cannot be made since hypothesis 1
“not kind” does not appear at the right hand of the
rule. Hence the hypothesis will also be considered
Unknown.

Inspired by the logical reasoning methods in the
field of symbolic logic, we attempt to introduce a
complete logical reasoning paradigm (under first-
order logic) resolution refutation (Russell, 2010)
whose reasoning procedure is not constrained by

the condition 1 to improve completeness, and pro-
pose a novel reasoning framework GFaiR. Figure
1b illustrates the reasoning process of our model.
For hypothesis 1, by utilizing the reasoning rule of
resolution, we can derive 'Everyone is not kind’ step
by step from the known information by performing
resolution at the natural language level. Then by
refutation, ’kind’ appears in the known information
so we can finally prove that hypothesis 1 is True.
As a result, the combining of resolution refutation
enables the model to handle more complex rea-
soning scenarios and enhances its generalization
ability. Because the process of resolution refutation
is complex, so we detail them in Section 2.

To combine resolution, we need to first select
two theories and then utilize a reasoning model
to perform resolution over them at the natural lan-
guage level. However, the previous (Sanyal et al.,
2022) transformers-based selection module only
considers selecting which theories are more likely
to infer the target hypothesis, without taking into
account whether these two theories are logically
related. This leads to scenarios where the selected
theories are completely unrelated, which further
causes the failure of resolution and the generation
of invalid conclusions which may result in halluci-
nations. As a result, we use a validity contrastive
loss-based verifier to distinguish valid conditions
from illogical statements. This ensures that a valid
conclusion can be drawn from the selected theories
through logical reasoning, thereby providing guar-
antees for resolution and improving faithfulness by
reducing hallucinations.

We validate our method on the widely adopted
Ruletaker dataset and a more challenging Hard
Ruletaker dataset, as well as the natural language
satisfiability (NLSAT). Experimental results show
that our approach is faithful to its reasoning process
and has stronger in-domain inference accuracy,
meanwhile demonstrating zero-shot generalization
performances’.

2. Background

Natural Language Reasoning with First-Order
Logic We follow the task definition proposed by
Han et al. (2022). Given a hypothesis H and an NL
Theory NLT (including a series of facts and rules
expressed in natural language) without contradic-
tion, the goal is to determine the value of H: True,
False, or Unknown. Note that NLT and H are an-
notated with parallel FOL (first-order logic) Theory
and FOL hypothesis, and the value is determined
by the FOL reasoning result of the FOL Theory and
FOL hypothesis. If the value is True or False, it is

"The source code of GFaiR has been made available
at https://github.com/spirit-moon-fly/GFaiR.
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expected to give a reasoning process, which con-
sists of a series of reasoning steps (p1, p2, ..., Pn),
and each reasoning step p; includes selected rules
or facts s; along with reasoning conclusion c;.
Resolution Refutation Resolution refutation
(Nawaz et al., 2019) is a commonly used and com-
plete reasoning method under first-order logic, i.e.
for a hypothesis whose label is True or False under
the semantics of full FOL, applying the reasoning
method of resolution refutation can infer the label
of the hypothesis. Let F' be the FOL formula set of
the given premises, and @ be the hypothesis, then
the process of proving that @ is True by resolution
refutation is shown as follows:

1) Negate @ to get =@, and merge it into the formula
set F' to get {F, -Q}.

2) Transform {F,-Q} into a clause set in Skolem
normal form. (Skolem standardization)

3) Apply resolution principle (Robinson, 1965) to
resolve clauses in the clause set, each resolution
step generates a resolved clause, which is then
added to the clause set. This process is repeated
iteratively. If an empty clause is obtained during
the resolution step, it indicates a contradiction in
the clause set and proves that @ is True.

The process of proving that ) is False is similar.
Therefore, when dealing with our target task, we
can determine the value of H by applying a reason-
ing model to the theory set T} composed of NLT
and H and the theory set T, composed of NLT
and —H at the same time, where the reasoning
model implicitly performs resolution at the natural
language level. If there is no contradiction in the
theory set T} and there is a contradiction in the the-
ory set Ty, it proves that H is True. On the contrary,
it proves that H is False. if there are no contradic-
tions in two theory sets, H is Unknown. an example
of resolution refutation reasoning procedure can be
seen in Section 3.3.

3. Method

3.1. Overview

Although improved faithfulness compared with
vanilla LLMs, existing stepwise inference methods
based on forward or backward chaining are incom-
plete, which makes them unable to generalize to
complex reasoning scenarios.

In this paper, we propose a novel reasoning
framework GFaiR. As shown in Figure 2, GFaiR
introduces resolution refutation to improve the com-
pleteness.

