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Abstract
We propose an approach that improves the performance of VMT (Video-guided Machine Translation) models, which
integrate text and video modalities. We experiment with the MAD (Movie Audio Descriptions) dataset, a new dataset
which contains transcribed audio descriptions of movies. We find that the MAD dataset is more lexically rich than the
VATEX (Video And TEXt) dataset (the current VMT baseline), and we experiment with MAD pretraining to improve
performance on the VATEX dataset. We experiment with two different video encoder architectures: a Conformer
(Convolution-augmented Transformer) and a Transformer. Additionally, we conduct experiments by masking the
source sentences to assess the degree to which the performance of both architectures improves due to pretraining
on additional video data. Finally, we conduct an analysis of the transfer learning potential of a video dataset and
compare it to pretraining on a text-only dataset. Our findings demonstrate that pretraining with a lexically rich dataset
leads to significant improvements in model performance when models use both text and video modalities.

Keywords: Machine Translation, Statistical and Machine Learning Methods, Word Sense Disambiguation

1. Introduction

Video-guided Machine Translation (VMT) is a sub-
field of Multimodal Machine Translation research
that aims to translate spoken or written language
aligned with video frames into another language
(Wang et al., 2019). This task is challenging due to
the complexity of video data and the need to inte-
grate multiple modalities such as audio, visual, and
textual cues. Multimodal Machine Translation has
traditionally focused on combining images and text
to obtain a more accurate translation while recently,
VMT has had more attention from the research
community (Chen et al., 2022; Gu et al., 2021; Li
et al., 2022). Because of this, there is much room
for improvement in the accuracy and efficiency of
VMT models.

In this work, we address the challenges of VMT
by experimenting with different datasets and a novel
model architecture. Specifically, we focus on the
MAD (Movie Audio Descriptions) dataset (Soldan
et al., 2022). The MAD dataset contains transcribed
audio descriptions of movies that are typically used
for visually impaired individuals to understand the
visual elements of a movie. To our knowledge, this
dataset has not yet been exploited for VMT tasks
and presents an opportunity to improve upon the
current state-of-the-art models. We also employ the
OpenSubtitles dataset as a large, text-only dataset
to assess the potential of text-only pretraining for
multimodal systems (Lison and Tiedemann, 2016).

In addition to these datasets, we propose a
model architecture that takes advantage of a Con-
former (Gulati et al., 2020), which is a convolutional
transformer. The Conformer is designed to pro-
cess variable-length sequences efficiently and has

shown to be effective in a wide range of speech and
language tasks such as Automatic Speech Recog-
nition (ASR). By incorporating the Conformer into
the VMT model architecture, we aim to enhance
the performance of the model and contribute to the
development of more effective multimodal machine
translation systems.

These VMT models receive multimodal input in
the form of tokenized source text to be translated
and sub-sampled frames of videos (at 5 frames per
second) in the form of pre-extracted features. Tar-
get text translation predictions are output by each
model.

All code used in our experiments can be found
at this Github repository1.

2. Related Works

Multimodal machine translation was first explored
in a shared task (Specia et al., 2016) where source
language captions were translated into a target
language using an image to increase the accuracy
of the translation. Many other works have explored
using image context to guide translation. One such
work found that utilizing a decoder that attends to
the image and source text separately outperformed
decoders that attend to them together (Calixto et al.,
2017).

The primary benchmark for Video-guided Ma-
chine Translation is the VATEX (Video And TEXt)
dataset (Wang et al., 2019). This dataset consists
of clips taken from YouTube videos with labels cre-
ated by crowdsourced workers. Each video clip
in the VATEX dataset has ten corresponding la-

1https://github.com/byu-matrix-lab/vmt-pretraining
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bels in both English and Chinese, five of which are
parallel translations from English to Chinese. It
also contains pre-extracted video features using
the pretrained I3D model by Carreira and Zisser-
man (2017). I3D was trained on the DeepMind
Kinetics human action video dataset (Kay et al.,
2017). VATEX was the subject of the 2020 VMT
Challenge.

The winning model for this challenge was sub-
mitted by Hirasawa et al. (2020), which is based on
keyframe-based feature extraction and positional
encoding for video contexts. Their model uses
hierarchically-attentive RNNs as its base. This
model outperformed transformer-based architec-
tures by using an ensemble of video features. How-
ever, the video context tended to only marginally
improve the performance.

