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Abstract
Most existing methods of Out-of-Domain (OOD) intent classification rely on extensive auxiliary OOD corpora or
specific training paradigms. However, they are underdeveloped in the underlying principle that the models should
have differentiated confidence in In- and Out-of-domain intent. In this work, we shed light on the fundamental cause
of model overconfidence on OOD and demonstrate that calibrated subnetworks can be uncovered by pruning
the overparameterized model. Calibrated confidence provided by the subnetwork can better distinguish In- and
Out-of-domain, which can be a benefit for almost all post hoc methods. In addition to bringing fundamental insights,
we also extend the Lottery Ticket Hypothesis to open-world scenarios. We conduct extensive experiments on four
real-world datasets to demonstrate our approach can establish consistent improvements compared with a suite of

competitive baselines.
Keywords: Lottery Ticket, OOD Intent Classification
1. Introduction

Interactive Systems, such as Task-Oriented Dia-
log Systems(TODS), are gradually integrating into
and facilitating the daily life of people. However, in
open-world scenarios, i.e., the training and test set
come from the different distributions or domains, it
is often encountered that the expressed intents are
reasonable but beyond the domains supported by
the Interactive Systems, resulting in mapping the in-
tent to the wrong subsequent processing pipelines.
Therefore, Interactive Systems not only need to
maintain performance in In-Domain (IND) intents
but also need to correctly identify Out-of-Domain
(OOD) intents.

Recently, to get critical insights into Does the
model knows what it does not know? i.e., the
model should be high-confident in IND and low-
confident in OOD (due to unseen), Hendrycks
et al. (2020) take a step to show that compared
with previous models, such as LSTMs, the confi-
dence scores produced by the Pre-Trained Mod-
els’maximum softmax probabilities can significantly
distinguish IND and OOD but remain a long way
before it is perfect.

What prevents the confidence of the model from
being further trusted? Current efforts have primar-
ily concentrated on developing appropriate post
hoc (i.e., not involved in training and after train-
ing) methods or scoring functions based on maxi-
mum softmax probability, such as MSP (Hendrycks
et al., 2020), Entropy (Liu et al., 2020), to mea-
sure OOD uncertainty. Despite the advancements
made, these approaches are inherently limited
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and lack broad applicability, as the root underly-
ing causes have yet to be thoroughly investigated
and understood.

We take a step forward and observe that the
maximum softmax probability outputted by the over-
parameterized model cannot correctly reflect the
confidence of the model, which is known as poor-
calibrated (Guo et al., 2017) and can be visual-
ized ! by reliability diagrams as shown in Fig.1(a).
When encountering open-world scenarios, the un-
reliable predicted confidence (and other post hoc
measures based on it) given by the poor-calibrated
model cannot be measured to uncertain about sam-
ples correctly. Furthermore, subsequent analysis
(Section 3.2) shows that the overparameterized
model tends to be overconfident, which is also con-
sistent with the experiment as shown in Fig.1(c).
This phenomenon undermines the underlying idea
that the model should be much low-confident in
OOD and makes it non-trivial to distinguish be-
tween IND and OOD.

In this paper, in addition to giving fundamental in-
sight, we also explore how to calibrate the model to
provide reliable confidence. To this end, we first set
out to establish the effect of overparameterization
in poor calibration and theoretically demonstrate
overparameterization would aggravate overconfi-
dent predictions on OOD inputs. Inspired by this,
different from the previous work, we do not design
a specific simple method to measure OOD uncer-
tainty. Instead, through masking the parameters
that are not of interest to the target task, we prune
a calibrated subnetwork from an overparameter-
ized Pre-Trained model during training, which has
more general reliable confidence to better differen-

Thttps://github.com/hollance/reliability-diagrams
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Figure 1: Plots showing (Top) Reliability diagrams
and (Bottom) The distribution of In-and Out-of-
domain uncertainty scores in the Stackoverflow
dataset. The OLT denotes our proposed Open-
world Lottery Ticket. The reliability diagrams (pink)
are about the function of confidence, which mea-
sures the gap (i.e., miscalibration) between ex-
pected sample accuracy (black) and confidence.
The Maximum Calibration Error (MCE) measures
the maximum gap. If a model meets perfect calibra-
tion, the gap is zero and the diagrams disappear.

tiate IND and OOD and can be a benefit for almost
all post hoc methods.

Especially, beyond the established awareness
that temperature scaling can help improve calibra-
tion in the post hoc phase empirically Guo et al.
(2017), we contribute a new general insight on
temperature scaling in open-world scenarios and
theoretically demonstrate temperature scaling can
substantially differentiate IND and OOD.

