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Abstract
Alzheimer’s disease (AD) represents a major problem for society and a heavy burden for those affected. The study
of changes in speech offers a potential means for large-scale AD screening that is non-invasive and inexpensive.
Automatic Speech Recognition (ASR) is necessary for a fully automated system. We compare different ASR
systems in terms of Word Error Rate (WER) using a publicly available benchmark dataset of speech recordings of
AD patients and controls. Furthermore, this study is the first to quantify how popular linguistic features change when
replacing manual transcriptions with ASR output. This contributes to the understanding of linguistic features in the
context of AD detection. Moreover, we investigate how ASR affects AD classification performance by implementing
two popular approaches: A fine-tuned BERT model, and Random Forest on popular linguistic features. Our results
show best classification performance when using manual transcripts, but the degradation when using ASR is not
dramatic. Performance stays strong, achieving an AUROC of 0.87. Our BERT-based approach is affected more
strongly by ASR transcription errors than the simpler and more explainable approach based on linguistic features.

Keywords: Automatic Speech Recognition, Alzheimer’s Disease (AD), Automatic AD classification, Stability
of Linguistic Features

1. Introduction

Alzheimer’s disease (AD) represents a major and
rapidly growing burden to the healthcare and eco-
nomic system (Winblad et al., 2006). The current
state of research indicates that therapies need to
be administered as early as possible to be effective
(Arvanitakis et al., 2019). Therefore, there is an
urgent need for accelerating biomarker discovery
for AD. However, prevailing biomarkers for AD di-
agnosis, including genetic testing, CSF, structural
MRI and PET imaging, can only be applied to rela-
tively small sample sizes due to their limited avail-
ability, excessive costs and invasive nature (Kour-
tis et al., 2019). This prevents adoption of current
biomarker testing in large epidemiological studies,
which are imperative to identify the intra-individual
progression from healthy to pathological cognitive
aging (e.g. AD). Thus, novel non-invasive and inex-
pensive biomarkers are urgently required to be ad-
ministered at a large scale with the aim of identify-
ing individuals with indications of AD. Speech and
language changes have been identified as early
symptoms of AD (Calzà et al., 2021), and their de-
tection and analysis have the potential to be used
in large epidemiological studies as a real-time and
non-invasive diagnostic method.

There have been various approaches to au-
tomatic AD detection from spontaneous speech,
most commonly based on audio recordings of a

picture description task. Information can be ex-
tracted from the raw audio signal (acoustic), the
analysis of its transcriptions (linguistic), or a combi-
nation of both. Acoustic markers include the pres-
ence of pauses, jitter, and shimmer. Linguistic
analysis includes the extraction of lexical, syntac-
tic, and semantic features, which have proven to
be more informative for AD detection than acous-
tic features (Cummins et al., 2020). As a result,
most research has focused on transcriptions rather
than directly on the audio signal. The majority of
studies have been based on manual transcriptions,
requiring manual efforts prohibitive for large-scale
adoption. Therefore, automatic speech recogni-
tion (ASR) is a prerequisite for an automated real-
life AD screening tool.

However, it is unclear how ASR systems be-
have on data from Alzheimer’s patients, as avail-
able ASR systems are mostly trained on and opti-
mized for healthy and fluent speech. In addition,
it is unclear how transcription errors resulting from
the use of ASR affect linguistic features, and how
this, in turn, affects downstream AD classification
performance.

In this paper, we evaluate three popular ASR
systems on the ADReSS dataset (Luz et al., 2020):
First, we directly measure the difference between
automatically generated transcriptions and their
manual counterparts in terms of Word Error Rate
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(WER), and analyze potential effects of diagno-
sis, age, and gender on error rates. Second,
we assess how stable popular well-established lin-
guistic features are when replacing manual tran-
scripts with ASR output. Last, we evaluate how
ASR transcriptions affect the downstream per-
formance of two popular machine-learning ap-
proaches, namely i) a fine-tuned BERT model for
classification, and ii) a Random Forest model on
linguistic features.

2. Related Work

In a general setting, ASR systems have been com-
pared using multiple benchmarks, such as Hug-
ging Face’s End-to-end Speech Benchmark (ESB)
(Gandhi et al., 2022) or CEASR (Ulasik et al.,
2020), aiming to assess ASR’s generalizability
across different healthy speech datasets. For AD,
few studies have compared different ASR systems,
including Pan et al. (2021); Li et al. (2022); Syed
et al. (2021b); Tang et al. (2023). However, they
often use relatively old or custom ASR systems,
lagging behind recent developments on the ASR
market. For example, no study in this field has
evaluated the recently introduced Google “Chirp”
model (Zhang et al., 2023), which we use in this
study. Importantly, mostly studies did not investi-
gate the effect of age, gender, and diagnosis on
error rates of ASR systems.

There have been various approaches of us-
ing spontaneous speech for classification of AD.
Among the first, Fraser et al. (2016) used man-
ual transcripts to investigate linguistic features and
their differentiability for AD, while Luz et al. (2018)
presented a system for AD detection based on
linguistic features on manual transcriptions. The
introduction of the ADReSS dataset (Luz et al.,
2020) in 2020 triggered a significant burst of re-
search on the topic. Most research on this dataset
found linguistic features more useful than acous-
tic features (e.g. Cummins et al., 2020), and pro-
posed systems based on manual transcriptions,
with influential examples including Balagopalan
et al. (2020); Yuan et al. (2020); Syed et al.
(2021a); Martinc et al. (2021).