Recent work by Yang et al. (2022) has found
that the short and straightforward labels in the VA-
TEX dataset are able to produce accurate transla-
tions alone, without relying on the video for support.
They propose that future VMT datasets should fo-
cus on the problem of live translation of languages
with different structures such that incomplete utter-
ances can be complemented using video context.
In particular, they suggest creating VMT datasets
that address linguistic particularities such as word
order and gender marking.

The transcriptions of movie audio descriptions in
the MAD dataset (Soldan et al., 2022) represent an-
other source of language that is strongly correlated
with video (Rohrbach et al., 2017). These transcrip-
tions present large contexts for machine transla-
tion tasks, making them also relevant for context-
aware NMT (Neural Machine Translation) tasks,
such as lexical cohesion (Lyu et al., 2022). The
MAD dataset only contains transcriptions for En-
glish, and is presented primarily for video caption-
ing tasks. MAD video features were extracted using
CLIP (Contrastive Language-Image Pre-training)
(Radford et al., 2021).

State-of-the-art MT (Machine Translation) mod-
els are based on the Transformer architecture
(Vaswani et al., 2017). The Conformer was pro-
posed by Gulati et al. (2020) for the task of Auto-
matic Speech Recognition (ASR). It takes advan-
tage of the attention mechanism while also using
convolutions in order to extract audio features (or
in our case, visual features) to be attended to. The
authors reported state of the art performance, and
competitive performance with a smaller model. It
has not been previously applied to the task of video-
guided machine translation as a video encoder,
though it has been used in Speech Translation (Jia
et al., 2021).

In March 2023, Han et al. (2023) released MAD-
v2, an enhanced iteration of the MAD (Movie Au-
dio Descriptions) dataset. This updated version

exhibits a reduced level of noise compared to its
predecessor, potentially leading to improved out-
comes in various applications. The dataset’s im-
proved quality holds promise for generating more
accurate and reliable results. In July 2023, Kang
et al. (2023) released BigVideo, a large, multimodal
VMT dataset which includes a test set that contains
ambiguous words which can be resolved by video
context. We concluded this work before the release
of either of these datasets, therefore leave the use
of them to future work.

3. Methodology

3.1. Data

In our experiments, we utilize MAD2, OpenSubti-
tles3, and VATEX4 for training. We only evaluate
on the VATEX data set.

We focus on the English to Chinese VMT task,
since that is the language pair of the VATEX dataset.
However, as the MAD dataset is only in English, we
pre-translate the English transcriptions to Chinese
using Google translate (Google, 2023). The initial
translations are generated without the benefit of
visual context. Despite the flaws of Google Trans-
late’s machine translations, we opt to use them
for the sake of increasing the amount and lexical
diversity of both source and target language pre-
training data. Furthermore, the machine-translated
text aligns with the video embeddings from the MAD
dataset, which proves valuable in providing contex-
tual information during training. We note that this
technique of training on machine-translated sen-
tences has been previously used for knowledge
distillation (Kim and Rush, 2016).

To control for noise in the dataset due to po-
tential inaccuracies of the English ASR transcrip-
tions and Google’s machine translations, we run
the reference-less metric COMET-QE (Rei et al.,
2020) on the translation pairs and filter out training
data pairs with a score equal to zero, keeping only
segments with a positive score. The MAD dataset
is thus reduced to approximately 69% of it’s original
size, filtering out 87,053 of the 280,183 sentences.

The MAD dataset was originally created for video
captioning tasks, and the names of movie charac-
ters were excluded from its validation and test sets.
A purely visual model would have no context for
predicting names (the names are replaced with
the token "SOMEONE"). For the task of VMT, the
source sentence can provide the character names
that will be translated into the target language. Be-
cause of this, we rely solely on the MAD training
set, incorporating character names instead of the

2https://github.com/Soldelli/MAD
3https://opus.nlpl.eu/OpenSubtitles-v2018.php
4https://eric-xw.github.io/vatex-website/index.html



15890

Train Validation Test
Videos Text Videos Text Videos Text

MAD 183,130 183,130 10,000 10,000 - -
VATEX 25,991 129,955 1,500 7,500 1,500 7,500
OpenSubtitles - 10,643,121 - 560,165 - -

Table 1: Size of each dataset by number of unique videos and text segments.

generic "SOMEONE" tokens. We randomly se-
lected 10,000 sentences from the filtered MAD train-
ing set to use as a validation set when training.

