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Abstract
Simile tasks are challenging in natural language processing (NLP) because models require adequate world
knowledge to produce predictions. In recent years, pre-trained language models (PLMs) have succeeded in NLP
since they learn generic knowledge from a large corpus. The knowledge embedded in PLMs can be used for different
kinds of Simile tasks. However, previous work usually explored one type of simile knowledge for a specific simile
task, how to fully utilize different types of knowledge embedded in the PLMs requires further exploration. This paper
proposes a self-verified method for exploring simile knowledge from PLMs, which allows the PLMs to leverage
one type of simile knowledge to self-validate another. To this end, we first enhance PLMs with a novel multi-level
simile recognition (MLSR) task that trains PLMs to evaluate the quality of similes. Then the PLMs leverage this
evaluation score to assist the simile interpretation and generation tasks. In this way, we connect different types of
simile knowledge in PLMs and make better use of them. Experiments on different pre-trained models and multiple
publicly available datasets show that our method works for different kinds of PLMs and can explore more accurate
simile knowledge for PLMs. Our code/data will be released on GitHub.

Keywords: Simile, Pre-trained language models, Self-verified

1. Introduction

A simile is a common linguistic phenomenon in
daily communication and plays an important role
in human language to make utterances more vivid,
interesting, and graspable (Niculae and Danescu-
Niculescu-Mizil, 2014; Zhang et al., 2021). A sim-
ile compares two things from different categories
(called the tenor and the vehicle) via shared proper-
ties (Paul, 1970). The tenors and the vehicles are
usually connected with comparator words such as
"like" or "as". Table 1 shows several examples of
similes. For instance, the first sentence "The man
is as strong as a bull." is a simile where the tenor is
"The man", the vehicle is "a bull", the comparator
is "as ... as" and the shared property is "strong". In
contrast, the third sentence is not a simile since it
compares two things in the same category. This
kind of linguistic phenomenon is usually named
literal in simile research (Aghazadeh et al., 2022;
Maudslay and Teufel, 2022).

There are a variety kinds of simile tasks in NLP.
Different kinds of simile tasks require models to pos-
sess different types of simile knowledge. For exam-
ple, the simile recognition (SR) task is a binary clas-
sification task (Tsvetkov et al., 2014; Mohler et al.,
2016; Steen, 2010; Li et al., 2022) which requires
models to judge whether a text sequence (e.g. a
triplet or a sentence) is simile or literal. The simile
interpretation (SI) task requires models to generate
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Examples Simile?
1 The man is as strong as a bull. Yes
2 Tom runs so fast, like a rabbit. Yes
3 The girl looks like her mother. No
4 The girl looks like an angel. Yes
5 A: Arguing with parents is not wise. Yes

B: It is like throwing an egg at a rock.

Table 1: Simile and literal examples. Underlined
font means tenors and italic font means vehicles.

an interpretation text for a simile (Bizzoni and Lap-
pin, 2018) or infer the shared properties of the tenor
and the vehicle (He et al., 2022; Chen et al., 2022).
The simile generation (SG) task requires models
to generate the missing vehicle (Song et al., 2021;
Chen et al., 2022; Yang et al., 2023) or a simile
sentence (Li et al., 2022; Chakrabarty et al., 2020;
Stowe et al., 2021; Zhang et al., 2021).

In recent years, pre-trained language models
(PLMs) have achieved great success in NLP since
they learn generic knowledge from a large corpus
(Devlin et al., 2019; Radford et al., 2019). In simile
study, considerable efforts have also been made
to explore simile knowledge from PLMs to solve
SR/SI/SG tasks (Chen et al., 2022; He et al., 2022).
For example, a widely adopted method is fine-
tuning PLMs for a specific simile task (Chakrabarty
et al., 2020; Chen et al., 2022; Li et al., 2022). How-
ever, previous work usually explored one type of
simile knowledge to address a specific simile task,
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which did not fully leverage the ability of PLMs
since the previous research had also shown that
PLMs possessed multiple types of simile knowl-
edge (Song et al., 2021; He et al., 2022, 2023).

In this paper, we study to leverage multiple types
of simile knowledge for a simile task. Specifically,
when using PLMs to perform a simile task (SI/SG),
besides the simile knowledge that is directly related
to this task, we expect the PLMs can also leverage
other indirect simile knowledge (SR). The indirect
simile knowledge can serve as a self-verification
perspective to improve the performance on the tar-
get task, so as to fully leverage the multiple types of
simile knowledge in PLMs. However, there is a gap
between different types of simile knowledge. For
example, the SR task requires the PLMs to distin-
guish simile and literal, and the SI/SG task requires
the PLMs to generate missing simile components.
The SR and SI/SG tasks are different in task format
and training objects. It is difficult to directly lever-
age simile recognition knowledge to assist SI/SG
tasks. To address this problem, we propose a novel
task named multi-level simile recognition (MLSR)
to align different types of simile knowledge. The
MLSR task expanded the SR task from binary clas-
sification to multiple classification. After training
with MLSR, the PLMs not only can distinguish sim-
ile and literal but also can assign a quality score for
a given simile. Then this quality score can serve as
a self-verification mechanism to evaluate the gen-
eration results of the SI/SG task and re-organize
the results according to the evaluation. In this way,
we integrate different types of simile knowledge in
PLMs and make better utilization of them. Exper-
iments on multiple simile datasets show that our
method achieves new state-of-the-art performance.
We also test our method with different PLMs, the
results show that the self-verified method works
for different kinds of PLMs and can be applied to
language models with much larger sizes. To sum
up, our contributions are:

