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Abstract
We present a preview of the Syntactic Acceptability Dataset, a resource being designed for both syntax and
computational linguistics research. In its current form, the dataset comprises 1,000 English sequences from
the syntactic discourse: Half from textbooks and half from the journal Linguistic Inquiry, the latter to ensure a
representation of the contemporary discourse. Each entry is labeled with its grammatical status (“well-formedness”
according to syntactic formalisms) extracted from the literature, as well as its acceptability status (“intuitive goodness”
as determined by native speakers) obtained through crowdsourcing, with highest experimental standards. Even in its
preliminary form, this dataset stands as the largest of its kind that is publicly accessible. We also offer preliminary
analyses addressing three debates in linguistics and computational linguistics: We observe that grammaticality
and acceptability judgments converge in about 83% of the cases and that “in-betweenness” occurs frequently.
This corroborates existing research. We also find that while machine learning models struggle with predicting
grammaticality, they perform considerably better in predicting acceptability. This is a novel finding. Future work will
focus on expanding the dataset.
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1. Introduction

One of the primary goals of syntactic theory is
to identify the principles and processes that dic-
tate the structure of sequences in a particular lan-
guage and in human language in general. Syntax
is primarily concerned with describing, explaining,
and predicting the grammatical status of these se-
quences, particularly distinguishing between gram-
matical and ungrammatical sequences. Chomsky
refers to these as members of the sets G and G’,
respectively (Chomsky, 1975). Crucially, syntacti-
cians focus on linguistic competence, which is a
speaker’s often implicit knowledge of a language
(Chomsky, 1965).

To build formalisms, syntacticians rely on vari-
ous kinds of data, with a significant emphasis on
their own expert judgments, often referred to as
grammaticality judgments (Schütze, 1996; Fran-
cis, 2021). These judgments are obtained when
experts carefully examine and contrast linguistic
sequences, determining whether a given sequence
aligns with their grammatical formalisms. During
this evaluation, linguists abstract away from extra-
grammatical factors, such as memory limitations.
This is illustrated in Sequence 1, taken from Chom-
sky et al. (1963).

(1) The rat the cat the dog chased killed ate
the malt.

In recent years, sequences and their grammatical-
ity evaluations have become increasingly accessi-
ble. The largest source of such data to date is the

Corpus of Linguistic Acceptability (CoLA; Warstadt
et al., 2019), which contains more than 10,000 se-
quences and their respective grammatical statuses
(see Section 2 for why CoLA contains grammatical-
ity judgments instead of acceptability judgments, as
per standard usage in linguistics). The sequences
in CoLA are sourced from syntax textbooks, and
their grammaticality evaluations are provided by
the authors of these textbooks (see the Appendix
for examples).

1.1. Issues surrounding Grammaticality
Several issues arise when discussing grammati-
cality judgments. First, there is the matter of data
adequacy and convergence. Sequence 2, taken
from Landau (2007), is labeled as ungrammatical
by the original author from whom the sequence was
sourced. However, most laypeople consider the se-
quence to be acceptable (Francis, 2021, p. 207).

(2) *October 1st, he came back.
Furthermore, there is the question of gradience. Is
grammaticality a binary concept, or do degrees of
(un)grammaticality exist (Chomsky, 1975; Wasow,
2007; Francis, 2021)? Considering a sequence
such as Sequence 3, taken from Francis (2021,
p. 38), it becomes challenging to pinpoint which fac-
tors outside the traditional grammar influence the
perception of the sequence as neither fully gram-
matical nor fully ungrammatical.

(3) Olson brings to the table a great deal of
experience.
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Gra Acc Nm-ac Bi-ac Src Sequence
0 1.35 0.06 0 jl John is too much to play with your kids old.
... ... ... ... ... ...
0 3.90 0.48 0 tb I assumed to be innocent.
... ... ... ... ... ...
1 6.89 0.99 1 tb I saw John on Sunday.