Specifically, GFaiR is composed of five modules:
(1) A converter for augmenting the given NL The-
ory with the negated hypothesis and to convert
the representations of natural language for resolu-
tion at the natural language level in the following

reasoning process. (2) A pre-selector to select a
theory for drawing intermediate conclusions. (3) A
post-selector to select another theory by explicitly
modeling the relationship between the theory se-
lected by the pre-selector and the remaining ones.
(4) A knowledge composer to generate a novel con-
clusion by applying the resolution rule at the natural
language level. (5) A verifier to ensure that a valid
conclusion can be drawn from the selected theories
through logical reasoning, thereby providing guar-
antees for resolution and improving faithfulness.
In the following sections, we will first introduce
the architecture of GFaiR, and then explain the
inference and training procedure of GFaiR.

3.2. Architecture

Overall, GFaiR is an iterative model where the one-
hop intermediate conclusions are generated step-
by-step. Our model is shown in Figure 2. Specifi-
cally, we have the following five modules:
Converter Given the NL Theory and hypothesis,
before directly performing reasoning, we first em-
ploy a T5-based converter to automatically convert
the hypothesis into its negation form for refutation
in the inference process (not reflected in Figure
2). Additionally, because our knowledge composer
mimics the resolution step which cannot deal with
existential quantifiers and some implicit logical rela-
tionships such as —, we need a step to convert the
implicit logical relationships and existential quanti-
fiers while retaining as much of the original text as
possible. The convertor can also perform this step
by imitating the Skolem standardization step in res-
olution refutation, which transforms NL Theory and
hypothesis (or its negation form) into natural lan-
guage representations similar to the Skolem normal
form. As shown in Figure 2, the converter converts
’Round, kind people are rough’ to ’Everyone is not
kind or not round or rough’. The converted NL The-
ory and hypothesis will be taken as inputs for the
following reasoning process.

Pre-Selector (Pre-S) The pre-selector is an
XLNET-based (Yang et al., 2019) classification
model that takes the concatenated theories in the
theory set as input (including intermediate conclu-
sions, converted NL Theory and hypothesis), and
selects a theory for generating new conclusions
in the current iterative steps. Taking theory set
T = {t1,t2,...,t,} in Figure 2 as an example, we
concatenate and separate them with the [SEP] to-
ken to form the input [CLS] [t; [SEP]],, ([],, de-
notes continued concatenation). The output is a
one-dimensional vector denoted as u, which is ob-
tained by classifying each [SEP] token embedding
via a linear binary classification layer. During itera-
tion, we select the theory in front of the [SEP] token
corresponding to the maximum value in the vector
u. The example in Figure 2 illustrates the selection
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p1: Round, kind people
are rough.

Reasoning model

Pn—2: Everyone is not
rough.
Pn-1: Everyone is round.

—> verifier :>
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—< maxmize similarity
—< minimize similarity

A : Bob is not kind.
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post-selector
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t;: Everyone is not kind [\
or not round or rough.
\
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rough. theories ty, ..., ty )
t,—1: Everyone is round.
t,,: Bob is kind.

new conc

tn+1: Bob is not round or rough.

Figure 2: Architecture of GFaiR. We mark the converter in orange, the selector (consisting of pre-selector
and post-selector) in green, the verifier with its validity contrastive loss in yellow, and the knowledge

composer in blue, respectively.

of t,, based on the highest value in w.

Post-Selector (Post-S) The post-selector is also
an XLNET-based classification model aiming to se-
lect another theory based on the theory selected
by the pre-selector and the remaining theories. We
designed this module to explicitly model the rela-
tionship between the theory selected by the pre-
selector and the remaining ones. As shown in Fig-
ure 2, t,, is the theory selected in the previous step,
and then place ¢, at the beginning of the input,
while keeping the order of the other theories un-
changed and concatenating them after ¢,,. We also
use [SEP] token to separate these theories to form
the input [CLS] t,, [SEP] [t; [SEP]],,_, - The out-
put is a one-dimensional vector v, which is obtained
by classifying each [SEP] token embedding (except
the first [SEP] token) via a linear binary classifica-
tion layer. Similar to the pre-selector, the example
in Figure 2 illustrates the selection of ¢; according
to the value in vector v.

Knowledge Composer (KC) The knowledge com-
poser is a generative transformer T5 that can learn
the resolution rule implicitly from data, and apply
the learned resolution rule at the natural language
level to generate a novel conclusion. As shown
in Figure 2, the input is two theories selected by
the pre-selector and post-selector (¢, and ¢;), and
the output ¢,,.1 is an intermediate conclusion ex-
pressed in natural language, which will be merged
into the theory set.