• We propose a novel self-verified method to ex-
plore simile knowledge from PLMs.

• We propose a novel multi-level simile recognition
(MLSR) task that helps the PLMs to evaluate the
simile quality. The MLSR score serves as a self-
verification mechanism to align simile knowledge
used in different kinds of simile tasks.

• Experiments on multiple simile datasets and dif-
ferent PLMs show the effectiveness and scala-
bility of our method. Our code and data will be
released on GitHub1.

1https://github.com/malongxuan/MLSR

Metaphor Example Simile?
N. phrase The judge is like an angel. Yes
Adjective The boy has a warm heart. No

Verbal He kills the seeds of peace. No
A.-verb The child speaks France fluidly. No

V. phrase Taking care of little pets is like Yes
raising children.

Sentence The man walks into the crowd Yes
like a fish swims into the ocean.

Table 2: Metaphor and simile categories.
"N."/"A."/"V." means "Noun"/"Adverb"/"Verbal",
respectively. Underlined font means tenors and
italic font means vehicles.

2. Related Work

We introduce previous work related to this paper.

2.1. Simile and Metaphor

Metaphor is a figurative language that allows peo-
ple to understand abstract concepts through con-
crete and familiar ones (Aghazadeh et al., 2022;
Feng and Ma, 2022; He et al., 2023). Bizzoni and
Lappin (2018) categorized metaphor into Noun
phrases, Adjectives, Verbs, and Multi-word. Li
et al. (2022) defined metaphor as Nominal, Ver-
bal (Subject-Verb-Object), Adjective-Noun, and
Adverb-Verb. Table 2 shows examples of these
categories. The Noun phrase metaphor with com-
parator "like" or "as" is usually defined as a simile
(Li et al., 2022; He et al., 2022; Chen et al., 2022).
When simile happens in a more complex scenario
such as human dialogue (Ma et al., 2023), verbal
phrases/sentences can also function as the tenor
or vehicle, such as the last two examples in Table
2. The commonly studied metaphor/simile tasks in-
clude recognition (Birke and Sarkar, 2006; Liu et al.,
2018; Li et al., 2023a; Badathala et al., 2023; Zhang
and Liu, 2023), interpretation (Su et al., 2016; Song
et al., 2021), and generation (Li et al., 2022). In
this paper, we propose a novel simile task named
multi-level simile recognition (MLSR), which aims
to train a simile model to evaluate the simile qual-
ity. The quality score can be used to align different
types of simile knowledge and the shared semantic
feature across different simile tasks.

2.2. Exploring Simile Knowledge in PLMs

Comprehending similes is not only essential to ap-
preciate the inner connection between different con-
cepts but also useful for other natural language
processing (NLP) tasks such as sentiment analysis
(Rentoumi et al., 2012), question answering (Zheng
et al., 2019) and writing polishment (Zhang et al.,
2021; He et al., 2023).
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Figure 1: Different simile levels. The replaced words are underlined in the third column. The replaced
component is shown in a gray box in the fourth column. A question mark indicates that the simile
relationship between two components may be broken.

In recent years, PLMs-based approaches have
become the de facto standard in NLP since they
learn generic knowledge from a large corpus (Chen
et al., 2022; Wachowiak and Gromann, 2023). Con-
siderable attention has been paid to exploring simile
knowledge from PLMs for resolving simile tasks.
Song et al. (2021) fine-tune BERT (Devlin et al.,
2019) for simile recognition and simile component
(tenor, shared property, and vehicle) extraction.
Chakrabarty et al. (2020) fine-tune BART (Lewis
et al., 2020) to generate novel similes when giving a
literal sentence. He et al. (2022) use a simile prop-
erty probing task to infer the shared properties with
the help of PLMs. Chen et al. (2022) propose an
Adjective-Noun mask Training method to explore
simile knowledge from BERT for simile interpreta-
tion and generation tasks. Li et al. (2022) fine-tune
a GPT-2 (Radford et al., 2019) model for simile gen-
eration. Unlike previous work that fine-tuned PLMs
on a specific simile task, which usually explored
one type of simile knowledge, we propose a self-
verified method to integrate simile knowledge from
different training modes and better use the simile
knowledge in PLMs.