Going further, combined with the above calibra-
tion of subnetwork and post hoc measure (temper-
ature scaling adopted in this paper), we can further
generalize the Lottery Ticket Hypothesis (Frankle
and Carbin, 2019) to the open-world. The Open-
world Lottery Ticket Hypothesis (OLTH) is articu-
lated as:

An initialized overparameterized neural network
contains a winning subnetwork—through one-shot
pruning and minor post-processing, which can
match the commensurate performance in IND iden-
tification as original, but also better detect OOD at
a commensurate training cost as the original.

Compared with the original Lottery Ticket Hy-
pothesis, we generate Open-world Lottery Ticket

(OLT) through one-shot pruning without iterative
pruning. The OLT could be better-calibrated, as
shown in Fig.1(b) and not only guarantees the pre-
cision of IND recognition but can better distinguish
between IND and OOD, as shown in Fig.1(d), sig-
nifying its adaptability to the open-world. Exten-
sive experiments are conducted on four real-world
datasets and further verify our hypothesis. Our
contributions and insights are as:

(Theory) We establish the effect of overparame-
terization in overconfidence and demonstrate that
the well-calibrated confidence of the subnetwork
can help improve OOD detection. Furthermore, we
empirically extend the LTH—-we can identify a lot-
tery ticket from the overparameterized model that
is more suitable for the open-world setting.
(Methodology) We propose a one-shot (without
Iterative) Magnitude Pruning to uncover the lottery
ticket of interest to the target task, which has more
general reliable confidence to better differentiate
IND and OOD and can be a benefit for almost
all post hoc uncertainty measurements.
(Experiments) Extensive experiments and analy-
sis show that our method can improve OOD detec-
tion on the premise of the accuracy of IND recogni-
tion, which confirms the correctness of the Open-
world Lottery Ticket Hypothesis.?

2. Related Work

There are two types of work close to our research—
Out-of-domain Detection and Sparse Network.
Out-of-domain Detection This kind of research
mainly focuses on how to design appropriate
scoring functions to detect OOD. Hendrycks
and Gimpel (2017) adopt the maximum softmax
probability (MSP) and provide several baselines
for the follow-up research. Liang et al. (2018)
(ODIN) add small perturbations to inputs and
temperature to softmax score based on maximum
softmax probability. Lee et al. (2018) detect OOD
samples by calculating the Mahalanobis distance
between the sample and the different In-domain
distributions. Zheng et al. (2020) distinguish IND
and OOD by Entropy calculated on softmax
probability. Liu et al. (2020) regard the Energy
score calculated from output logits as a better
scoring function. Sun et al. (2021) propose
a simple post hoc OOD detection method by
rectifying the activations (ReAct) output in the
penultimate layer of model. Hendrycks et al. (2019)
propose that under large-scale and real-world
settings, taking MaxLogit as the scoring function
is better than maximum softmax probability.

2Codes is publicly available at: https:/github.com/
zyh190507/Open-world-Lottery
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Sparse Network Our approach is also inspired
by the work related to sparse networks. Louizos
et al. (2017) prune the network by adding £, norm
regularization on parameters. Frankle and Carbin
(2019) propose the Lottery Ticket Hypothesis—a
subnetwork (winning ticket) with comparable per-
formance as the original network can be uncovered
from the randomly initialized overparameterized
network at the same (or no more than) cost of
the training original network. Zhang et al. (2021a);
Zheng et al. (2022) propose that the structure of
the model is related to the spurious correlation and
an unbiased substructure can be found from the
biased model. Based on Louizos et al. (2017), Cao
et al. (2021a) can search for various subnetworks
that perform the various linguistic tasks of interest.

3. Proposed Method
3.1.

OOD intent classification usually adheres to the
following paradigm: Denote Y := {1....,k} as
the pre-defined intent set in the TODS where & is
the number of intents and X as the whole input
space. For an utterance z € X, the logits about
intents can be output through a neural network
F : X — Rl A desirable scoring function (also
known as decision function) G, which can detect
OOD intent while ensuring the accuracy of the
identification of known intents, is the objective of
OOD intent classification. The prediction can be
formed as:

X {OOD,
Y =

Problem Statement

G(x, F) <0,

1
argmax, v 6 (F(x), Gla,F) >0 )

where ¢ is a function of logits (e.g., Softmax). The
threshold 6 is used to distinguish IND (>= 6) and
OOD (< 6) according to the scores of the deci-
sion function. The typical selection of threshold
value needs to ensure high accuracy (e.g., 95%)
of identifying IND.