Verifier The previous (Sanyal et al., 2022)

transformers-based selection module is not accu-
rate enough for resolution refutation, which leads
to scenarios where the selected theories are un-
related. This causes the failure of resolution and
further the generation of invalid conclusions which
may result in hallucinations. As a result, we use
a validity contrastive loss-based verifier to verify
two theories selected by the pre-selector and post-
selector to ensure that a valid conclusion can be
drawn from them through logical reasoning, thus
providing guarantees for resolution and improving
faithfulness by reducing hallucinations. The validity
contrastive loss is shown in Figure 2:

To facilitate explanation, we establish the follow-
ing definitions: A theory pair (¢;,¢;) composed of
two theories ¢; and ¢, is valid if and only if a valid
conclusion can be drawn from them through logical
reasoning. Because our knowledge composer em-
ulates the resolution step at the natural language
level to draw intermediate conclusions, the crite-
rion for determining if the theory pair is valid lies
in whether the FOL expressions corresponding to
these two theories can be used for resolution.

We consider all the theory pairs composed of the
theory selected by pre-selector and the remaining
ones, and then devise validity contrastive loss by
maximizing the cosine similarity of valid theory pairs
(pink and blue in Figure 2) while minimizing the
cosine similarity of invalid theory pairs (green and
blue in the Figure 2). Please refer to 3.4 for the
loss function.
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When verifying the theory selected by the post-
selector t;,, the verifier first calculates the cosine
similarity between ¢, and the theory selected by
the pre-selector t,,,. If the similarity score is above
0 (similarity score is within the range of -1 to 1),
the theory pair is deemed valid and selected as
input for the knowledge composer. Conversely, it
is invalid and the post-selector will select a new
theory for verification. This process continues until
a theory is selected that can form a valid theory
pair with ¢,,,.

3.3.

During inference, the converter first converts the
NL Theory and hypothesis into two theory sets rep-
resented in natural language similar to the skolem
normal form. One of them consists of the NL The-
ory and hypothesis, the other consists of the NL
Theory and the negation of the hypothesis. Then
we apply our reasoning model (shown in Figure 2)
to two theory sets separately to infer if there ex-
ists a contradiction, which determines the value
of the hypothesis (referring to the background for
more details). Since our model is a neural network
model rather than a symbolic reasoning system,
there are accidental conditions that contradiction
exists in both theory sets. In such cases, we em-
ploy a heuristic approach to determine the value
of the hypothesis (according to the number of rea-
soning steps). Below we will explain how to infer a
contradiction in a theory set.

For a specific theory set T', the pre-selector first
selects a theory t;. Then, under the guidance of
the verifier, the post-selector selects a theory ¢; that
can form a valid theory pair with ¢;. If it does not
exist, stop and conclude that there are no contradic-
tions in the theory set. Conversely, the knowledge
composer composes two selected theories to gen-
erate a new conclusion. If the conclusion is an
empty string (corresponding to the empty clause
in the process of resolution refutation), it indicates
that there is a contradiction in the theory set and
stops the iteration. Otherwise, the newly generated
conclusion is placed in the theory set T' to partic-
ipate in the following reasoning process. For the
example in Figure 2, the reasoning model will first
derive ’t,,;1: Bob is not round or rough.” by resolv-
ing ’t1: Everyone is not kind or not round or rough.’
and’t,: Bobis kind.. Then, by combining ¢,,+1 and
"t,—o Everyone is not rough.’, the model can derive
'tn+2: Bob is not round.. Finially, we can derive
an empty string from ¢,,. > and ’'t,,_1: Everyone is
round.’, which indicates a contradiction in the the-
ory set and illustrated that the hypothesis is True.
Due to the infinite search space of first-order log-
ical reasoning, we design a maximum number of
reasoning steps N. When it is reached, we assume
that there are no contradictions in the theory set

Inference

and stop iteration. There may be cases where no
theories are selected to form a valid theory pair. For
example, the theory set is: {Bob is kind. Bob is tall.
Bob is happy.}. In this situation, we are unable to
derive a valid conclusion based on any theory pair.
Therefore, we cannot derive any valid conclusions,
and we will halt the search and consider that there
are no contradictions in this theory set.

3.4. Training

Each component of our model is trained separately.
The training data of the converter is every fact and
rule in the NL Theory and hypothesis as well as
their corresponding natural language representa-
tions similar to the skolem normal form (or the nega-
tion). The following mainly introduces the training
methods of the other four modules.