Recently, the use of ASR in AD classification
pipelines has become more popular. Some stud-
ies use ASR to replace or compensate for missing
manual transcriptions (especially studies based on
the ADReSSo challenge dataset (Luz et al., 2021),
which lacks manual transcriptions). Others com-
pare how AD detection performance differs when
using ASR vs. manual transcriptions. In recent
AD classification approaches, the frequent use of
BERT (Devlin et al., 2018) is apparent, either used
as an embedding layer to a downstream classifica-
tion algorithm (e.g. Syed et al., 2021a; Ilias et al.,

2023; Roshanzamir et al., 2021) or directly fine-
tuned for classification (e.g. Balagopalan et al.,
2020; Yuan et al., 2020; Pan et al., 2021). A
more classical yet more interpretable approach to
AD classification involves the explicit extraction of
features (potentially using prior knowledge on AD
symptoms) in combination with general-purpose
classification algorithms such as Support Vector
Machines (SVM) or Random Forest (RF).

An early comparison of using ASR vs. man-
ual transcripts for AD detection was performed
by Weiner et al. (2017), using a limited set of
linguistic features and a private German dataset,
and finding that some features provide better di-
agnostic value when calculated on an ASR tran-
scription. Wang et al. (2022) created BERT and
RoBERTa embeddings based on transcriptions
from a custom ASR on the ADReSS dataset, and
used these to train an SVM classifier. Their BERT-
based model performs worse using ASR than man-
ual transcripts, while combinations of BERT and
RoBERTa profit from using ASR. Importantly, they
did not remove interviewer utterances from the
audio recordings before running ASR, a short-
coming that is common in prior approaches us-
ing the ADReSS dataset. Their models might
thus learn from the content or frequency of inter-
viewer interactions, casting doubts on their gen-
eralizability. Li et al. (2021) compared different
features and classifiers for AD detection, includ-
ing BERT embeddings. They report similar per-
formance when using ASR than when using man-
ual transcripts. Li et al. (2022) fine-tuned a BERT
model on the ADReSS dataset, finding that ASR-
generated transcripts allow classification perfor-
mance similar to manual transcripts, and that im-
proved ASR WER does not produce better clas-
sification performance. They did not study the ef-
fect on linguistic features, as we do in the following.
Soroski et al. (2022) evaluated Google Speech
ASR on a private dataset, finding that manual tran-
scripts lead to significantly better results than au-
tomatic transcripts. Also, they found that healthy
controls exhibit lower error rates than AD patients.

In conclusion, prior research has compared
ASR systems for AD spontaneous speech, but
mostly on older ASR systems and often failing to
analyze potential confounding effects of diagno-
sis, age, and gender. Numerous studies have pro-
posed AD classification systems based on spon-
taneous speech. These studies have inspired our
work in a) the choice of classification approaches,
b) the idea of comparing AD classification per-
formance based on ASR-generated transcriptions
against manual transcriptions, and c) the selection
of linguistic features. However, to the best of our
knowledge, no prior study has evaluated the im-
pact of ASR on the stability of linguistic features



15957

and the consequences of this stability on AD de-
tection. In addition, we have observed the fre-
quent and problematic presence of interviewer ut-
terances in the data.

3. Methodology

3.1. Dataset

We use the ADReSS dataset (Luz et al., 2020)
for our experiments. It is balanced for diagnosis,
age, and gender (see Table 1) and consists of 156
audio recordings where participants describe the
Cookie Theft picture from the Boston Diagnostic
Aphasia Examination (Goodglass et al., 2001) in
English. Each recording is accompanied by a man-
ual transcription in the CHAT transcription format
(MacWhinney, 2000). Metadata for each partici-
pant includes age, gender, and Mini Mental State
Examination (MMSE) scores.

Some of the audio recordings include inter-
viewer prompts, such as “Is there anything else?”.
These interviewer interactions appear more fre-
quently in AD patients than in control participants.
However, they are task-specific, and we want to
prevent our models from learning from these in-
teractions. Therefore, we remove all interviewer
sections from the audio, leaving only participant
speech. We do this using timestamps encoded in
the manual transcription files. Similarly, we keep
only the participants’ utterances from the manual
transcripts, and preprocess them by removing spe-
cial transcription codes such as error or retraction
markers. The details of the preprocessing steps
are provided in Appendix A.

Table 1 displays basic dataset characteristics for
AD and control subjects.

N (female,
male)

Age Transcript
Length

MMSE

AD 78 (43, 35) 66.6± 7 99± 65 17.8± 5.5
Control 78 (43, 35) 66.3± 7 116± 67 29.0± 1.2

Table 1: Characteristics of the ADReSS dataset
for AD and control group. Mean and standard de-
viation are reported for age, MMSE and length of
manual transcription (in number of words).

3.2. Automatic Speech Recognition
(ASR)

We compare three pre-trained state-of-the-art
ASR systems:

1. Wave2vec2 (Baevski et al., 2020), a popular
open source system.

2. Whisper (Radford et al., 2023), a recent robust
system pre-trained by OpenAI. This is moti-
vated by its popularity.

3. The recently introduced commercial Google
Speech “Chirp” model (Zhang et al., 2023),
available via a Google Cloud API. This is mo-
tivated by the reported excellent performance
of the system.

3.3. Classification approaches for
Alzheimer recognition

To evaluate the effect on downstream classification
performance, we implemented two approaches
of binary classification between AD and control.
They represent two classes of approaches fre-
quently used in prior research for this task.