3.2. Lottery Tickets Less Overconfident

Frankle and Carbin (2019) put forward the Lottery
Ticket Hypothesis (LTH). In short, a winning ticket
S+ related to the target task can be identified from
a randomly initialized overparameterized network
2, and the remaining of the network is denoted
as S~. The relationship between the posterior
modeled by the overparameterized network and
the posterior modeled by the winning ticket can be
formulated as:

p(Y1X,92,8) = p(Y[X,5",57,¢)

p(S7|X,Y,5%,¢) (2)

= ST €Y. ,
p(Y‘X7 76) p(S_‘X,S+,£)

where ¢ is metadata, including target task, training
methods, datasets, etc.

Take a closer look at the right hand of Eq.(2).
Given that ST, S~ are structurally linked and jointly
optimize the objective loss supervised by Y, it is
crucial to note that S~ and Y are often actually not
independent, but rather often establish a certain
spurious positive correlation further exacerbated
by the intrinsic bias brought by annotation in the
training set, which can be expressed as:

p(STIX,Y, 87, 6) >=p(S7|X,87.¢). ()

We also provide a heuristic proof below.
According to Bayes’ theorem, the p(S—|X, ST, )
can be calculated as follows:

p(S7IX, 87,6 = > p(STIX, T, 8%, Op(T|X, 5%, 9),

TeT (4)
where T is the space of target tasks related to
dataset D contained in £, X is the input space
of samples in D, Y is the specific target task de-
fined by D (Y € T). The definition of parameters
remains consistent with the previous context.

Since D is generally collected for a specific type
target task, i.g.,Y, X could not act on other type
tasks T € T—{Y} and ST is a subnetwork defined
by Y according to the previous condtions, it can be
inferred as follows:

VT €T —{Y},p(T|X, S, &) — 0. (5)

Therefore, take Eq.(5) into Eq.(4) to get the follow-
ing expression:

p(S™|%) = p(STIX, Y, S*, O p(Y|X, 57,¢€)
YeT
FO4 - 04 (6)
YeT—{v}
=p(S7T|X,Y, 87, Op(Y|X, 57,¢€)

According to the Eq.(6), the following can be ob-
tained:

_ (571X 54,0
p(Y|X,S+,§) (7)
>=p(S7|X, 5%, ¢)

p(STIX,Y,5%,¢€)

Therefore, Eq.(2) can be further calculated as:
p(Y|X,5%,87,6) >=p(Y[X,57.¢). (8

The above expression shows that the overparame-
terized network prefers to be more overconfident
than the winning ticket, which results in giving high
confidence to OOD samples, making it difficult to
distinguish between IND and OOD.
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3.3. The Road to Open-would Lottery
Tickets

It is worth noting that the origin Lottery Ticket Hy-
pothesis is only suitable for the closed-world (i.e.,
the training and test set come from the same distri-
bution). Further, we extend this hypothesis to the
open-world setting—Through one-shot pruning and
minor post-processing, we can find luckier winning
tickets, which can not only ensure the accuracy of
IND intent identification but also better detect OOD
intent with the original initialization.

Backbone and IND Identification We choose Pre-
Trained Model BERT (Devlin et al., 2019), repre-
sented by F(x; #) with initialization 6, as the back-
bone network. To enable the model to effectively
identify IND intent, we finetune F(z;6) under the
supervision of softmax cross-entropy as suggested
in Zhou et al. (2022). The objective L.. can be
formed as:

(9)

Leo(0) =~ . exp(Fy, (2i))

0og ,
= M exp(Fi ()

where y; is the label of sample z;, F;(z;) denotes
the logit of the j*” class and # denotes parameters.
Seek Parameters Need to be Masked Different
from Iterative Magnitude Pruning (IMP), we gen-
erate lottery tickets through one-shot pruning. To
this end, inspired by Louizos et al. (2017), we also
add a binary “gate” to each parameter in the model
to determine whether the parameter is of interest
to the target task. Specifically, with a Pre-Trained
Model F(z;0) at hand, the subnetwork is gener-
ated by F(z;0 © M), where M € {0,1}/° denotes
the “gates”and |0] is the size of the parameters.