From Background, we know that the resolution
refutation process for proving a hypothesis is True
or False involves proving a theory set is contra-
dictory. And each step for proving a theory set
T = {t1, ..., t, } is contradictory can be represented
as (t;,t;,t), which means that the intermediate
conclusion ¢, is generated based on t; and t; al-
ready existed in the theory set T' (intermediate con-
clusions generated by previous reasoning steps
have been merged into the theory set T'). Then, for
a theory set T' with contradiction and one of its rea-
soning steps {t;,t;, t }, we can generate four train-
ing samples for training Pre-Selector, Post-Selector,
and Knowledge Composer, respectively:

Pre-S Input = {T'} ; Pre-S Output = {t;,t;}
Post-S Input = {T,t;} ; Post-S Output = {t;}
Post-S Input = {T,t;}; Post-S Output = {t;}
KC Input = {t;,t;}; KC Output = {t}

The generative knowledge composer can learn the
resolution rule implicitly after training by language
modeling loss. The pre-selector and post-selector
are classification models, so that their output is con-
verted to class labels instead of text. We use binary
cross entropy loss to train these two modules.

To train the verifier, we utilize the output of XL-
NET in post-selector, specifically the vector repre-
sentation corresponding to the [SEP] token via a
linear layer, as the vector representations of the
theories for simplicity. So the verifier and post-
selector are trained jointly, with their loss function
combined using a hyperparameter «. For the ex-
ample in Figure 2, T = {t4,...,t,} is the current
theory set, V = {vy,...,v,} is the corresponding
vector representations, ¢,, is the theory selected by
the pre-selector. Assume that P = {p, ..., px } rep-
resents the indices of theories that can form a valid
theory pair with ¢,,, which are considered as positive
examples, R = {ry, ..., } represents the indices
of theories that cannot, which are considered as
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negative examples. The specific definition of the
validity contrastive loss (VCE) is shown as follows,
where the maximum similarity between positive ex-
amples is constrained to be 0.8 to prevent model
collapse:

Lyee = _% Zk:logeil?p(rgax(,s'im(‘vn,vp]),O.S))
j=1 > oisq exp(sim(vp, vy,))

4. Experiment Setup

Tasks and Datasets Following Richardson and
Sabharwal (2022), we trained and evaluated on the
easy Ruletaker-depth-3ext dataset (Tafjord et al.,
2021), then tested on the test set of Ruletaker-
depth-3ext and Ruletaker-depth-5 dataset (later we
will refer to them as Ruletaker-3ext and Ruletaker-
D5) as well as the dev set of Hard Ruletaker (Hard
RuleTaker only have the dev set). Hard Ruletaker
is a harder dataset by eliminating potential bias
(Morishita et al., 2023) compared to Ruletaker-3ext
and Ruletaker-D5. However, the Hard Ruletaker
dataset only includes True and False labels with-
out Unknown labels, which may not accurately re-
flect the ability of the model. So we use the same
method to sample hard instances whose label is
Unknown and added it to Hard Ruletaker dataset
to balance three kinds of labels. We named the
new dataset Hard Ruletaker*. To further evalu-
ate the performance of our model after training on
hard instances, we divide Hard Ruletaker™ to train,
dev, and test set based on a ratio of 8.5,0.5,1, the
divided dataset was called Hard Ruletaker**. How-
ever, these datasets do not contain existence quan-
tifiers that are implicitly expressed in natural lan-
guage, so we also use a method similar to Richard-
son and Sabharwal (2022) to construct a dataset
with existence quantifiers called Ruletaker-E.

To train GFaiR, we first get each data’s FOL rep-
resentation and then employ a resolution refutation
based FOL prover to automatically derive the inter-
mediate reasoning process. Finally, we transform it
from FOL representations into natural language rep-
resentations by using natural language templates.
More details can be seen in Appendix A.
Baselines For the first task, we compare GFaiR
with two kinds of methods:

(1) Pretrained Language Model Based Meth-
ods: We use Roberta-large (Liu et al., 2019),
T5-large and ChatGPT (gpt-3.5-turbo) as base-
lines. For Roberta-large and T5-large, we finetune
them on the Ruletaker-3ext and Hard Ruletaker**
datasets. For ChatGPT, we use the method of in-
struct and chain-of-thought prompt to evaluate its
performance. Due to cost reasons, we respectively
tested 3000 pieces of data in three datasets.