Fine-tuned BERT model: We fine-tune a pre-
trained BERTBASE model1 (Devlin et al., 2018)
with a randomly initialized sequence classification
head. We use the default tokenizer, a batch size
of 8, a learning rate of 4e − 6, and fine-tune for 30
epochs. These hyperparameters have been deter-
mined using hyperparameter testing on the man-
ual transcriptions. Commonly, fine-tuning BERT
on a small dataset results in significantly different
models when using different random seeds for ini-
tialization (Zhang et al., 2020; Dodge et al., 2020).
To deal with this, we fine-tune 8 identical models
for each setting, differing only in their random seed.
For each test sample, one prediction is produced
by averaging the individual predictions of these 8
models. This is similar to how prior approaches
have dealt with this problem (Yuan et al., 2020;
Balagopalan et al., 2020; Eyigoz et al., 2020; Qiao
et al., 2021). In addition, this step increases accu-
racy and stability of the predictions.

Linguistic features + Random Forest: Our sec-
ond classification model is based on a Random
Forest (RF) classifier2 trained on various linguis-
tic features extracted from the transcriptions. Our
selection of linguistic features is motivated by previ-
ous research on dementia classification from spon-
taneous speech (Fraser et al., 2016; Balagopalan
et al., 2020; Parsapoor et al., 2023; Liu et al., 2021;
Syed et al., 2021a; Priyadarshinee et al., 2023;
Eyigoz et al., 2020; Diaz-Asper et al., 2022; Tang
et al., 2023). We implemented all linguistic fea-
tures used in these approaches that were either a)
reported as being important according to statistical

1Using HuggingFace’s implementa-
tion in the transformers library v4.28
https://huggingface.co/bert-base-uncased.

2Using scikit-learn’s implementation v1.2.2,
with 500 estimators and the default settings.

https://huggingface.co/bert-base-uncased
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tests or feature importance analyses, or b) used
by at least two studies. Our selection includes 15
syntactic features based on part-of-speech (POS)
tags, 14 syntactic features based on grammatical
constituents, 9 lexical features, along with 2 fea-
tures of repetitiveness. A detailed list of all features
and their definitions is given in Appendix B.

This RF-based approach has the significant ad-
vantage of providing explainability by quantifying
feature contributions to individual predictions us-
ing SHAP values (Lundberg et al., 2020). This is
in contrast to BERT, where explainability remains
difficult.

3.4. Evaluation
Word Error Rate: We compare the ASR tran-
scriptions to their manual counterparts using the
Word Error Rate (WER), which is the most com-
mon evaluation metric for automatic speech recog-
nition and defined as (Morris et al., 2004):

WER =
S +D + I

N
(1)

where S, D, and I denote the number of word sub-
stitutions, deletions, and insertions, and N refers
to the number of words in the reference transcrip-
tion. We compare WER between ASR systems
and between diagnosis (AD or control), age, and
gender, using a generalized linear mixed-effect
model3 with WER as a dependent variable, age,
gender, and ASR as fixed effects and subject as
the random effect, resulting in the following for-
mula (Wilkinson notation, Wilkinson and Rogers,
1973):

WER ∼ ASR+label+age+gender+(1|subj) (2)

Stability of features: We compute linguistic fea-
tures for manual and ASR transcriptions. Let
tman
i be the manual transcription for sample i ∈
{1, ..., 156}, tASRk

i be the transcription from ASR
system k ∈ {1, 2, 3} for sample i, fj(t) be the value
of feature j on transcript t. For each feature j and
each sample i, we then compute the relative dif-
ference d between the feature calculated on the
manual and ASR transcription as the absolute dif-
ference normalized by feature value:

dj,i,k =
fj(t

man
i )− fj(t

ASRk
i )(

fj(tman
i ) + fj(t

ASRk
i )

)
/2

(3)

We then estimate the stability of a feature j as the
relative difference across all ASR systems k and

3All statistical analyses were conducted using Python
with a level of significance set at 0.05. The statsmodel
library was used for the generalized linear mixed-effect
model.

samples i:

sj =
1

3

∑
k

( 1

156

∑
i

|dj,i,k|
)

(4)

A value sj close to zero indicates a stable feature
j, having similar values for ASR and manual tran-
scriptions. A large value sj indicates an unstable
feature j, with values changing strongly when we
replace manual with ASR transcriptions.

End-to-end classification performance: To
evaluate the end-to-end performance of the two
machine-learning approaches on manual and
ASR transcriptions, we use 10-fold cross valida-
tion, with identical random splits for all settings.
We report the area under the ROC curve (AUROC)
and binary accuracy for each setting. The AUROC
is a popular metric for discriminative ability of a
predictive model (Janssens and Martens, 2020),
and does not require calibrated predictions nor the
definition of a classification threshold. Since we
do not focus on calibration, we use AUROC as our
main metric. Results can vary when training the
same setting multiple times, due to randomness in
the initialization and training process. To capture
this variability, we train and evaluate each setting
10 times, leading to a total of 100 training runs
per setting4, and we report mean and standard
deviation for accuracy and AUROC.

We statistically analyze performance differ-
ences between settings by performing a series of
pairwise permutation tests. A permutation test re-
peatedly shuffles AUROCs of both settings into
two groups and computes the groups’ difference
in mean, then compares the observed difference
to the randomly generated differences. For both
BERT and RF, we compare the use of manual vs.
ASR transcripts (2 tests), and we conduct pairwise
comparisons between the different ASR systems
(2 × 3 tests). In addition, we separately compare
BERT against RF for manual and ASR transcripts
(2 tests). This results in 10 tests, and we apply the
Bonferroni Correction (Bonferroni, 1936) to coun-
teract the multiple testing problem, resulting in a
significance level of 0.05/10 = 0.005.