However, due to M being a discrete (non-
differentiable) binary and the exponential combi-
natorial property of 2/?l, it cannot be optimized
normally. Following Louizos et al. (2017), we put
Bernoulli distribution over the entry m; ~ Bern(mw;),
where m; € M and w; = Pr(m; = 1). In addition
to the convenience of optimization, the purpose of
introducing random variables is that if the proba-
bility of a parameter, i.e., w; is too small, we can
consider that the parameter is not strongly related
to the task, which means it can be “masked”. The
framework of optimization can be defined as:

Limask(TT) = Eq(l\/[;ﬂ') [L‘C@(e O] M)] + R(TK’) (10)
where L.. stands for above loss in Eq. (9) but the
parameter to be optimized has changed from 6 to
7. The R(w) is a regularization term w.r.t. parame-
ters . The regularization term can have different
forms for different purposes. Here we adopt Lg
regularization to encourage sparsity.

To further optimize the first term of Eq. (10)
(which cannot be optimized based on gradient due

to the discrete nature of M), following Louizos et al.
(2017), we “smooth” the Eq. (10). With the help
of the uniform distribution ¢/(0, 1) and the binary
concrete continuous random variable s; which is
distributed in the (0,1) interval, we can reparam-
eterize (H) the M and an entry m; € M can be
reparameterized as follows:

u; ~U(0,1),
m; = min(1, max(0, s;(¢ — ) + 7)),

(11)
(12)
(13)

where (o, 3) are the parameters of the binary con-
crete distribution and (¢ < 0, > 1) are constants
to stretch the distribution interval of s;. Then objec-
tive of Eq.(10) can be rewritten as:

Lnask = EuGLI(O,l) [‘Cce(e © 'H(u, O‘))]

i _ (14)
+X- ) Sigmoid(a; — Blog7)7

=1
where H is above reparameterization and X is a
hyper-parameter to balance two terms in £,,4sx-
In practice, we can adopt Monte Carlo as Louizos
et al. (2017) to the expectation (i.e. the first term)
due to reparameterization.
Retrain with Origin Initialization After the op-
timization of Eq. (14) converges or the iteration
reaches a certain number of epochs, for each pa-
rameter, the associated probability 7, which can be
considered as the degree of correlation between
the parameter and the target task, can be output,
and mask can be obtained by M = (7T > p),
where I is indicator function and . is the thresh-
old to filter parameters. Finally, assign to the
unmasked parameters original initial values in
0y and retrain the model with new initialization
0y = 6y ® M.

3.4. OOD Detection with Lottery Tickets

To better explore the ability of lottery tickets to de-
tect OOD, we just take maximum softmax probabil-
ity as scoring function and do not select relatively
complex OOD scoring functions, such as Energy,
ReAct, and so on (we also demonstrate our lottery
tickets can be well compatible with these down-
stream detection functions in Section 6.2). How-
ever, we will carry out temperature scaling on the
logits before that. We will further demonstrate the
effectiveness of temperature scaling in theory.
What is Temperature Scaling? The temperature
scaling is just a simple extension of the softmax
score. Its definition is as follows:

exp(¢i(«)/T)
S exp(;(x)/T)

where T (usually T > 1) is called the temperature.
In Section 6.4, we will analyze it in detail.

Si(a:; T) =
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Why is Temperature Scaling? In addition to cali-
bration, we observed an interesting and common
phenomenon (also mentioned in the computer vi-
sion field (Hendrycks et al., 2019; Liang et al.,
2018)). For a pair of indistinguishable IND and
OOD samples, excluding the maximum logit score,
we find that the remaining logit scores for the IND
sample are more uneven (see strict measurement
in following prove) than that for the OOD sample.
The intrinsic lie in that the general characteris-
tics of the intent of the IND sample are similar
to another (or more) intent and significantly dif-
ferent from other intents. Those similar intents
will be assigned high confidence, while other (dif-
ferent) intents would be given relatively low con-
fidence, especially when the number of intents is
large (Hendrycks et al., 2019). This will cause the
confidence of ground truth intent to be dispersed
by similar intents, making the model misidentify as
OO0D.

Different from the previous empirical demonstra-
tion, in the following proposed theorem, we theo-
retically demonstrate why temperature scaling (just
needs to be greater than 1) can differentiate In-
and Out-of-Domain based on the above properties
and bring new insights into Temperature Scaling.

Theorem 3.1. Let x4 € Dpnp and zp € Doop
be from IND and OOD respectively, the logits out-
puted by pre-trained model F are 5 = {ay, ..., ar}
and ¢ = {b1, ..., b, } respectively. Suppose a; =
max ¢, and by = max¢p and the probabilities
of both are equal after softmax, i.e., Si(xa;T =
1)=S1(xp; T = 1). Under the condition that the dis-
tribution of ¢ 4 — {al} is more uneven than that of
¢p — {bl}, after temperature scaling, Sy (xa; T >
1) = Si(zp; T > 1).