(2) Stepwise Inference Methods: we mainly
compare GFaiR with the model combined with for-
ward chaining FaiRR (Sanyal et al., 2022) and the

Ruletaker-3ext  Hard RT Hard RT*
Model

EA FA EA FA EA FA

T5 97.7 — 573 — 575 —

Roberta 98.9 — 596 — 597 —

ChatGPT 56.5 428 57.0 2.7 389 6.9
IBR 98.9 98.1 59.6 12.1 59.7 29.6
FaiRR 99.0 984 14.1 122 41.1 39.8
NLProofs 99.3 99.2 143 13.8 41.8 41.4
GFaiR 98.1 98.0 68.5 67.5 739 71.7

Table 1: Comparison of GFaiR with baselines when
trained on Ruletaker-3ext and tested on Ruletaker-
3ext and two hard datasets. EA, FA, Hard RT, and
Hard RT* refer to entailment accuracy, full accuracy,
Hard Ruletaker, and Hard Ruletaker* respectively.

model combined with backward chaining IBR (Qu
et al., 2022). And we also compare GFaiR with
NLProofs (Yang et al., 2022) which conducts proof
search on partial proof graphs. More details can
be seen in Appendix B.

Evaluation protocol Following Qu et al. (2022),
We consider two main aspects for evaluating the
model’s performance in our study: (1) Entail-
ment accuracy (EA) measures how accurately
the model is able to predict the label of the hy-
pothesis. (2) Full accuracy (FA) measures how
accurately the model can simultaneously predict
the label and the valid proof (i.e. the reasoning
process) of the hypothesis. For a reasoning pro-
cess P = (p1,pa...pn), itis valid if and only if every
reasoning step p; is correct. A reasoning step p;
includes selected rules or facts s;, along with rea-
soning conclusion ¢;. To check if p; is right, we use
the FOL format expression of s; and ¢;, denoting
as fs, and fc;. And we consider p; is right if fc;
can be directly derived by fs, using a valid reason-
ing rule under FOL. Following Tafjord et al. (2021),
when the model predicts Unknown, no proof will be
generated and we think the proof is right when the
gold label is Unknown. Note that our method for
evaluating the reasoning process is more flexible
compared to the evaluation method proposed in
previous work (Saha et al., 2020), which relies on
precisely matching between the gold proof and the
predicted proof. Instead, our evaluation method is
able to take different reasoning paths into account.
However, our method still will not evaluate incorrect
reasoning processes as correct ones ensured by
symbolized logical reasoning.

5. Experiment Results

5.1. Main results

To investigate different methods’ in-domain perfor-
mance on easy problems and zero-shot generaliza-
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FaiRR NLProofs GFaiR
depth
EA FA EA FA EA FA
N/A 994 994 994 994 096.2 96.2
0 100 100 100 100 999 99.9
1 99.5 992 999 999 995 995
2 98.4 96.0 99.0 99.0 982 97.9
3 93.1 848 94.1 934 958 95.1
4 888 773 795 77.2 942 925
5 78.7 67.8 69.6 573 942 91.9

Table 2: Depth-wise results on Ruletaker-D5, N/A
represents the depth is unknown because the value
of the hypothesis is ‘unknown’.

tion ability on hard problems, we trained and eval-
uated on easy Ruletaker-3ext dataset, and then
tested on Ruletaker-3ext and two hard datasets
(Hard Ruletaker and Hard Ruletaker*). Results are
shown in Table 1, from which we can observe that:

(1) Compared to pretrained language model
based methods (T5-large, Roberta-large, and Chat-
GPT), we can find that stepwise inference methods
are more faithful than ChatGPT from the difference
between the value of EA and FA.

(2) Compared to stepwise inference methods
IBR, FaiRR, and NLProofs, GFaiR shows compa-
rable performance on the biased RuleTaker-3ext
dataset, and significantly outperforms on two debi-
ased hard datasets, which demonstrates stronger
zero-shot generalization performance according to
EA and FA. This suggests that by introducing reso-
lution refutation to improve completeness, the step-
wise inference methods can generalize to complex
logical reasoning scenarios. In contrast, previous
stepwise inference methods IBR, FaiRR, and NL-
Proofs are incomplete and often classify hypothe-
ses that can be inferred as True or False as Un-
known, so they exhibit unsatisfied when dealing
with complex logical reasoning scenarios. Hence
GFaiR’s ability to generalize to complex logical rea-
soning scenarios is better.

(8) From the difference between the value of EA
and FA, we can observe that our model is faith-
ful. Though this difference of FaiRR as well as
GFaiR on two hard datasets is much smaller, their
entailment accuracy is relatively low so there is no
point in only considering their faithfulness. How-
ever, GFaiR both achieves higher entailment ac-
curacy and maintains faithfulness by combining
resolution refutation and introducing a validity con-
trastive loss-based verifier.