Feature importance: The stability of a feature
might influence its usefulness for AD classification
given manual vs. ASR transcriptions. To evaluate
this, we estimate feature importance, separately
for manual transcriptions and for each ASR sys-
tem. We quantify each feature’s importance as the
mean absolute SHAP value (Lundberg et al., 2020)
in our RF-based approach.

4For our BERT-based settings, we train 800 models,
as 8 models are needed for each split (cf. Section 3.3).
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4. Results
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Figure 1: Distribution of Word Error Rate (WER) on
the participant speech sections of ADReSS audio
recordings. Top: For each ASR system, we show
the distribution of all samples (white) and sub-
groups of AD patients and healthy controls (grey).
Bottom: We show overall WER distribution for
AD and control across ASR systems, as well as
overall WER for each ASR system. Stars indicate
statistical significance levels with ∗ (p < 0.05), ∗∗
(p < 0.01), and ∗ ∗ ∗ (p < 0.001).

Word Error Rate (WER): We observe that,
across all ASR systems, WER differs strongly
across subjects, ranging from almost perfect tran-
scriptions to missing large fractions of spoken
words. The statistical analysis reveals that Whis-
per (median WER: 0.35) performs significantly
better than Google Speech (median WER: 0.37),
which in turn significantly outperforms Wave2vec2
(median WER: 0.54). In addition, we observe a
significant effect of diagnosis, showing that WER
is lower (i.e. better) for healthy controls than for
AD patients, while no significant effect is found for
age and gender. Figure 1 shows the distribution of
WER for each ASR, across all samples and sepa-
rately for AD and control group. Detailed results of
the statistical tests are given in Appendix C.

Stability of linguistic features: Figure 2 (A)
shows the distribution of dj,i,k, the relative differ-
ence between the features calculated on the man-
ual and ASR transcriptions. Features are sorted
according to their stability sj across all ASR sys-
tems, with sj explicitly displayed in subfigure (B).
The most unstable features are flesch_kincaid

(the Flesch–Kincaid grade level (Kincaid, 1975)),
avg_distance_between_utterances (a fea-
ture of repetitiveness between sentences), ROOT
→ FRAG (the count of sentence fragments), and
words_not_in_dict_ratio (the ratio of words
not present in a dictionary of English words). The
most stable features are avg_word_length (the
average length of a word), as well as mattr
and brunets_index (the moving-average type-
token-ratio (Covington and McFall, 2010) and
Brunét’s index (Brunet et al., 1978), two measures
of lexical richness).

Figure 2 (C) displays SHAP feature importance
values for each feature (additional feature impor-
tance results are given in Appendix E). We ob-
serve that there is no clear trend in which impor-
tant features are more or less stable than unimpor-
tant features, and feature importance often does
not change dramatically when replacing manual
with ASR transcriptions, even for very unstable fea-
tures such as flesch_kincaid, which remains
rather informative. This shows that, while feature
values might change dramatically, they often do so
for all participants, thereby retaining their discrimi-
native power.

Approach AUROC Accuracy

Manual BERT 0.899± 0.009 0.837± 0.013
Manual Lingu+RF 0.888± 0.003 0.821± 0.011

Google BERT 0.837± 0.010 0.752± 0.015
Whisper BERT 0.801± 0.009 0.756± 0.015
Wave2vec2 BERT 0.819± 0.013 0.747± 0.013

Google Lingu+RF 0.865± 0.004 0.792± 0.007
Whisper Lingu+RF 0.848± 0.004 0.785± 0.011
Wave2vec2 Lingu+RF 0.860± 0.004 0.773± 0.006

Table 2: Accuracy and AUROC classification re-
sults (mean ± standard deviation over 10 runs)
for different transcriptions and AD classification ap-
proaches. Manual refers to manual transcriptions,
Google, Whisper, and Wave2vec2 refer to ASR
transcriptions. BERT represents the fine-tuned
BERT approach, while Lingu+RF refers to the ap-
proach using linguistic features and Random For-
est.

Classification performance for AD recognition:
Table 2 presents results for all combinations of
transcriptions and classification approaches. We
report AUROC as our main metric, but also include
accuracy results, for comparability with prior re-
search. We make the following observations (de-
tailed statistical results are given in Appendix C):

• Manual transcriptions lead to better perfor-
mance than ASR. This is statistically signifi-
cant and true for both BERT and RF.
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Figure 2: A: Distribution of the relative difference dj,i,k between manual and ASR transcripts, for each
feature and each ASR system. Features are sorted according to their stability sj (subfigure B). We display
the feature group for each feature (syntactic features based on POS tags SYN/P, syntactic features based
on grammatical constituents SYN/C, lexical features LEX, and features of repetitiveness REP). Example:
The most unstable feature is the lexical (LEX) feature flesch_kincaid, the Flesch–Kincaid grade level
(Kincaid, 1975), which is a combination of the number of words in a sentence and the number of syllables
in a word. All ASR transcripts produce higher values of this feature than manual transcripts. This is
caused by longer sentences produces by ASR compared to manual transcriptions. B: sj , the stability
of a feature across all ASR systems. Lower means more stable. C: Feature importance given by mean
absolute SHAP value, based on the trained RF classifier, for manual transcripts and for each ASR. Dark-
green indicates high feature importance, white indicates low feature importance.
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• When using ASR transcripts, linguistic fea-
tures + Random Forest produces better re-
sults than fine-tuned BERT. Fine-tuning a
BERT model on manual transcriptions works
better than the linguistic feature approach, a
finding that confirms results reported by Bal-
agopalan et al. (2020). However, when replac-
ing manual with ASR transcripts, our BERT-
based approach degrades more strongly, los-
ing its advantage over and performing sig-
nificantly worse than simpler and more in-
terpretable linguistic features. This shows
that the choice of the best algorithm depends
on the use of ASR, and a simpler approach
proves more robust to transcription errors.