Proof. According to conditions

pa={ai,az, - ,ar}, ¢p={b1,b2,--- by}, and
Si(xa; T =1)=S1(zp;T = 1) we have:
keXp(al) — kexp(bl) (16)
Zj:l exp(a;) Ej:l exp(b;)
We can get equality by Eq. (16) as:
A(pa) = A(¢B); (17)
k
A(¢a) =Y expla; — ar); (18)
| =2
jlc
Al¢p) =Y exp(b; — br). (19)
j=2

Now Let us consider introducing Temperature Scal-

ing T(>1), A(¢4) and A(¢p) become as:

E

A(da,T) = (exp(a; — )T

j=2

(20)

k

A(¢p,T) = (exp(b; —b1))T.

Jj=2

=

(21)

According to properties of inequalities in Chen
(2014), 2522 exp(z;)T is concave and take max-
imum value when {z;} is even (equal with each
other) denoted as X.

And since the distribution of ¢4 — {al} is more
uneven than that of ¢ — {b1}, which can be fo-
mulated as: ¢4 — {al} € o(X) and ¢ — {b1} is
out of the range of o(X) (o is local space spanned
by X as the center). Combining the properties of
concave, we can get A(¢a,T) < A(¢p,T) and
also have:

(23)

Then, thatis S1(za; T > 1) > Si(zp; T >1). O

According to the above full proof, the lead-in of
temperature can make full use of such properties,
which can effectively cope with such a dilemma.
Scoring function Based on the above calibrated
softmax score, the definition of score function G we
adopted is as:

G(w, F) = max{Si(z; T)}. (24)

When the score G of an utterance is less than
a specific threshold 6, it can be regarded as OOD,
otherwise, it is IND. As mentioned above, the selec-
tion of the threshold needs to ensure the accuracy
of the IND. Refer to Section 4.2 for specific metrics.

4. Experiments

4.1. Datasets

To exhibit the effectiveness and universality of de-
tecting OOD in lottery tickets, we extensively ex-
periment and analysis on three used widely and
challenging real-world datasets.

CLINC-FULL (Larson et al., 2019) is dataset that
has been annotated and refined manually for eval-
uating the ability of OOD detection. It has 150
different intents covering 10 various domains and
contains 22500 IND samples, 1200 OOD samples
respectively.

CLINC-SMALL (Larson et al., 2019) is a variant
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version of CLINC-FULL and is to measure the abil-
ity of OOD dectection of model in the case of insuf-
ficient samples. The data also has 150 intents, but
each type contains only 50 samples.
StackOverflow (Xu et al., 2015) is a public corpus
from Kaggle.com. The dataset involves 20 intents,
in which the training set, validation set, and test set
contain 12000, 2000, and 6000 samples respec-
tively.

BANKING (Casanueva et al., 2020) It is a dataset
about bank-related businesses. Its character is
that the number of samples in each category of
the dataset is different. The data set includes 77
different categories and the training, and test sets
contain 9003, and 3080 respectively. In addition,
the validation set also contains 1000 samples.

4.2. Evaluation Metrics and Baselines

For all the above datasets, we treat all OOD sam-
ples as one rejected class as following previous
works (Liang et al., 2018; Zhou et al., 2022). To
evaluate the performance of our method fairly, we
follow previous work (Liang et al., 2018; Sun et al.,
2021) and adopt two widely used metrics:

TNR at 95% TPR (TNR95) (TNR is short for ture
negative rate) is to measure the probability that
OOD is correctly detected correctly when the true
positive rate (TPR) is up to 95%.

Area Under the Receiver Operating Charater-
istic curve (AUROC) is a threshold-free metric,
which reflects the probability of OOD being recog-
nized as OOD is greater than that of IND. A greater
value suggests better performance.

ACCURACY (ACC) In addition, to better evaluate
the overall performance of our method, that is, in
addition to detecting OOD, it should effectively iden-
tify the specific class of IND. Therefore, We also
introduce ACC for all categories.