(4) ChatGPT does not outperform other models
significantly and even performs worse than them.
On the one hand, this reflects the difficulty of this
task. On the other hand, this is because Chat-
GPT is a general-purpose model. However, the
performance of some relatively small task-specific

Hard RuleTaker*™ RuleTaker-E
Model

EA FA EA FA

T5 87.1 — 75.7 —

Roberta  89.3 — 76.8 —
IBR 89.3 39.2 76.8 35.3
FaiRR 40.4 34.0 38.4 36.6
NLProofs 40.7 39.4 38.6 38.2
GFaiR 92.2 92.2 83.2 827

Table 3: Results on Hard Ruletaker*™ and Ruletaker-
E dataset.

models far exceeds ChatGPT, demonstrating the
immense potential of transformers in mastering log-
ical operation rules and the necessity of equipping
the data-driven chatGPT with the logical rules for
enhancing the performance on complex rule rea-
soning tasks such as math or coding.

Note that the EA of ChatGPT on Hard Ruletaker
is slightly higher than on Ruletaker-3ext, this is be-
cause the labels in Hard Ruletaker are only True
or False and we exclude data that ChatGPT con-
siders Unknown (less than 10%). Though this may
overestimate the performance, it does not affect
our conclusion. Additionally, the EA of IBR on hard
datasets is much higher than FaiRR and equal to
Roberta. This is because IBR first predicts the final
answer and then gives a reasoning process, and
only the reasoning process is derived by stepwise
backward inference.

5.2. Generalization to Higher Depths

In this section, we experiment with a setting where
models are trained on reasoning depths less than
or equal to 3 and tested on Ruletaker-D5 which
contains problems that require reasoning up to
depth 5. The reasoning depth are defined based
on the minimal reasoning depth using the forward-
chaining reasoning method (Tafjord et al., 2021).
But we use resolution refutation which is different
from forward-chaining in principle and thus leads
to different minimal reasoning depth for the same
instance. However, in a statistical sense, data with
higher reasoning depth for forward-chaining is gen-
erally higher for resolution refutation. So it can also
be a reference to compare the generalization abil-
ity of different methods using the depth defined by
previous work.

From Table 2, we can find that the performance
drop of GFaiR is smaller with the increasing rea-
soning depth. For example, considering the per-
formance drops between d = 3 to d = 5, GFaiR
has 1.6% drop in entailment accuracy. In contrast,
FaiRR and NLProofs drop 14.4% and 24.5% in en-
tailment accuracy, respectively. This indicates that
our model’s ability to generalize to higher reasoning
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Model Svar 8var 10var 12var
T5 955 87.8 82.3 80.9
GFaiR 955 91.3 90.1 89.4

Table 4: Model performance on GRL dataset.

Model 16,21v  25,32v 35,48v  60,70v
T5 88.2 87.4 82.9 77.4
GFaiR 93.6 92.4 91.7 91.3

Table 5: Model performance on RCL dataset.

depth is better.

5.3. In-domain Performance on Complex

Reasoning Scenarios

To investigate the in-domain performance of dif-
ferent methods in complex reasoning scenarios,
we evaluate different methods on Hard Ruletaker**
dataset. Experimental results are shown in Table
3, from which we can find that compared to IBR,
FaiRR, and NLProofs, GFaiR achieves better per-
formance. Combining the experimental results in
Table 1, we can conclude that GFaiR is more effec-
tive in handling complex logical reasoning scenar-
ios by introducing resolution refutation.

5.4. Performance on Ruletaker-E

We also wish to see the performance on scener-
ios with implicitly expressed existence quantifiers.
To do this, we evaluate different method’s perfor-
mances on the Ruletaker-E dataset. Experimental
results are shown in Table 3, from which we can find
that compared to FaiRR, IBR, and NLProofs, GFaiR
achieves better performance, which indicates that
it is also effective in handling implicitly expressed
existence quantifiers by combining resolution refu-
tation. Additionally, the difference between EA and
FA also indicates that our model is faithful in scenar-
ios with implicitly expressed existence quantifiers.

5.5. Performance on Natural Language
Satisfiability Task

We further evaluate GFaiR on natural language sat-
isfiability (NLSAT) task, whose aim is to determine
whether there is a contradiction in the given NL
Theory. In this task, we do not need the process of
refutation, so the converter only needs to convert
the NL Theory into natural language representa-
tions similar to the Skolem normal form, and then
directly use our reasoning model to infer whether
there is a contradiction in the given NL Theory.
Specially, there are two datasets available in this
task, Grounded Rule Language (GRL) dataset and

Ruletaker-3ext  Hard Ruletaker*

Model

EA FA EA FA
FaiRR 99.0 98.4 411 39.8
FaiRR+ 98.4 98.3 41.5 41.4
GFaiR- 975 97.2 72.4 68.6
GFaiR 98.1 98.0 73.9 7.7

Table 6: Results of ablation study.