Table 1: The structure of the our dataset, including labels for grammaticality, acceptability, normalized
acceptability, binary acceptability, source (textbook or journal), and the sequence.

Thirdly, it has been observed that machine learning
models struggle with the notion of grammatical-
ity. Warstadt et al. (2019) trained various LSTM
models on CoLA and observed accuracy results
well below 80%. Given that contemporary models
demonstrate high proficiency in various linguistic
tasks (Devlin et al., 2018; Tenney et al., 2019), the
machine learning of grammaticality is of particular
interest.

2. Acceptability

There are, however, many methods at the disposal
of syntacticians to assist them in theory-building.
These methods include self-paced reading tasks,
EEG measurements, eye-tracking, and eliciting
acceptability judgments. As to the latter, the lin-
guistic literature defines acceptability judgments as
non-expert, ‘naive’ intuitions about the goodness
of a sequence (see discussion in Häussler and
Juzek, 2020, pp.235-236, as well as various contri-
butions in Schindler et al., 2020, and see Etxeberria
et al., 2018 and Schoenmakers, 2023 for further
nuances). Acceptability judgments can be influ-
enced by extra-grammatical factors (Schütze, 2020;
Łęska-Bayraktar and Żychliński, 2023), which con-
trasts to grammaticality judgments, where experts
abstract away from extra-grammatical factors as
much as possible (Schütze, 1996). When carefully
controlled and analyzed, acceptability judgments
can serve as a proxy for grammaticality (Schütze,
2020; Feldhausen and Buchczyk, 2021). To illus-
trate the distinction between the two concepts, re-
consider the examples from the previous section.
Sequence 1 is grammatical according to most syn-
tactic frameworks, yet many native speakers find
it unacceptable. Sequence 2 is ungrammatical ac-
cording to most frameworks, yet many native speak-
ers find it acceptable.

Acceptability data are reliable (Langsford et al.,
2018) and instructive for linguistic purposes, and
an increasing number of studies make use of them,
where recent examples include Fanselow et al.
(2019), Hoot and Ebert (2021), Urtzi et al. (2022),
and Lami and van de Weijer (2022). However, the
collection of acceptability data is also resource-
intensive. As a result, there are no large-scale

datasets publicly available. To our knowledge, the
largest datasets available are those by Lau et al.
(2017) with 400 items, and Warstadt et al. (2019)
with 200 items. Others, for example Sprouse et al.
(2013) for English, and Chen et al. (2020) for Man-
darin, report on similar mid-sized datasets; these
are, however, not publicly available. The primary
objective of this study is to produce and offer a
publicly available dataset on a large(r) scale. We
present initial acceptability judgments for 1,000
items, with an eventual goal of scaling this to ap-
proximately 15,000 items. The dataset encom-
passes sequences, grammaticality judgments, ac-
ceptability judgments (raw, normalized, and con-
verted), and encodes its source (textbook vs jour-
nal). Even this preliminary dataset addresses the
three issues mentioned earlier: data convergence,
gradience, and challenges in machine learning. We
will delve deeper into these three topics in Sec-
tion 4.

3. Dataset Building

Our data are taken from two sources, represent-
ing two conditions. The first condition, referred to
as the ‘textbook condition’, consists of 500 English
sequences randomly sampled from CoLA, which
itself is sourced from various syntax textbooks. The
second condition, the ‘journal condition’, comprises
500 English sequences randomly sampled from
the data from Juzek and Häussler (2020), who in
turn sampled their items from the journal Linguis-
tic Inquiry. In terms of their structure, items from
both conditions are similar: a sequence relevant
to syntax is presented alongside a grammaticality
judgment. However, a possible difference lies in
their grammatical status. It is anticipated that the se-
quences from textbooks are more foundational and
well-established. Importantly, both sets of items
are accompanied by grammaticality evaluations,
as provided by their original sources. Examples
of these sequences can be found in Table 1. Ex-
amples of the data from which we sampled, that is
examples from both CoLA and the data in Juzek
and Häussler (2020), can be found in the Appendix.