Since the VATEX dataset did not publicly release
translations for the test set, we follow the example
of Li et al. (2022) and Chen et al. (2020) in randomly
splitting the validation set equally to provide valida-
tion and test datasets. For our experiments, we only
draw from the five aligned English-Chinese transla-
tion pairs for each video clip in the VATEX dataset,
ignoring the other segments in each language that
are not translations of one another. Each video clip
and the five aligned translation pairs associated
with it are only in the validation set or the test set,
but not both.

We used the OpenSubtitles English to Chinese
data for text-only pretraining experiments. We used
the data as is, and randomly selected five percent
of the segments to use in the validation set when
pretraining.

Table 1 gives the number of videos and trans-
lated segments for each dataset. Note that the
filtered MAD dataset adds many video contexts
for training beyond what is available solely in the
VATEX dataset, while the OpenSubtitles dataset
provides exponentially more text segments.

Since Yang et al. (2022) concluded that the sim-
pler sentences in the VATEX dataset do not require
the videos for more accurate translations, we ex-
plore the lexical richness of the MAD dataset com-
pared to VATEX, believing that models will benefit
from training on data with greater lexical diversity.
We use two lexical diversity metrics implemented
in the LexicalRichness package (Shen, 2022) for
comparisons: Measure of Textual Lexical Diversity
(MTLD) (McCarthy and Jarvis, 2010) and Mean
Segmental Type-Token Ratio (MSTTR) (Johnson,
1944). Alongside MAD and VATEX, we incorpo-
rate two supplementary datasets for comparison:
MSR-VTT (Xu et al., 2016), which was previously
evaluated against VATEX by Wang et al. (2019),
and the OpenSubtitles English to Chinese corpus
(Lison and Tiedemann, 2016), serving as a large
text-only corpus baseline.

Table 2 provides lexical richness scores. Con-
sistent with the findings of Wang et al. (2019), the
MSR-VTT scores demonstrate lower MTLD and
MSTTR scores compared to VATEX. However, both
OpenSubtitles and MAD are more lexically diverse

MTLD MSTTR
MAD 86.515 0.709
OpenSubtitles 64.473 0.688
VATEX 32.724 0.527
MSR-VTT 26.739 0.507

Table 2: Comparison of lexical richness scores
Measure of Textual Lexical Diversity (MTLD)
and Mean Segmental Type-Token Ratio (MSTTR)
across four datasets: Movie Audio Descriptions
(MAD), OpenSubtitles, Video And TEXt (VATEX),
and Microsoft Research Video to Text (MSR-VTT)

than VATEX, with MAD obtaining the highest scores
among all the datasets.

Due to the copyright of the movies in the MAD
dataset, Soldan et al. (2022) do not include the
raw videos. Instead, the authors include features
generated by CLIP, which represents images and
text jointly in the same space (Radford et al., 2021).
Like in the MAD dataset, Wang et al. (2019) do
not provide the raw videos in the VATEX dataset.
Instead, they offer pre-generated features and
YouTube video IDs. The provided features are gen-
erated by the pretrained I3D (Inflated 3D Convnet)
model, which inflates a 2D ConvNet for classifica-
tion into a temporal third dimension (Carreira and
Zisserman, 2017).

Because of the disparity between the provided
I3D features of VATEX and the CLIP features of
MAD, we retrieve the raw videos from the VATEX
dataset collected using the YouTube video IDs and
then extract the CLIP features from those videos
using the pretrained CLIP model5 which was used
on MAD. We use these CLIP features for all ex-
periments. We remove any segments for which
the video is no longer available6, leaving us with
88.0% of the training set, and 88.6% of the valida-
tion set. These features are available in our Github
repository7.

5https://huggingface.co/openai/clip-vit-large-
patch14

6We downloaded the VATEX dataset videos in June
2023

7https://github.com/byu-matrix-lab/vmt-
pretraining/releases/tag/vatex-clip-features
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3.2. Architecture

Figure 1: The high-level architecture used for each
model. On the left, the overall architecture mainly
consists of N text encoder blocks, N video encoder
blocks, and N decoder blocks. The decoder block is
shown in greater detail on the right side of the figure.
It is similar to work by Vaswani et al. (2017) but
contains an added attention layer for video attention.
It takes a source sentence and video (at 5 frames
per second) as input and it outputs the sentence in
the target language.