• Google Speech is the best overall ASR
system w.r.t. AD classification performance.
It significantly outperforms Whisper and
Wave2vec2 when using BERT. In the
RF-based approach, Google Speech is
significantly better than Whisper, while the
difference to Wave2vec2 is not significant.

• Lower (i.e. better) WER can lead to worse
classification performance. Whisper, the win-
ner of the direct comparison of ASR sys-
tems w.r.t. WER, produces significantly lower
AD classification performance than Google
Speech and Wave2vec2.

5. Discussion and Conclusion

Word Error Rate: Our results show significant
differences in transcription error rates (Whisper
< Google Speech < Wave2vec2) and a consis-
tent bias of higher error rates for AD speech than
healthy controls. This is presumably a conse-
quence of ASR’s training on predominantly healthy
speech, and presents a potential problem if such
systems are used in a clinical setting. In addi-
tion, we have observed that WER differs strongly
across subjects.

We believe that high WER and large variabil-
ity across subjects are mainly caused by poor au-
dio quality. The data5 was originally collected in
the 1980s, and manual inspection of the audio
files shows quality issues such as significant back-
ground noise and faint voices caused by partic-
ipants being far away from the microphone. In
addition, we have observed that the noise reduc-
tion preprocessing applied by the dataset’s au-
thors (Luz et al., 2020) produces damaging side ef-
fects on the recordings, including partial removal of
participant speech. Although this dataset remains

5The ADReSS dataset is a subset of the larger but un-
balanced DementiaBank English PITT corpus (Becker
et al., 1994).

critical for research on speech-based AD biomark-
ers, as it is the only balanced publicly available re-
source of AD spontaneous speech, better-quality
recordings are important for the success of future
research.

Our results also show that WER is lower (bet-
ter) for healthy controls than for AD patients. This
is consistent with prior work by Li et al. (2022);
Soroski et al. (2022). We suspect that AD symp-
toms such as dysarthria (Cummings, 2020), result-
ing in unclear pronunciation, might be the underly-
ing cause. However, Figure 1 indicates that WER
variability is much larger between subjects within
a group than between AD and control.

Stability of linguistic features: The influence
of ASR on linguistic features varies between fea-
tures. Some features change strongly when re-
placing manual with ASR transcriptions, while oth-
ers remain rather stable. The instability of the most
unstable features are caused by the following ef-
fects:

1. Sentence boundaries: Sentence bound-
aries in spoken language are often un-
clear. Wave2vec2 does not produce any
boundaries (one long sentence), Google
Speech and Whisper both produce longer
sentences than utterances present in the
manual transcription. This strongly affects
i) flesch_kincaid, the Flesch–Kincaid
grade level (Kincaid, 1975), ii) repetitive-
ness metrics between pairs of sentences
(prop_utterance_dist_below_05,
avg_distance_between_utterances),
and iii) avg_sentence_length, the aver-
age number of words in a sentence.

2. Out-of-dictionary words: Wave2vec2 does not
use a language model for decoding, and
thus produces many misspelled words. Whis-
per and Google Speech produce some spe-
cial tokens such as mm-hmm, ”…”, or mhm.
words_not_in_dict_ratio is based on a
dictionary of English words that does not con-
tain these, and is thus very sensitive to such
ASR-specific behaviours.

3. Constituency parsing: The syntactic features
based on grammatical constituents SYN/C
are based on linguistic constituency parsing.
Small transcription errors can cause large
changes in constructed parse trees, resulting
in strong deviations in these features.

The most stable features are the average length
of a word (avg_word_length), as well as syn-
tactic features based on POS SYN/P and con-
stituency ratios that only rely on local contexts
(e.g. NP_ratio, the ratio of noun phrases).
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The usefulness of a feature in discriminating AD
is not affected by its instability. Important features
are not more or less stable than unimportant ones,
and feature importance does not change system-
atically when replacing manual with ASR transcrip-
tions. Although this allows results from studies
using manual transcriptions to be generalized to
the more naturalistic ASR setting, we recommend
using caution when interpreting unstable features
extracted from ASR. For example, conclusions on
the nature of speech in AD should not be drawn
from features based on sentence boundaries.

Classification performance for AD recognition:
Classification performance degrades when using
ASR instead of manual transcriptions in an end-
to-end AD classification pipeline. This confirms
Soroski et al. (2022)’s finding, but provides a
stronger result than the more unclear picture re-
ported by Li et al. (2021), Li et al. (2022), and Wang
et al. (2022), where performance was compara-
ble. Research on larger and more diverse datasets
of AD spontaneous speech are needed to answer
this question conclusively. Among the evaluated
ASR systems, the Google Speech “Chirp” model
performs best overall.

Importantly, when using ASR transcriptions,
the BERT-based approach degrades much more
strongly than the simpler linguistic feature-based
approach, resulting in an inferior classification per-
formance. We hypothesize that BERT’s loss in
performance is due to ASR transcription errors re-
sulting in shorter, less coherent texts, reducing
the usefulness of BERT’s pre-training. Moreover,
we conducted some additional experiments not
presented here (results are given in Appendix D),
where we fine-tuned a BERT model on the entire
audio, including interviewer interventions. This im-
proves BERT’s performance, indicating that the ad-
ditional context of the interviewer interactions is
being picked up by the model. We consider this
an undesirable behavior, as a potential future real-
time detection system will likely be restricted to
participant speech only. The influence of the in-
terviewer on AD classification has also been dis-
cussed by Pérez-Toro et al. (2021), and it raises
some concerns about the generalizability of prior
approaches using the ADReSS dataset, as these
presumably base at least part of their diagnostic
power on these interviewer sections.