Of the sequences from textbooks, 71.4% were
grammatical, compared to 67.4% from the journal.
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Consequently, our dataset exhibits an imbalance.
We opted to sample singletons rather than minimal
pairs, primarily because many items in the literature
are presented without counterparts. For detailed
discussions on this choice, refer to discussions
in Warstadt et al. (2019) and Juzek and Häussler
(2020).

Figure 1: The interface of the judgment study.

3.1. Obtaining Acceptability Judgments
Acceptability judgments were obtained through
a self-hosted rating platform using the interface
shown in Figure 1. Participants were crowdsourced
via Prolific.com. A prerequisite for participation
was that participants on Prolific had set their first
language as American English. On average, par-
ticipants were paid $15/hr. After participants were
provided with IRB information and instructions, they
rated 77 items, 64 of which were critical items. We
limited the number of items to avoid experimental
fatigue. The first four items served as calibration
items, taken from previous experiments to repre-
sent near-endpoints: two were unacceptable and
two were acceptable. Participants then rated the re-
maining items. We opted not to include filler items
since no distractor items were needed for our study,
and the critical set covers all parts of the scale.

For each participant, the 64 critical items were
semi-randomly selected from the 1,000 items in
our dataset, prioritizing items that had received the
fewest ratings thus far. We interspersed four items
testing language proficiency and five items test-
ing general attention (of the sort "Please click on
the leftmost button"). The platform also measured
response times. If participants responded unreal-
istically fast, they received a warning. Those who
were repeatedly non-cooperative were excluded im-
mediately. After successfully completing the tasks,
we collected basic demographics: gender, age,
and first language. A total of 597 participants took
part. We excluded users for the following reasons:
less than 69 ratings were given (16 participants),
unrealistically fast responses (2 participants), fail-
ing on language proficiency items (36 participants),
failing on instructional items (2 participants), identi-
fying as non-native speakers (2 participants). This
commitment to quality is evident as the item with

the lowest average rating had a score of 1.35 (an
instructional item even averaged 1.03), while the
highest-rated item had an average rating of 6.98.
This indicates that participants utilized the entire
rating scale. While under certain circumstances,
fewer than ten items have been shown to give ro-
bust results (Mahowald et al., 2016), we adhered
to a more conservative N, with an average of over
30 ratings per item. In total, the dataset consists of
34,490 acceptability judgments, making it the most
extensive publicly available dataset of its kind.

3.2. The Dataset

The structure of the dataset is detailed in Table 1.
The dataset includes average acceptability ratings
given on a 7-point scale. These ratings were then
normalized to values between 0 and 1. For the
purpose of binary classification, ratings between 0
and 0.5 were converted to 0, while ratings between
0.5 and 1 were converted to 1. In cases where
ratings were exactly 0.5, we used the respective
grammaticality value to determine the binary label.
Figures 2 and 3 illustrate the data distribution and
structure, both of which will be discussed in the
following section.

4. Preliminary Analyses

4.1. Data Convergence

83.3% of all items share their grammaticality label
and (to binary form converted) acceptability label.
This rate is slightly higher in the textbook condi-
tion, at 85.8%, and lower in the journal condition,
at 80.8%. These figures align with discussions in
Wasow and Arnold (2005) and Gibson et al. (2013),
and with previous results in Warstadt et al. (2019)
and Juzek and Häussler (2020). For an analysis of
paired items, with a higher convergence rate, see
Sprouse et al. (2013). Moreover, the convergence
rate for grammatical items (89.3%) is considerably
higher than for ungrammatical ones (69.6%). This
discrepancy is a novel finding and requires further
investigation through a detailed item-by-item anal-
ysis: Apparently, there are numerous items that
syntacticians label as ill-formed based on their for-
malisms, but which laypeople deem relatively ac-
ceptable. Sequence 4 serves as an example of this
discrepancy. It was evaluated as ungrammatical in
its original source, but received an average rating
of 6.22 in our experiment. Moreover, the observed
divergence rate of approximately 20% underscores
the idea that grammaticality and acceptability are
indeed two distinct concepts.