Each model used in our experiments is an
encoder-decoder model utilizing a doubly attentive
Transformer as inspired by (Calixto et al., 2017).
The decoder separately attends to the video encod-
ing, the source text encoding, and itself. This archi-
tecture enables control of what context is passed
to the decoder, as both encoder blocks have the
option of being included or excluded during the
various experiments. Figure 1 shows the overall
architecture of our model.

A Transformer (Vaswani et al., 2017) text en-
coder is used in each experiment. We experiment
with both a Conformer (Gulati et al., 2020) video
encoder and a Transformer video encoder. The
Conformer encoder is a convolution-augmented
Transformer which takes advantages of a convo-
lutional neural network’s ability to exploit local fea-
tures while maintaining the Transformer’s ability to
exploit global features.

We use six encoder and decoder layers for all
experiments. The CLIP features of a 5-frame-per-
second video are the input for the video encoder.
We use the CLIP L14 features, which have a size of

768 dimensions. We add a projection layer before
the video encoder that projects the features onto
512 dimensions to match the d_model shape of the
text encoder and decoder. This projection layer is
exchanged after pretraining on MAD to match the
size of the VATEX dataset input. The output of the
decoder is a translated text segment.

We employed two baseline models for compar-
ison. The first baseline model has a text-only
Transformer-based architecture (Vaswani et al.,
2017) that does not incorporate video features. In
addition, we utilized the code provided by Wang
et al. (2019) to train their multimodal sequence-to-
sequence model, which we refer to as the VATEX
baseline. The VATEX baseline consists of LSTM
encoders and decoders, enabling the model to pro-
cess both textual and visual information.

All of our models are implemented using Hug-
gingFace and PyTorch. We use BARTForCondi-
tionalGeneration (Lewis et al., 2020) as the base for
the Transformer and Wav2Vec2Conformer (Wang
et al., 2020) for the Conformer implementation.

See additional experiment details in Appendix A.

3.3. Experiments
In our experiments, we assess the performance of
each model using two metrics: BLEU, calculated
with SacreBLEU (Post, 2018), and COMET (Rei
et al., 2022). For computing the BLEU scores, we
employ default SacreBLEU parameters along with
Chinese tokenization. To evaluate using COMET,
we utilize the latest COMET model, wmt22-comet-
da. We conduct statistical significance testing on
the COMET scores using their dedicated statistical
testing tool, which employs the Paired T-Test and
bootstrap methods proposed by Koehn (2004).

Although the original VMT task was evaluated
using only BLEU scores, we evaluated the pro-
posed architectures and the VATEX baseline using
both BLEU and COMET because recent work has
shown the latter to be superior (Freitag et al., 2022).
We note that the wmt22-comet-da model has been
fine tuned on the English to Chinese translation
evaluation task from the WMT 20 DA (direct as-
sessment) data (Rei et al., 2022). This COMET
model produces scores between 0 and 1, where
higher scores indicate better performance.

In our initial experiment, we compared the perfor-
mance of each model architecture when pretrained
on MAD or OpenSubtitles with their performance
when trained from scratch on the VATEX dataset.

Following the approach of Yang et al. (2022), we
conducted experiments with both pretrained and
non-pretrained models, considering different pro-
portions of masked tokens in the source sentence.
We use two approaches to masking: randomly se-
lecting tokens and masking the end of the sentence.
Specifically, we masked 15% and 30% of each
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Model COMET BLEU
VATEX (baseline) 0.7227 30.4
Text-only Transformer 0.7302 29.7
Text-only Transformer - MAD pretrained 0.7569* 34.8
Transformer Video Encoder 0.7337 30.3
Transformer Video Encoder - MAD pretrained 0.7573* 35.0
Conformer Video Encoder 0.7344 29.4
Conformer Video Encoder - MAD pretrained 0.7590* 34.6

Table 3: English to Chinese results of each model architecture on the VATEX test set, when trained solely
on the VATEX train set vs. when pretrained on MAD and then fine-tuned on VATEX. COMET and BLEU
scores are shown. Models marked with an asterisk (*) have significantly different (p < 0.05) COMET
scores compared to other models of the same architecture. In this test, there was no significant difference
between our architectures when trained on the same data.

source sentence and compared the resulting BLEU
and COMET scores. Masking was accomplished
by replacing tokens in the source with a <mask>
token. This approach aligns with the suggestion of
Yang et al. (2022) to focus on simultaneous trans-
lation tasks where the complete source sentence
is unavailable. We apply masking both at training
time and inference time for these experiments.