We extensively compare our method with as
many competitive OOD detection algorithms (scor-
ing functions) as possible. The entire baseline
can be roughly grouped into the following cat-
egories: MSP (Hendrycks and Gimpel, 2017),
MaxLogit (Hendrycks et al., 2019), Energy (Liu
et al., 2020), Entropy (Zheng et al., 2020) are
functions of logits. ODIN (Liang et al., 2018) are
functions of calibrated logits and Mahalanbis dis-
tance (Lee et al., 2018) is a function of feature. All
baselines are introduced in Section 2. For a fair
comparison, the network backbone (BERT) and
training loss function (Cross-Entropy loss) of all
methods are consistent. All methods do not use
or construct additional OOD samples during the
training process.

4.3. Experimental Setting

For data preprocessing, we follow previous
work (Zhou et al., 2022). For the dataset Bank-
ing and Stackoverflow (the datasets do not contain
a specified OOD class), we randomly select 75%
of the whole intent classes as IND, get rid of other
classes (remaining 25%,) in the train set (also in
verification set), and unify the abandon classes as
OOD in the test set. For Clinc-Full and Clinc-Small,
we use the specific OOD class included in the
dataset itself without additional processing. During
the training, we do not utilize any prior knowledge
about OOD.

For the network backbone, we use the BERT
(bert-uncased, with 12-layer transformer block) pro-
vided by Huggingface Transformers. The parame-
ters we used are also widely recommended. We
used an AdamW optimizer with a batch size of 32
and tried learning late in {1e — 5,2e — 5,5¢ — 5}. In
the finetune stage, we trained BERT for 30 epochs.
During retraining subnetwork, we tried epochs in
{15, 20, 30} (less than epochs in finetuning). In prac-
tice, satisfactory performance can be achieved by
just masking the parameters of specific layers. To
train efficiently and achieve better performance, we
introduce a hyper-parameter to help specify which
layer parameters need to be masked. All experi-
ments are conducted in the Nvidia GeForce RTX-
2080 Graphical Card with 11G graphical memory.

5. Main Results

Main Results Table 1 shows the comparison of
the lottery ticket uncovered from BERT and other
competitive OOD detection methods on different
datasets. The highlighted results are the best and
demonstrate our method can be better than other
methods on different datasets and metrics. The
results also show that our method can not only
ensure the identification of IND but also detect
OOD more effectively. At the same time, it can be
seen from the above baselines that some detection
methods, such as Energy, are very competitive. In
subsequent experiments, we found that the combi-
nation of the lottery ticket and these methods can
also achieve better results than the original, which
further verifies our proposed Open-world Lottery
Ticket Hypothesis. All reported results are average
by conducting at least three rounds with different
seeds.

6. Analysis and Discussions

6.1. A Mask for OOD Intent Classification

In the above process of finding lottery tickets, we
need to retrain the subnetwork after resetting un-
masked parameters to the original initialization. Ac-
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Clinc-Full Clinc-Small
Methods | ACC  TNR95 AUROC AVG. | ACC  TNR95 AUROC AVG.
MSP 91.48,,, 82.27,,, 95.68,, 89.81 | 90.19,,, 79.10,,, 95.01,, 88.10
MaxLogit | 91.97,., 8547, 96.02,,, 91.15 | 90.86,,, 82.87,5 95.73,, 89.82
Energy 92.01,,, 85.73,, 96.08,,, 91.27 | 90.98,, 84.00,,, 95.83,, 90.27
Entropy 91.61,,, 83.07,0 95.96,,, 90.21 | 90.70,,, 82.13,, 95.41,, 89.41
ODIN 91.99,,, 85.60,, 96.11,, 91.23 |90.92,, 83.23,, 95.87,, 90.01
Mahalanbis | 91.94,,, 84.90,,, 96.79,. 91.21 | 90.52,,, 81.10,, 96.26,,, 89.29
OLT(Ours) | 92.30,, 86.90,,, 96.82,, 92.01 | 91.22,, 84.53,, 96.32,,, 90.69
Banking Stackoverflow
Methods
| ACC  TNR95 AUROC AVG. | ACC  TNR95 AUROC AVG.
MSP 79.25,,. 43.73,. 85.42,, 69.47 | 7495, . 32.62,, 89.66,, 65.74
MaxLogit | 80.28,,, 48.73,, 86.40,,, 71.80 | 75.25,,, 33.47,5, 90.08,0, 66.27
Energy 79.71.0 47.11,. 86.07,,, 70.96 | 75.01,,, 32.58,.. 90.11,, 65.90
Entropy 80.18,,, 47.67., 85.95,, 71.27 | 75.36,, 33.85,, 89.93, 66.38
ODIN 80.33,,, 49.12,, 86.33,, 71.93|75.30,, 33.56,, 90.36,. 66.41
Mahalanbis | 78.84,,, 43.20,.. 88.31,,, 70.12 | 75.19,,, 33.62,,, 90.71,, 66.51
OLT(Ours) | 82.89,,, 5851,, 89.26,, 76.89 | 75.92,,, 35.53,,, 91.36,, 67.60