The RF-based approach has the advantage of
providing explainability in the form of e.g. SHAP
values (cf. Figure 2 (C)), in addition to its supe-
rior performance when faced with ASR transcrip-
tions. Explainability of AI is essential in medi-
cal applications because it promotes trust (for pa-
tients and clinicians), transparency, and account-
ability, and addresses legal regulations (e.g. the

EU’s “AI Act”). Approaches of explainability for
BERT exist, e.g. assigning word contributions us-
ing methods such as LIME (Ribeiro et al., 2016),
Captum (Kokhlikyan et al., 2020), or TransSHAP
(Kokalj et al., 2021), or analyzing the model’s in-
ternal attention weights, using e.g. BertViz (Vig,
2019). However, these methods are harder to in-
terpret, more difficult to communicate to patients
and clinicians, and unable to evaluate the contribu-
tion of known AD symptoms or potential confound-
ing factors. As an example, consider the length of
a transcription, which is significantly shorter for AD
than control (cf. Table 1). This is captured explicitly
by our linguistic feature n_words, allowing feature
importance analyses to quantify its contribution to
classification performance. We are not aware of
an easy way to examine this in BERT.

The relative robustness of our RF-based ap-
proach, combined with its additional explainability,
serves as a reminder to continue research on es-
tablished methods motivated by prior knowledge.

The effect of WER on AD classification perfor-
mance: Surprisingly, a lower (better) WER does
not translate into better AD classification perfor-
mance in our experiments. This finding aligns with
prior research (Tang et al., 2023; Li et al., 2022)
and suggests that the WER metric is insufficient to
capture the transcriptions’ effectiveness for AD de-
tection. For instance, despite Wave2vec2 produc-
ing more misspelled words, it shows superior end-
to-end performance compared to Whisper, which
has a lower WER. We hypothesize that the lan-
guage model used in Whisper’s decoding algo-
rithm smooths the output, by e.g. removing hesi-
tation markers, word repetitions, out-of-context ex-
pressions, or unintelligible terms, thereby losing
information that might be relevant to discriminate
between AD and healthy controls. In contrast,
Wave2vec2 does not rely on a language model
for decoding, resulting in more word-level errors,
yet retaining valuable information contained in the
recording, which renders it more useful for classi-
fication. Future research could develop more ap-
propriate ASR quality metrics by imposing stronger
penalties for missing words.

Limitations The main limitation of our study lies
in the low number of samples in the dataset and
the quality of the recordings. While we believe
most of the observed trends will generalize to other
data, our results are limited to the diversity of this
dataset. Future research on other datasets could
confirm and strengthen our findings.

Conclusion In conclusion, we have compared
three popular ASR systems and recommend the
recent Google Speech “Chirp” model, as it has
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low WER and leads to high AD classification per-
formance. Our experiments confirm the potential
of ASR in a fully automatic AD detection system
based on spontaneous speech. Popular linguistic
features and Random Forest are more robust to
ASR transcription errors than a fine-tuned BERT
model. Despite a loss of performance compared
to using manual transcriptions, classification AU-
ROC of 0.87 remains strong. In addition, our re-
sults contribute to a better understanding of well-
established linguistic features, assessing their sta-
bility when replacing manual with ASR transcrip-
tions. Future research should investigate the gen-
eralizability of AD classification to other datasets.
In addition, we plan on evaluating the fine-tuned
BERT model in more detail, assessing the influ-
ence of transcription length and interviewer sec-
tions.
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Appendix A: Preprocessing steps for
CHAT transcriptions

The manual of the CHAT transcription format
(MacWhinney, 2000) is available online6. We only
retain main lines of participant utterances, ignoring
any dependent tier lines. We apply the following
preprocessing steps to each utterance. Our imple-
mentation is available on Github7:

1. Remove events such as &=clears:throat
2. Remove complex local events of the form

[̂ text]
3. Remove special sign & for e.g. disfluencies,

but keep phonological fragment, fillers, non-
words, interposed words (&um, etc.)

4. Remove omitted words (0)
5. Remove unintelligible speech sign xxx
6. Remove sign for letter transcription (e.g. make

m out of m@l)
7. Remove replacement notation (annotator

marking what is meant by a participant word)
(e.g. chair [: stool] → chair

8. Remove pauses ((.), (..), (...))
9. Remove special marking of non-complete

words (omitted parts), keeping the full word
10. Remove sign for retracing, reformulation,

false start without retracing, unclear retracing
etc. ([//], [///] etc.), but keep utterance

11. Remove custom postcodes (e.g. [+ jar])
12. Remove error markings (e.g. [* s:uk])
13. Make word repetitions explicit: get [x 3]

→ get get get

6https://talkbank.org/manuals/CHAT.html
7https://github.com/jheitz/lrec_coling2024_asr_paper/

blob/main/src/dataloader/chat_parser.py

14. Remove special utterances terminators, like
trailing off

15. Remove overlap markers [>], [< ], +<
16. Remove overlap signs <text>
17. Remove unibet transcription words (e.g.

k�t�ə�@u)
18. Remove quotation marks
19. Remove interruption signs (+, +/. +/?