Relative Clause Fragment (RCL) dataset. These
datasets are more challenging compared to Hard
RuleTaker (Richardson and Sabharwal, 2022).
This is because these datasets demand the model
to reason only based on rules and the number

of reasoning steps required to solve the problem
significantly exceeds that of Hard Ruletaker. So we
use these datasets to further investigate the perfor-
mance of our approach in more complex reasoning
scenarios. Because there are no facts available on
these datasets and models designed with forward
or backward chaining rely on facts during inference.
Therefore, we cannot apply these models to such
tasks. Instead, we compare GFaiR with the T5-
large two-stage fine-tuning method (Richardson
and Sabharwal, 2022).

Experimental results are shown in Table 4 and
5, from which we can observe that GFaiR outper-
forms the baseline methods on both datasets. Con-
sequently, GFaiR is capable of handling more com-
plex reasoning scenarios by combining the step-
wise inference method and resolution refutation.

5.6. Ablation Study

To respectively explore the effects of resolution refu-
tation and validity contrastive loss-based verifier in
our model, we consider the following ablations: 1)
FaiRR+: add the validity contrastive loss-based
verifier to the FaiRR model. So comparing FaiRR+
with GFaiR can show the impact of resolution refu-
tation; 2) GFaiR-: replace the validity contrastive
loss-based verifier with the verifier proposed by
Yang et al. (2022) to check its impact.

Results on Ruletaker-3ext and Hard Ruletaker*
datasets are given in table 6. From these results,
we can know that even if adding a verifier to FaiRR,
the performance on Hard Ruletaker* dataset is
lower than GFaiR, which signifies the effectiveness
of combining resolution refutation. Furthermore,
we can know that GFaiR’s performance is better
than GFaiR-, which shows the effectiveness of the
validity contrastive loss-based verifier.

6. Related Work

Natural Language Reasoning with First-Order
Logic First-order logic has a wide range of cov-
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erage. For example, it includes the majority of
reasoning situations in commonsense reasoning
(Davis, 2017). Additionally, it can represent most
problems in mathematics and domains such as
Euclidean geometry, making it widely used in auto-
mated theorem provers (Nawaz et al., 2019). As a
result, FOL reasoning ability is a fundamental rea-
soning ability (Davis, 2017) widely used in existing
reasoning benchmarks. For example, LogiQA (Liu
et al., 2021) and ReClor (Yu et al., 2020) are two
benchmarks widely used in logical reasoning. How-
ever, Tian et al. (2021) points out that FOL reason-
ing ability is not disentangled from other reasoning
abilities such as commonsense reasoning in these
benchmarks. So even if a model performs poorly on
these datasets, it can’t be concluded that the model
lacks the reasoning ability. Starting from Clark et al.
(2021), there are a series of novel benchmarks
which measure logical reasoning independently of
other forms of reasoning. We focus on these bench-
marks to check our model’s FOL reasoning ability.
Since our method focuses on first-order logic rea-
soning based on natural language, it can easily be
adapted to other forms of natural language-based
reasoning problems.

Proof Generation One of our task’s goals is to
give a reasoning process, which is similar to the
task of proof generation. Proof generation focuses
on generating a reasoning chain from the given
NL Theory to the conclusion, which aims at im-
proving the model’s interpretability (Rudin, 2019;
Hase and Bansal, 2020). Recently, some works
have been working on the problem of proof genera-
tion. Prover (Saha et al., 2020) trains a RoBERTa-
based model that predicts nodes and edges of the
proof graph. ProofWriter (Tafjord et al., 2021) is
a T5-based model that iteratively generates one-
hop conclusions and proofs from the NL Theory.
FaiRR (Sanyal et al., 2022) further decomposes
each reasoning step into selecting rules, selecting
facts and reasoning based on selected rules and
facts, which is similar to the reasoning process of
forward reasoning. IBR (Qu et al., 2022) draws
inspiration from backward reasoning and designs
an iterative backward reasoning model. NU (Picco
et al., 2021) also employs backward reasoning but
it cannot generate a reasoning process. NLProofs
(Yang et al., 2022) is also a stepwise reasoning
method that using verifier-guided search. However,
the validity contrastive loss-based verifier is more
suitable for the reasoning scenerios of resolution.
Another work MultiProver (Saha et al., 2021) aims
at generating multiple proofs for a hypothesis.