Table 1: Main Results of comparison between Open-world Lottery Ticket (OLT) and other competitive
OOD detection algorithms. ACC is used to measure the overall performance of the model, including both
OOD detection and the identification of IND specific class. All reported results are percentages and mean
by conducting with different seeds (The subscripts are the corresponding standard deviations).
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Figure 2: Masked Network vs. Baselines (Clinc-
Full). The red dotted line marks the performance
of masked network (subnetwork). Left Y-axis repre-
sents the accuary and Right Y-axis represents the
FNR@95%TPR (The lower the value, the better).

cording to the previous analysis, the subnetwork
could also be better calibrated than the original
network. Can we get competitive results without
retraining? We have also explored this. As sug-
gested in Louizos et al. (2017), we obtain mask M
and an entry m; € M calculated as:

m; = min(1, max(0,o(loga;)(¢ — ) + 7)), (25)

where «; is the parameters in random variable s;
in Eq. (12) , o is Sigmoid function. This operation
can also be regarded as £, norm regularization
constraint on parameters and see Louizos et al.
(2017) for details.

As shown in Fig 2, we can also uncover a
masked network (subnetwork) that can effectively
detect OOD while maintaining the performance of
IND identification. (For a clearer demonstration, we
adopt FNR95 metric here to measure OOD detec-
tion ability. The lower the value, the better). 3The
experimental results are consistent with our previ-
ous claim.

Furthermore, masking without retraining can
also achieve satisfactory results. Is retraining
necessary? Our preferred answer is necessary.
We surmise that retraining can learn parameters
that are more suitable for the structure of the sub-
network. We hope that our experiments can inspire
further theoretical or empirical research.

6.2. Towards Open-world Lottery Ticket

To further verify the versatility of the open-world lot-
tery ticket and our extension to the LTH, we demon-
strate that the gain of the effect originates from the
calibrated network itself. Therefore, we combine

3FNRO5 is to measure the probability that OOD is
wrongly detected when the TPR is up to 95%.
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| ACC Auroc | ACC  Auroc
MaXLOgit 80.28558 86.401.41|75.251 27 90.08¢.94
OLT"‘MaXLOglt 83-030,95 89-541.57 75.921.13 91.320.39
Energy 79.713.00 86.07173|75.011.41 90.110.97
OLT+EneI’gy 82.661_35 89-271_35 75-991.08 91-380_34
Entropy 80.181.29 85.95361|75.360.98 89.930.65
OLT+Entr0py 82.23053 87.281.44 76.111.05 91.080.45
ODIN 80.332.46 86.33162(75.301.14 90.360.55
OLT+OD|N 82-890_94 89.261_52 75.921_15 91.360_34
Mahalabobis 78.84171 88.31250|75.190.41 90.71¢.7
OLT+Maha 81.18130 90.341.31 76.000.59 91.210.35

Table 2: The Lottery ticket with various OOD Scor-
ing. OLT denotes the backbone is the Open-world
Lottery Ticket. Shadow represents our results.

the lottery ticket with the various OOD scoring func-
tions and compare performances with the original
network. The results are shown in Table 2. From
the above results, it can be seen that since the lot-
tery ticket provides calibrated confidence, it can be
more compatible with different downstream OOD
detection functions and can better differentiate the
distribution IND and OOD (showing the value of
Auroc is high), especially those related to softmax,
such as Energy and MaxLogit. At the same time,
due to differentiation, the lottery network can also
better maintain the identification of IND to achieve
a higher overall performance (showing the value of
ACC is high). These experimental results are con-
sistent with our expectations and can be used as
the basis for the establishment of the Open-world
Lottery Ticket Hypothesis.

Methods | Banking Stackoverflow

| ACC TNR95| ACC TNR95
MaXLOgit 76.510.48 41.144.16|72.81053 32.092 27
OLT+MaxLogit| 76.6500, 43.02;15|73.19,0; 32.3157,
Energy 76.380_45 41.274.14(72.959 72 32.855 91
OLT+EneI’gy 76-351_43 42.413_72 73-391_26 33-064_72
Entropy 75.97.75 38.905.13|72.34057 30.445 12
OLT+Entropy |75.695 38.73106 | 7296005 31.54205
ODIN 76.51055 41.23450|72.570.60 31.27258
OLT+OD|N 76.710_95 43-202_22 73-261.08 32-534_01
Mahalabobis 7.83175 5.88585 |72.730.67 31.585.94
OLT+Maha. 76.350.49 40.70,.5 | 73.24,7, 32.62,,

Table 3: The Open-world Lottery ticket identified
from RoBERTa with various OOD scoring func-
tions.