+//. +//?
20. Remove transcription break (+., self comple-

tion +, other completion ++, and quick uptake
+)̂

21. Normalize linkages and irregular combina-
tions (e.g. kind_of, how_about)

22. Remove Lengthened Syllable marker (e.g.
s:tool)

23. Replace satellite markers ‡ and „ by comma
24. Remove special form markers (e.g. xxx@a,

bingo@o)
25. Remove compound marker + (e.g.

bird+house → birdhouse)

Appendix B: Linguistic features

A detailed list of the linguistic features is presented
in Table 3. These features are motivated by previ-
ous research on dementia classification from spon-
taneous speech (cf. Section 3.3):

(1) Fraser et al. (2016)
(2) Parsapoor et al. (2023)
(3) Liu et al. (2021)
(4) Syed et al. (2021a)
(5) Priyadarshinee et al. (2023)
(6) Eyigoz et al. (2020)
(7) Balagopalan et al. (2020)
(8) Diaz-Asper et al. (2022)
(9) Tang et al. (2023)

In addition to the inclusion criteria presented in
Section 3.3, we excluded features that

• Were not described precisely enough to allow
reimplementation.

• Had a constant feature value for all partici-
pants. Namely, these include features based
on grammatical constituents that did not ap-
pear in our dataset.

We use the Stanza NLP library (Qi et al., 2020) for
POS and constituency parsing8. The code of our
implementation can be accessed on GitHub9.

8Version 1.5.0
9https://github.com/jheitz/lrec_coling2024_asr_paper/

blob/main/src/preprocessing/linguistic_features_literature.py

https://talkbank.org/manuals/CHAT.html
https://github.com/jheitz/lrec_coling2024_asr_paper/blob/main/src/dataloader/chat_parser.py
https://github.com/jheitz/lrec_coling2024_asr_paper/blob/main/src/dataloader/chat_parser.py
https://github.com/jheitz/lrec_coling2024_asr_paper/blob/main/src/preprocessing/linguistic_features_literature.py
https://github.com/jheitz/lrec_coling2024_asr_paper/blob/main/src/preprocessing/linguistic_features_literature.py
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Group Feature Name Description Used by prior research
SYN/P pronoun_noun_ratio Ratio of pronouns to nouns (1), (7), (3)
SYN/P verb_noun_ratio Ratio of verbs to nouns (3)
SYN/P subordinate_coordinate_

conjunction_ratio
Ratio of subordinate to coordinate conjunctions (2)

SYN/P adverb_ratio Ratio of adverbs to all words (1), (7), (9)
SYN/P noun_ratio Ratio of nouns to all words (1), (8), (9)
SYN/P verb_ratio Ratio of verbs to all words (1), (9)
SYN/P pronoun_ratio Ratio of pronouns to all words (7), (9)
SYN/P personal_pronoun_ratio Ratio of personal pronouns to all words (7)
SYN/P determiner_ratio Ratio of determiners to all words (8)
SYN/P preposition_ratio Ratio of prepositions to all words (9)
SYN/P verb_present_participle_ratio Ratio of verb (present participle) to all words (7), (8)
SYN/P verb_modal_ratio Ratio of modal verbs to all words (8)
SYN/P verb_third_person_

singular_ratio
Ratio of verbs in 3rd person singular to all words (1)

SYN/P propositional_density Based on POS tags, according to Parsapoor et al. (2023) (2), (6)
SYN/P content_density Based on POS tags, cccording to Parsapoor et al. (2023) (2), (8), (9)

SYN/C NP→PRP Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C ADVP→RB Count of CFG production rules acc. to constituency pars-
ing

(1), (7)

SYN/C NP→DT_NN Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C ROOT→FRAG Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C VP→AUX_VP Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C VP→VBG Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C VP→VBG_PP Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C VP→IN_S Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C VP→AUX_ADJP Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C VP→AUX Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C VP→VBD_NP Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C INTJ→UH Count of CFG production rules acc. to constituency pars-
ing

(1)

SYN/C NP_ratio Ratio to all constituents (9)
SYN/C PRP_ratio Ratio to all constituents (9)
SYN/C PP_ratio Ratio to all constituents (1)
SYN/C VP_ratio Ratio to all constituents (1)
SYN/C avg_n_words_in_NP Avg. number of words in noun phrase (9)

LEX flesch_kincaid The Flesch–Kincaid Grade Level Formula (Kincaid,
1975), a metric of readability.

(2)

LEX avg_word_length Average letters per word (1), (7)
LEX n_words Number of words in transcript (9), (3), (5), (8)
LEX n_unique_words Number of unique words in transcript (5), (8)
LEX avg_sentence_length Average number of words per sentence (3)
LEX words_not_in_dict_ratio Ratio of words not in English dictionary (Used dictionary) (1), (7)
LEX brunets_index Brunét’s index (Brunet et al., 1978), a metric of lexi-

cal richness defined as NV −0.165 , with N the number of
words and V is the number of unique words

(2), (8)

LEX honores_statistic Honoré Statistic (Honoré, 1979), a metric of lexical rich-
ness defined as 100 log(N)

1−V1/V
, with N the number of words

and V is the number of unique words, and V1 the num-
ber of unique words appearing once

(1), (9), (2), (8)

LEX ttr The type-token-ratio (TTR) (Miller, 1981), a measure of
lexical diversity, defined as number of words devided by
number of unique words.

(3), (8)

LEX mattr The moving-average type-token-ratio (Covington and Mc-
Fall, 2010) with window length 20.