7. Conclusion

In this paper, we propose GFaiR, a faithful and
generalizable model capable of handling complex

logical reasoning scenarios by introducing a validity
contrastive loss-based verifier and resolution refu-
tation. Experimental results also shows that GFaiR
achieves better performance especially on Hard
RuleTaker and Hard RuleTaker* datasets.
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A. Dataset details

Due to the need for intermediate reasoning pro-
cesses when training our model, we employed the

FOL prover provided in the Stanford CS221 course
page and Prover9 to automatically extract the rea-
soning process for these two types of tasks respec-
tively. Below we describe our method to extract
the reasoning process. Since the dataset is a syn-
thetic dataset, regular expressions can be used to
convert each data back to its corresponding FOL
representation. Then we apply Prover9 or the FOL
prover provided in the Stanford CS221 course page
to each data and obtain its intermediate reason-
ing process of FOL representations. Finally, we
transform the intermediate reasoning process from
FOL representations into natural language repre-
sentations by using natural language templates.
Although this approach introduces some noise lim-
ited by the prover we used (redundant and exces-
sively long reasoning steps), it does not hinder our
model from achieving excellent generalization per-
formance across all tasks.

Additionally, Richardson and Sabharwal (2022)
illustrated that they found around 1% mismatched
labels on the Ruletaker-3ext dataset. However, they
only correct the train and dev set of the Ruletaker-
3ext-sat dataset. As a result, we correct the test set
of the Ruletaker-3ext dataset and the Ruletaker-D5
dataset for our experiments using the same method
as Richardson and Sabharwal (2022).

B. Baselines details

B.1. ChatGPT Baseline

In order to automatically evaluate the accuracy of
the reasoning process generated by ChatGPT, we
need to know that the intermediate conclusions
are derived from which theories are selected from
the theory set. Therefore, we use the form of
instruct+chain-of-thought prompt to strictly restrict
its output form, specifically, we use 4-shot for Hard
Ruletaker and 5-shot for Ruletaker-3ext-sat and
Hard Ruletaker* because there is no label Unknown
in Hard Ruletaker and we need one more example
for the condition Unknown when testing on other
datasets. However, there will still be a small portion
of data (less than 10%) that we cannot parse the
output of ChatGPT, so we exclude this portion of
data. We only tested 3000 pieces of data in three
datasets respectively using gpt-3.5-turbo due to
cost reasons.

B.2. IBR Baseline

Since IBR targets the problems in the Close World
Assumption, we made simple modifications to
adapt to our target task. Specifically, the QA pre-
diction module still first predicts the answer but
we remove the strategy prediction module along
with the strategy loss. This is because the search
space of our target tasks is infinite so we can not
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generate proof when the answer is Unknown and
the strategy is always Proof. As a result, if the QA
prediction module predicts Unknown, we stop and
return the results. On the contrary, we will apply
other modules in IBR to get the reasoning process.
During training, all the modules of IBR are trained
together with three types of losses: parent predic-
tion loss, child prediction loss, and QA prediction
loss (strategic prediction loss has been removed).
However, when the gold answer is Unknown, there
is no parent prediction loss and child prediction
loss, which will introduce some noise. As a result,
we implement the QA prediction module apart from
two other modules.

C. implementation details

To reduce the search space and improve the in-
ference efficiency of our model, we combine two
complete inference strategies specifically designed
for resolution refutation when experimenting with
the natural language reasoning with first-order logic
task, including set of support strategy and linear
resolution strategy. However, when experimenting
with the natural language satisfiability task, we can
not combine these inference strategies because the
task is different. In addition, we use beam search
with beam size 5 for RuleTaker-E and 2 for other
datasets.

Previous work (Buss, 1998) has shown that us-
ing linear resolution strategy and set of support
strategy together will not affect the completeness
of resolution refutation under first order logic. Set
of support strategy requires that at least one of the
two clauses involved in each resolution step is the
negation of the inference target (hypothesis or the
negation of the hypothesis) or a descendant of the
negation of the inference target. Linear resolution
strategy requires that one of the two clauses in-
volved in each resolution step (except the first step)
is the clause derived from the previous resolution
step. Combining these two strategies, we can know
that one of the two clauses involved in the first step
is the negation of the inference target (from the set
of support strategy), and one of the two clauses in-
volved in the other steps is the clause derived from
the previous resolution step (from the linear resolu-
tion strategy). From these we can know that one
of the two clauses involved in each resolution step
is determined. So we can remove the xInet-based
pre-selector while regarding that the pre-selector
always choose the negation of the inference target
in the first step, and choose the clause derived from
the previous resolution step in the other resolution
steps.
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