(4) *John perfectly rolled the ball. (6.22)
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Figure 2: The items and their average acceptability ratings, sorted in ascending order, from unacceptable
to acceptable. Left: Items evaluated as ungrammatical in the original source. Right: Items evaluated as
grammatical.

4.2. Gradience
As consistently observed in the literature, accept-
ability exhibits a gradient nature (e.g. Featherston,
2005; Wasow, 2007; Häussler and Juzek, 2020).
The degree of this gradience is more pronounced
than one might initially anticipate. In our results,
when all items are ordered by rank in an ascending
manner, as per Figure 3, and when the initial few
items with the lowest ratings are disregarded, there
is a near-linear increase in acceptability. Interest-
ingly, towards the higher end of the rating scale,
the curve begins to resemble a saturation curve.
This is in contrast to the sharper S-curve that one
might expect. When the rating scale is divided into
thirds, 28.3% of all items are found in the middle bin.
When the scale is divided into two bins: endpoint
items (with ratings from 1 to 2.5 and 5.5 to 7) and
in-between items (with ratings larger than 2.5 and
smaller than 5.5), 42.6% of all items are are found
in the middle bin. This distribution is illustrated in
Figure 3. Our findings align with the discussion in
Francis (2021).

Figure 3: All items, with the mid-bin highlighted.

4.3. Challenges in Machine Learning
Transformers (Vaswani et al., 2017) demonstrate
remarkable language abilities (Devlin et al., 2018).
Hewitt and Manning (2019) provided documen-
tation of explicit syntactic representations. Con-
versely, however, Chaves (2020), Chaves and

Richter (2021), and others, have delineated the
challenges that deep learning encounters with syn-
tactic constructions. Here, we ask how machine
learning of grammaticality compares to machine
learning of acceptability. Our dataset is relatively
small for machine learning and can thus be viewed
as a scarce-data learning scenario (Wang et al.,
2020). We fine-tuned Transformers on our data,
with pre-trained models from Wolf et al. (2020)
(“bert-base-uncased”), for four conditions: 1) pre-
dicting grammaticality, 2) predicting acceptability, 3)
predicting end-point acceptability (which excludes
“in-between” items as per Figure 3). Additionally,
we include 4) a baseline condition where we sam-
pled sentences from the Leipzig Corpora Collection
for English (Goldhahn et al., 2012) (labelled ‘good’)
and scrambled the word order of 500 sentences
(labelled ‘bad’), then fine-tuned a Transformer to
make predictions on these. Linear confusion matri-
ces for these conditions are presented in Table 2.

As expected, the baseline model performs well,
which may suggest that syntactic (un)acceptability
cannot be solely predicted by word order. We ob-
serve that the models struggle with grammatical-
ity, but they perform better on acceptability items.
Furthermore, their performance on end-point ac-
ceptability is considerably better. These findings
regarding acceptability are novel, but also limited
in scope, and thus, warrant further, more in-depth
research. Further, these findings also motivate the
distinction between grammaticality and acceptabil-
ity.

Condition tn fp fn tp Accu
Grammatic. 0 45 0 105 70%
Acceptab. 23 21 5 101 83%

End-p. acc. 9 3 2 73 94%
Baseline 39 0 4 107 97%

Table 2: Linear confusion matrices for transformers,
fine-tuned on our data in the different conditions,
as per Section 4.3. Test data is 15% of the dataset.
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5. Next Steps

5.1. Scaling

While 1,000 items are a good start, the ideal sit-
uation for syntactic theory building would be that
syntacticians can look up the acceptability of all
relevant items. For this, we wish to expand our
dataset to all items in Warstadt et al. (2019) and
Juzek and Häussler (2020), resulting in a dataset
of about 15,000 items. This would also help solid-
ify our insights regarding the machine learning of
acceptability.