6.3. Generality of Open-World Lottery
Ticket

In Section 6.2, we have empirically verified Open-
world the Lottery Ticket Hypothesis in BERT. In
this section, we explore the generality of the
Open-world Lottery Ticket Hypothesis and take
RoBERTa (Liu et al., 2019) as an example to verify
whether the Open-world Lottery Ticket Hypothesis
is also valid in other models. First of all, We prune
a lottery network (OLT) from RoBERTa according
to our proposed method in Section 3.3. Then, we
replace different post hoc scoring functions and
make a comprehensive comparison, as we did in
Section 6.2. The results are shown in Table 3.
From the table, we can see that the lottery network
discovered from RoBERTa can be also compatible
with various scoring functions. We have preliminar-
ily verified the generality of OLTH, and we hope
that the follow-up work will bring more theoretical
and experimental research.
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Figure 3: Effect of Temperature Scaling. As T
becomes larger, the benefits brought by T will soon
become smaller.

6.4. Analysis On Temperature Scaling

In Theorem 3.1, we demonstrate that temperature
scaling can help differentiate the distribution be-
tween IND and OOD. Let us take a closer look at
the behavior of temperature here. In the previous
work (Liang et al., 2018), it is suggested to take a
sufficiently larger value of temperature. However,
from the proof of Theorem 3.1, it can be seen that
temperature just needs to be greater than 1. We
choose temperatures at different scales to test the
effect (of temperature) on different data sets and
the results are shown in Figure 3. We find that
after T > 1 (without a large value), the effect of
OOD detection is very significant. As T becomes
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larger, the benefits brought by T will soon become
smaller, which is in line with our expectations.

7. Conclusion and Future Work

Does the model know what it does not know? This
paper makes an in-depth discussion of the theory
and the practice. Firstly, we discuss the reasons
that prevent the model from giving trustworthy con-
fidence. Then, we uncover a subnetwork from an
overparameterized model to provide calibrated con-
fidence (helpful to differentiate in IND and OOD).
In addition, We prove that temperature scaling can
help distinguish IND and OOD. Combined with cal-
ibrated confidence of subnetwork and temperature
scaling, we further extend the LTH to the open-
world empirically and verify our conjecture by ex-
periments.

In a larger scope, the research of this paper
can be categorized more broadly into the knowl-
edge boundary (or capability boundary) of mod-
els, which is a fundamental and critical issue in
the deep learning field. With the unprecedented
prevalence of artificial intelligence in recent years,
research on the knowledge boundary of models,
especially large-scale pre-trained language mod-
els, has drawn strong attention from scholars in
academia and industry, and the research scope
has become more extensive (Kadavath et al., 2022;
Yin et al., 2023; Cheng et al., 2024).

First, in terms of model structure, existing re-
search is increasingly focusing on large-scale
generative architectures (Touvron et al., 2023).
Can the open-world lottery ticket also be found
in generative models? According to current re-
search (Azaria and Mitchell, 2023), the answer
seems to be affirmative. Then, from the perspec-
tive of task form, this study focuses on identifying
the capability boundary of models. In practical
scenarios, it is equally important to extend the ca-
pability boundary of models. For this purpose, a
class of research (Zhou et al., 2023a) has extended
the task paradigm by collecting corpora that are
not within the capability boundary of the model
after identification. These corpora can be further
fine-grained discovered (Zhang et al., 2021b; Zhou
et al., 2023b) to enhance the capability boundary
of the model in practical scenarios. The proposed
open-world lottery ticket mainly aims to enhance
the cognitive boundary of the model. How can it
further adapt to the extension of the model’s capa-
bility?

Finally, as the parameter scale of models be-
comes increasingly larger, the inference speed
of models is gradually becoming a bottleneck for
their application in practical scenarios. Existing
work (Zhou et al., 2023c) has preliminarily discov-
ered that model inference optimization can not only

improve the inference speed but also maintain their
overall performance. How to perform inference op-
timization based on the Open-World Lottery Ticket
Hypothesis is also a direction worth paying atten-
tion to.
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