We note that Yang et al. (2022) has already
conducted an extensive error analysis for VMT
translations of masked sentences using the VA-
TEX dataset. We chose to focus our experiments
on comparing the effects of pretraining, and we do
not include a similar analysis of our own results.

In each experiment, we evaluated the following
models:

• VATEX (baseline)
• Text-only Transformer
• Transformer Video Encoder
• Conformer Video Encoder
We also evaluated pretraining on OpenSubti-

tles in our experiments to assess the effect of pre-
training a multimodal system on a large text-only
dataset.

The VATEX baseline was trained using the code
provided by its authors with all the default model
parameters.8 All models were trained to conver-
gence using half of the split VATEX validation set,
as described in Section 3.1 above. See Appendix
A for more training details.

4. Results

4.1. MAD Pretraining
We evaluated the performance of the Conformer
and Transformer video encoder architectures by

8https://github.com/eric-xw/
Video-guided-Machine-Translation

comparing their COMET and BLEU scores with
those of the VATEX baseline and the text-only
Transformer baseline. Additionally, we evaluated
the effectiveness of each model architecture when
pretrained on MAD video and text data, followed by
fine-tuning on VATEX. Results are shown in Table
3.

The VATEX baseline model produces output with
the lowest COMET score, which has a statisti-
cally significant difference from all MAD pretrained
COMET score results. Each model pretrained on
MAD outperforms the same model trained only on
VATEX based on both BLEU and COMET scores
(increasing by an average of 5 BLEU points and
a COMET score of 0.025). The Transformer and
Conformer video encoder COMET scores do not
show any statistically significant difference between
each other.

4.2. Masked Source

We proceeded to evaluate the previously mentioned
models when masking source sentences accord-
ing to the percentages mentioned previously (see
section 3.3). For simplicity, results of all masking
experiments are presented in Table 4, which also in-
cludes the delta improvement in COMET and BLEU
scores when comparing pretraining on the MAD
dataset to no pretraining. Random masking and
end masking results are separated.

As can be seen in Table 4, the overall improve-
ment gained from pretraining on MAD decreases
as the percentage of masked tokens increases
for all model architectures. We also observe that
when masking the end of source segments, the
text-only transformer model has the largest COMET
and BLEU performance gain compared to the two
model architectures that take video context into ac-
count. We hypothesize that the video context is
adding noise, which is harming the models’ ability
predict the masked token translations. Because

https://github.com/eric-xw/Video-guided-Machine-Translation
https://github.com/eric-xw/Video-guided-Machine-Translation
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End Masking No Masking 15% Masking 30% Masking
COMET BLEU COMET BLEU COMET BLEU

Text-only Transformer 0.7302 29.7 0.7018 26.7 0.6786 23.6
Text-only Transformer - MAD 0.7569 34.8 0.7275 30.5 0.6985 26.7
∆ 0.0267 5.1 0.0257 3.8 0.0199 3.1
Transformer Video Encoder 0.7337 30.3 0.7129 26.5 0.6941 24.8
Transformer Video Encoder - MAD 0.7573 35 0.7275 30.5 0.7011 27.1
∆ 0.0236 4.7 0.0146 4 0.007 2.3
Conformer Video Encoder 0.7344 29.4 0.7157 27.2 0.6985 25
Conformer Video Encoder - MAD 0.759 34.6 0.7375 31.1 0.7147 27.4
∆ 0.0246 5.2 0.0218 3.9 0.0162 2.4

Random Masking No Masking 15% Masking 30% Masking
COMET BLEU COMET BLEU COMET BLEU

Text-only Transformer 0.7302 29.7 0.711 25.6 0.6792 21.3
Text-only Transformer - MAD 0.7569 34.8 0.7349 30.8 0.7092 25.4
∆ 0.0267 5.1 0.0239 5.2 0.03 4.1
Transformer Video Encoder 0.7337 30.3 0.7056 25.9 0.7028 22.9
Transformer Video Encoder - MAD 0.7573 35 0.7345 30.4 0.7064 25.4
∆ 0.0236 4.7 0.0289 4.5 0.0036 2.5
Conformer Video Encoder 0.7344 29.4 0.7161 26.1 0.7007 23
Conformer Video Encoder - MAD 0.759 34.6 0.7414 31.1 0.7267 26.6
∆ 0.0246 5.2 0.0253 5 0.026 3.6

Table 4: English to Chinese language direction. ∆ Change in COMET/BLEU Score by video encoder
architecture with masked source sentences. Rows with "MAD" indicate the MAD pretrained experiments.
For random masking, masked tokens are picked uniformly from across the source sentence, while for end
masking, the final tokens in the sentence are masked. The highest changes in score are bolded. For all
models, pretraining consistently improved model performance. We note that the first column, No Masking,
contains the same results as Table 3, but they are included here for reference.