5.2. Further annotations

Further, ideally, syntacticians would not only be
able to look up items but also search for syntactic
constructions. This would require expert annota-
tions for the items in the dataset. We are currently
exploring possibilities to efficiently add such anno-
tations. A scaled corpus with annotations for con-
structions could help with theory building and could
inform research lines such as the work by Bader
and Häussler (2010) and Bizzoni et al. (2020).

Prosodic information could also be of interest
for syntactic analysis. Recent research is un-
derlining the relevance of prosody-syntax interac-
tions, for work on such effects see e.g. Wasow
et al. (2015), Tang and Shaw (2021), González
et al. (2022), and González and Reglero (2024).
Information-theoretic measures like surprisal and
perplexity (Shannon, 1948) and advanced mea-
sures like lossy surprisal (Futrell et al., 2020) could
allow for advanced syntactic analyses. We also
wish to add dependency parses (Tesnière, 2015;
Nivre, 2008) to further facilitate dependency-based
syntactic research along the lines of Gibson et al.
(2000), Liu (2010).

5.3. Further analyses

Thirdly, while we used response times for exclu-
sions, we still need to do further analyses on the
collected response times. For example, it could be
interesting to see if there is a correlation between
unacceptability and increased response times. Fur-
ther, the setup allows for analyses such as the F1-
score (Chinchor, 1992; Van Rijsbergen, 1979) or
the MCC (Chicco and Jurman, 2020). An alter-
native line of analysis could involve a detailed ex-
amination of the ‘micro’-factors that underpin the
observed ‘macro’-trends. This could be done by
carefully analyzing a selection of items from the
dataset. Krielke (2024) offers an exemplary analy-
sis in this regard, which could serve as a model for
our further investigations.

6. Concluding Remarks

We have introduced a preview of the Syntactic Ac-
ceptability Dataset, which comprises 1,000 sen-
tences sourced from syntactic textbooks and the
journal Linguistic Inquiry. Each item in the dataset
is accompanied by grammaticality evaluations and
high-quality acceptability ratings. Even in its cur-
rent form, this dataset is considerably larger than
any other acceptability dataset currently available,
and it has already provided insights into several
debates. The dataset aids in understanding issues
related to data convergence (with grammaticality
and acceptability converging in about 83% of cases,
and a higher rate for textbook sequences), gradi-
ence (items with intermediate ratings are common),
and machine learning challenges (grammaticality
proves more difficult to predict than acceptability).
In the next phase, we aim to expand the dataset, by
adding more items, additional annotations, more
advanced analyses, and further validate our pre-
liminary findings.

Data Availability

The dataset and all relevant scripts are on Github:
github.com/tjuzek/sad.
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Appendix

In the following, we give an illustration of textbook
items and journal items, to demonstrate that in struc-
ture, the sequences are similar. The items are used
to analyze syntactic structures and the sequences
come with an evaluation of their grammaticality (in-
dicated by the asterisk or the lack thereof).

Sequences 5 and 6 are ungrammatical items
taken from textbooks (from Kim and Sells, 2008
and Baltin and Collins, 1991, respectively; we
sampled them from CoLA), Sequences 7 and 8
come from the journal Linguistic Inquiry (both items
come from Grosu and Horvath, 2006; we sampled
them through Juzek and Häussler, 2020). Sim-
ilarly, Sequences 9 and 10 are grammatical se-
quences from linguistics textbooks (from Adger,
2003 and Sportiche et al., 2013, respectively) and
Sequences 11 and 12 are grammatical sequences
from Linguistic Inquiry (both items come from Basil-
ico, 2003).

https://www.github.com/tjuzek/sad
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(5) *You didn’t leave, left you?

(6) *John seems will win.

(7) *John is too much to play with your kids old.

(8) *John is a more unusually than any of you
is dressed student.

(9) I might be leaving soon.

(10) I saw John on Sunday.

(11) I really hate you right now.

(12) The guard made the prisoner unhappy.
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