(8)

REP avg_distance_between_
utterances

Avg. cosine distance between utterances in transcript, a
feature of repetitiveness, based on Masrani et al. (2017)’s
implementation (Availabe on GitHub)

(1), (7)

REP prop_utterance_dist_below_05 Proportion of sentence pairs where cosine distance ≤
0.5, based on Masrani et al. (2017)’s implementation

(1), (7)

Table 3: Table of all used linguistic features: Feature groups are: Syntactic features based on POS tags
SYN/P, syntactic features based on grammatical constituents SYN/C, lexical features LEX, and features
of repetitiveness REP.

https://github.com/barrust/pyspellchecker/blob/master/spellchecker/resources/en.json.gz
https://github.com/vmasrani/dementia_classifier/tree/1f48dc89da968a6c9a4545e27b162c603eb9a310
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Appendix C: Statistical test results

Word Error Rate (WER)
Table 4 reports results of the generalized linear
mixed-effect model (Formula 2).

Mixed Linear Model Regression Results
===========================================================
Model: MixedLM Dependent Variable: WER
No. Observations: 468 Method: REML
No. Groups: 156 Scale: 0.0104
Min. group size: 3 Log-Likelihood: 174.3157
Max. group size: 3 Converged: Yes
Mean group size: 3.0

-----------------------------------------------------------
Coef. Std.Err. z P>|z| [0.025 0.975]

-----------------------------------------------------------
Intercept 0.633 0.185 3.412 0.001 0.269 0.996
ASR[T.wave2vec2] 0.125 0.012 10.785 0.000 0.102 0.147
ASR[T.whisper] -0.024 0.012 -2.090 0.037 -0.047 -0.002
gender[T.1] 0.012 0.037 0.320 0.749 -0.061 0.085
Label[T.1] 0.118 0.037 3.208 0.001 0.046 0.191
age -0.004 0.003 -1.387 0.166 -0.009 0.002
Group Var 0.050 0.073
===========================================================

Table 4: Generalized linear mixed-effect model to
test for a statistical effects of ASR system, age,
gender, and diagnosis (with Label = 1 (AD),
Label = 0 (Control)) on Word Error Rate (WER).

End-to-end AD classification
Table 5 presents detailed results of the permuta-
tion tests comparing different AD classification set-
tings.

Test Observed P-Value

Manual transcripts: BERT vs. Linguistic+RF: 0.0105 *0.0026
ASR transcripts: BERT vs. Linguistic+RF: -0.0385 *0.0000
BERT: Manual vs. ASR transcripts 0.0794 *0.0000
Linguistic+RF: Manual vs. ASR transcripts 0.0305 *0.0000
BERT: GoogleSpeech vs. Wave2vec2 0.0178 *0.0030
BERT: GoogleSpeech vs. Whisper 0.0362 *0.0000
BERT: Wave2vec2 vs. Whisper 0.0184 *0.0047
Linguistic+RF: GoogleSpeech vs. Wave2vec2 0.0048 0.0196
Linguistic+RF: GoogleSpeech vs. Whisper 0.0171 *0.0000
Linguistic+RF: Wave2vec2 vs. Whisper 0.0123 *0.0000

Table 5: Permutation tests comparing different AD
classification settings. For a test A vs. B, the Ob-
served represents the difference between mean
AUROC across 10 runs of the two settings. P-
Values are calculated as the fraction of times the
absolute value of Observed is smaller than the ab-
solute values of the differences in means in the per-
muted distributions, with * indicating significant re-
sults according to the significance level 0.05/10 =
0.005.

Appendix D: Additional results
including interviewer interactions

Table 6 present classification results in two ver-
sions: a) removing the interviewer section from au-
dio and transcriptions (as presented in the main

paper), b) retaining the interviewer section in au-
dio and transcript. We observe that the BERT-
based approach profits from the inclusion of the
interviewer sections, indicating that this additional
context is being picked up by the model.

Appendix E: Feature importance
analysis

Figure 3 displays an overview of feature impor-
tance for all linguistic features. This figure contains
the same information as Figure 2 (C), but the order-
ing of features simplifies interpretation.
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Figure 3: Mean absolute SHAP value as a met-
ric of feature importance for all linguistic features.
Features are sorted by their importance when
used on manual transcripts (right-most column).
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Without Interviewer With Interviewer
Approach AUROC Accuracy AUROC Accuracy

Manual BERT 0.899± 0.009 0.837± 0.013 0.884± 0.012 0.797± 0.020
Manual Lingu+RF 0.888± 0.003 0.821± 0.011 0.886± 0.003 0.794± 0.007

Google BERT 0.837± 0.010 0.752± 0.015 0.855± 0.005 0.790± 0.013
Whisper BERT 0.801± 0.009 0.756± 0.015 0.827± 0.005 0.765± 0.011
Wave2vec2 BERT 0.819± 0.013 0.747± 0.013 0.840± 0.006 0.778± 0.014

Google Lingu+RF 0.865± 0.004 0.792± 0.007 0.862± 0.003 0.787± 0.011
Whisper Lingu+RF 0.848± 0.004 0.785± 0.011 0.816± 0.005 0.758± 0.010
Wave2vec2 Lingu+RF 0.860± 0.004 0.773± 0.006 0.797± 0.004 0.733± 0.014

Table 6: Accuracy and AUROC classification results (mean ± standard deviation over 10 runs) for dif-
ferent transcriptions and AD classification approaches. Manual refers to manual transcriptions, Google,
Whisper, and Wave2vec2 refer to ASR transcriptions. BERT represents the fine-tuned BERT approach,
while Lingu+RF refers to the approach using linguistic features and Random Forest. Results are pre-
sented excluding interviewer utterances (Without Interviewer, as described in the main paper) and with
interviewer utterances (With Interviewer, additional results).
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