Model COMET BLEU
Text-only - Text-only MAD pretrained 0.7569 34.8
Text-only - Text-only OpenSubtitles pretrained 0.7662* 36.4
Transformer Video Encoder - Text-only MAD pretrained 0.7576 34.6
Transformer Video Encoder - MAD with Video pretrained 0.7573 35.0
Transformer Video Encoder - Text-only OpenSubtitles pretrained 0.7675* 36.8
Conformer Video Encoder - Text-only MAD pretrained 0.7582 34.8
Conformer Video Encoder - MAD with Video pretrained 0.7590 34.6
Conformer Video Encoder - Text-only OpenSubtitles pretrained 0.7684* 36.5

Table 5: English to Chinese results comparing pretraining on text-only datasets with pretraining using
video context. Models marked with an asterisk (*) have significantly different (p < 0.01) COMET scores
compared to other models of the same architecture. Significance scores were computed with Tukey HSD.
(Tukey, 1949)

of these results, we conducted an ablation study
to investigate the overall effect of pretraining with
video (see Section 4.5).

4.3. Text-Only Pretraining
In order to see the effect of video data pretrain-
ing, we compare different pretraining datasets for

the English to Chinese task: MAD video and text,
MAD text only, and OpenSubtitles text. Results are
shown in Table 5.

We also conduct reference-based human rank-
ing evaluations of the same pretraining groups for
the Chinese to English direction. The evaluation
analyzed Chinese to English translations due to the
local availability of native English speakers. This
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Type of Masking No Pretraining MAD with video Text-only MAD OpenSubtitles
No Masking 2.4550 2.0600* 2.0150* 1.8500*
Mask 30 End 2.5050 2.4150 2.3650 2.1200*
Mask 30 Rand 2.5700 2.5050 2.2600 2.1200*

Table 6: Chinese to English results of reference-based ranking human evaluation comparing different
pretraining strategies. Sentences were rated from 1 to 4, where 1 is the best and 4 is the worst, and ties
were allowed. Results marked with an asterisk (*) have significantly different (p < 0.01) scores compared
to models without any pretraining.

assessment is performed for models trained with
no masking, the last 30% of the sentence masked,
or 30% of the words in the sentence randomly
masked. For each of the listed groups, we ran-
domly select 50 different segments translated by
both Conformer Video Encoder models and Trans-
former Video Encoder models for a total of 100
segments per group. We combined the two model
architecture predictions due to all validation and
test sets resulting in similar scoring across all auto-
matic metrics. We had two native English speakers
evaluate sentences produced by models with the
four pretraining strategies. The evaluators were
given the target English sentence and asked to
rate the translations by how well they conveyed the
meaning of the original sentence. The averages of
these ratings by category are presented in Table 6.

On the OpenSubtitles dataset for English to sim-
plified Chinese (which has around 11M segments),
we found significant performance gains for all mod-
els. The Conformer video encoder model, pre-
trained on OpenSubtitles text and fine-tuned on
the VATEX video and text training set, achieved the
highest COMET score on our VATEX test set and
had the best human evaluation ranking in Table
6. This result highlights the efficacy of pretraining
with a substantial text corpus and shows the advan-
tages for a multimodal machine translation system
when it is fine-tuned on its distinct modalities, such
as video and text. Additionally, pretraining with
MAD video and text data does not show significant
improvements over pretraining with just MAD text
data.

4.4. Related Work Comparison Validity

Although Hirasawa et al. (2020) achieved the top-
performing model in the 2020 VMT challenge, we
were unable to directly compare our results with
theirs. This limitation arose due to the unavailability
of their model code and the utilization of a private
test set that differs from our own. However, it is
important to note that we did employ the same
validation set for evaluation purposes, although we
sampled only half of the validation set compared to
their usage of the entire set. The remaining half of
the validation set was reserved as our independent

Architecture ∆COMET ∆BLEU
Comformer 0.0013 0.0000
Transformer -0.0165 -0.8571*

Table 7: Ablation study of the effects of pretrain-
ing with CLIP embeddings from MAD compared
to training with only the text from MAD. Negative
values indicate that including the videos decreased
performance. The asterisk (*) indicates that the
transformer BLEU score is significant with p < 0.01.

test set.

4.5. Ablation Study
We ran an ablation study to isolate the effects of
including the CLIP embeddings when pretraining
on the MAD dataset. The average change in the
COMET and BLEU scores across all tests by video
encoder architecture is depicted in Table 7. Note
that both average effects tend to be negative or
close to zero.

As there was not a significant effect from pretrain-
ing with CLIP video embeddings, the pretraining
improvements may be attributed to the additional
text from the MAD dataset.

5. Discussion

In all of our tests there was not a significant dif-
ference between the Conformer and Transformer
video encoders. Since our models process pre-
computed video features, it would be interesting
to see if there is any advantage to using the Con-
former on raw video input, where we would expect
the convolutions to be more useful.

While it is not possible to conduct a direct compar-
ison between our results and the winning model of
the 2020 VMT challenge, it is worth noting that our
text-only transformer model, pretrained on Open-
Subtitles, achieved a BLEU score of 36.4 without
any video context on its validation set. This score
is within 0.1 BLEU of the winning model’s reported
validation score of 36.48 (Hirasawa et al., 2020),
with the assumption that the random subset of the
validation set we used is representative of the full



15895

validation set. This strongly supports the findings of
Yang et al. (2022), which concludes that the text in
the VATEX dataset is sufficiently simple to translate
without video context.

As can be seen across every experiment, pre-
training with the video features does not seem to
improve the models performance. We suspect that
the video encoders employed were overly complex
given that they started with high-level CLIP em-
beddings. Providing the raw videos to the video
encoders could help improve the utilization of the
video context for translation. As it is, we hypothe-
size the lack of improvement to be attributed to the
substantial amount of noise present in the video
data, which may pose challenges for the models
in effectively discerning and learning relevant infor-
mation from the video frames. This behavior could
also have been caused by the VATEX dataset itself
not needing additional video context to produce
accurate translations.

We suggest that video context may show greater
promise when translating from a less marked lan-
guage to a more highly marked language by helping
in the disambiguation of the more marked words
and phrases. The English and Mandarin Chinese
of VATEX may not be the most useful languages
for evaluating the ability of video context to disam-
biguate words and phrases. We encourage further
research in VMT between languages that would
benefit more from the potential disambiguation pro-
vided by video context.

As a whole, our results show the potential of
video-guided or multimodal translation systems to
benefit from pretraining on large, varied text cor-
pora. These corpora are simpler to build than mul-
timodal corpora, yet can yield significant improve-
ments in the final system. We believe that pre-
training on a large text corpus and finetuning on
a small multimodal dataset that has been cleaned
and curated for variety will yield the best results
when training VMT systems.

6. Conclusion

We have proposed an approach to Video-guided
Machine Translation (VMT) that improves the per-
formance of MT models that integrate text and video
modalities. We evaluated the benefits of pretrain-
ing on the multimodal Movie Audio Descriptions
(MAD) dataset and the large text-only OpenSubti-
tles corpus, finding that pretraining a VMT model
on a large amount of text before finetuning to the
specific video and text modalities yields significant
improvement to both COMET and BLEU scores.

In our experiments, we showed that each pro-
posed model, including the text-only baselines,
outperforms the LSTM-based model employed by
Wang et al. (2019) based on COMET scores. When

pretraining on the multimodal MAD dataset, we see
large gains in performance for each model architec-
ture. We also showed that pretraining on text-only
datasets can improve models that are fine-tuned on
multiple modalities. In some cases, we observed
greater improvements in COMET and BLEU scores
when employing text-only pretraining as opposed
to pretraining with both text and video. Possible
reasons for this are discussed in section 5 above.

Masking source tokens can be useful for see-
ing how well a VMT model leverages video fea-
tures. We show that for randomly masked tokens
and end-of-sentence masking, both architectures
that include video context generally achieve higher
COMET and BLEU scores as the percentage of
masked tokens increases. In the case of end-of-
sentence masking, these results show the potential
benefit of using a video encoder for simultaneous
MT, where the incomplete translation of a live video
could leverage the video context to generate a hy-
pothesis translation.

7. Future Work

We suspect that the video encoders employed were
overly complex given that they started with high-
level CLIP embeddings. We would like to repeat
experiments with a simpler video encoder to re-
duce the noise that the video adds to the trans-
lation. Using a conformer as a video encoder
may benefit from being trained on raw video data
rather than pre-computed video features, and ex-
periments comparing the raw video and the pre-
computed video features could yield informative
results.

As mentioned in Section 2, the BigVideo dataset
(Kang et al., 2023) has the potential to more ac-
curately evaluate VMT systems and their ability to
disambiguate semantically ambiguous segments.
Evaluating pretraining methods on the BigVideo
dataset and performing a comparative error analy-
sis are important next steps.

Our research could be extended to several other
domains, including multilingual video captioning,
unsupervised machine translation, and simultane-
ous translation. We anticipate that VMT model
architectures that excel in handling masked data
will also yield superior performance in both unsu-
pervised and simultaneous translation tasks. Fur-
thermore, we believe that the updated MAD dataset
(Han et al., 2023) will enable significant progress
in exploring in these areas.

8. Limitations

In our assessment of the VATEX dataset, several er-
rors and inconsistencies have been identified. No-
tably, a considerable portion of the VATEX dataset
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contains phrases such as "music playing in the
background," "as a unseen voice narrates," "a per-
son talks about," etc. These textual cues, unfor-
tunately, could not be effectively leveraged by the
video model due to the absence of corresponding
audio data within the video features. Furthermore,
several textual descriptions within the dataset did
not faithfully depict the actual events in the videos.
Consequently, we are unsure of the reliability of the
VATEX dataset as a benchmark for assessing VMT
models.

Addressing these limitations is crucial for refining
the evaluation of VMT models. The utilization of a
more refined version of VATEX, achieved through
rigorous cleaning and verification, or the introduc-
tion of an entirely new dataset dependent on video
context for disambiguation, holds the potential to be
a more accurate and dependable metric for gauging
the performance of VMT.

As stated previously, using Google Translate to
generate translations for MAD could decrease each
model’s ability to translate accurately. Using human
post-edited translations for the MAD dataset may
improve pretraining results due to the higher quality
translations in a post-edited dataset.

9. Ethical Considerations

We publish our findings with the goal of improv-
ing the quality of translations that can benefit from
visual context, and we encourage the community
to consider situations were Video-Guided Machine
Translation can improve the availability of resources
in global societies.

We also note that many of the datasets used in
our research were gathered from existing content
(movies and YouTube videos) without the express
consent of the creators. This issue is widely preva-
lent when gathering datasets for machine learning
research. In our case, we note that none of the
datasets used distribute the original content, and
that the models created do not compete with the
content creators.
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A. Experiment Details

Table 8 presents the training hyperparameters used
in all of our experiments. Every model was trained
on an NVIDIA A100 80GB GPU. We use version
0.5.1 of the LexicalRichness package (Shen, 2022).

Table 9 presents the approximate average run-
time of training and inference for each model. Note
that the inference and training runtimes include pre-
training on MAD, pretraining on OpenSubtitles, and
training on VATEX.

Hyperparameter Value
Video Encoder Architecture Conformer,

Transformer
Text Encoder Architecture Transformer
Decoder Architecture Transformer
Feed Forward Network Dim 2048
Attention Heads 8
Video Encoder Layers 6
Text Encoder Layers 6
Decoder Layers 6
Optimizer Adam
Activation Function Swish
Learning Rate 1e-4
Batch Size 32
Dropout Rate 0.1

Table 8: Hyperparameters of each proposed model:
Conformer Video Encoder, Transformer Video En-
coder, and Text-only Transformer

Model Average Runtime
VATEX (Baseline) Training 11.5 total hours

Inference -
Text-only Training 10 total hours

Inference 603 tokens/sec
Transformer Training 13 total hours

Inference 570 tokens/sec
Conformer Training 12 total hours

Inference 566 tokens/sec

Table 9: "Text-only" refers to the Text-only Trans-
former model, "Transformer" refers to the Trans-
former Video Encoder architecture, and "Con-
former" refers to the Conformer Video Encoder
architecture. The approximate average runtime
includes pretraining on MAD or OpenSubtitles and
training on VATEX, all to convergence. Inference
is tokens per second. Training and Inference run-
times are reported separately.
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