3. Our Proposed Method

In this section, we introduce the MLSR task and
our self-verified method in detail.

3.1. Multi-level Simile Recognition
Previous works (Li et al., 2022; Wang et al., 2022)
defined SR as a binary classification task where
the SR model needed to distinguish whether an
input sequence was simile or literal. The only com-
mon feature between simile data and literal data is
that they both contain the comparator words "like"

or "as" (Liu et al., 2018). For example, the sen-
tence "the athlete runs like a deer." is a simile and
the sentence "the boy looks like his father." is a
literal. When training PLMs as the SR models, the
input sequence is first encoded into a vector as
the sequence representation, then the classifica-
tion score is calculated with the vector (Song et al.,
2021). The output of the SR model is a binary label:
True for simile and False for literal.

However, the traditional SR models are only
trained to distinguish simile and literal, they can
not assign a reasonable score to reflect the quality
of a simile and serve as a self-verified mechanism
for SI/SG tasks. To this end, we design a multi-level
simile recognition (MLSR) task. We first construct
simile data with multiple simile levels, then train
the PLMs to assign quality scores for each level.
Next, we will introduce how we obtain the multi-level
simile data.

3.1.1. Multi-level Simile Data

A recent research (Chen et al., 2022) categorized
the relations between simile elements into 4 classes
and showed that data in different classes has dif-
ferent quality when fine-tuning PLMs. This inspires
us that breaking the relations between simile ele-
ments can entail different simile qualities. In Figure
1, we define four simile levels with different sim-
ile qualities. The first level is the correct similes,
which have three health simile relations among the
simile components (as in the fourth column). The
rest levels are constructed by replacing the simile
components and cause varying scales of damage
to the simile relations.

The second level has two replacement strategies.
1) Replace the vehicle with its hypernym. For ex-
ample, "The athlete runs as fast as a cheetah." is
changed to "The athlete runs as fast as an animal"
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Figure 2: Demonstration of the training and testing with BERT.

in this level. The resulting sentence is still a sim-
ile that compares two different things with shared
property. However, it is not as precise as the origi-
nal one since not all animals "run fast". Although
we understand this sentence is meant to compare
"The athlete" to "an animal that can run fast", "a
cheetah" is more concrete and makes the simile
more vivid and graspable than "an animal". As
shown in the fourth column of Figure 1, the relation
between the shared property and the vehicle may
be corrupted by this change. 2) Replace the vehicle
with the synonym of the tenor. For instance, "The
athlete runs as fast as a cheetah." is changed to
"The athlete runs as fast as a player." in this level.
Similes require comparing two things in different
categories. "The athlete" and "a player" are in the
same category, and the simile relation between the
tenor and the vehicle is broken.

The third level replaces the vehicle or the shared
property with a Replacing rule that will be intro-
duced in the last part of this section. In Figure 1,
"The athlete runs as fast as a cheetah." is changed
to "The athlete runs as fast as air"/"The athlete
runs as green as a cheetah." when replacing the
vehicle/the shared property, respectively. When
replacing the vehicle, the shared property ("fast")
still belongs to the tenor ("The athlete") except it is
unrelated to the vehicle ("air"); when replacing the
shared property, the simile sentence is still com-
paring two different things ("The athlete" and "a
cheetah") except the shared property ("green") is
wrong. As shown in the fourth column of Figure 1,
two out of three simile relations may be corrupted
in the third level.

The fourth level replaces both the shared prop-
erty and the vehicle with the Replacing rule. In
Figure 1, "The athlete runs as fast as a chee-
tah." is changed to "The athlete runs as green as
black eyes". Not only "green" is not a shared prop-
erty between "The athlete" and "black eyes", but
also "The athlete" and "black eyes" have no com-
parable properties. All three simile relations may
be corrupted at this level.

Notice that in Figure 1, we keep the tenor and

only replace property/vehicle for simply the demon-
stration. In practice, we can additionally keep
the vehicle and change the tenor/property to ob-
tain more training samples. For example, we can
change "The athlete runs as fast as a cheetah." to
"A leopard runs as fast as a cheetah." by replacing
the tenor "The athlete" with the synonym of the vehi-
cle "A leopard". This replacement breaks the simile
relation between tenor and vehicle. The resulting
sentence is still in the second level. We use the
four simile levels in Figure 1 to obtain the multi-level
simile data. Then we can train the MLSR model to
evaluate simile quality.

Replacing rule. The words used for replace-
ment follow certain rules. Firstly, the replace-
ments use the words with the same part of speech.
The shared properties are replaced with Adjec-
tives and the tenor/vehicles are replaced with
Nouns/phrases/sentences that can serve as the
subject/object of a verb. Secondly, we leverage
the relations in ConceptNet (Speer et al., 2017)
to choose more proper words. In the second
level, we use the "IsA" relation in ConceptNet to
find the hypernym to the tenor/vehicle. In the
fourth level, when replacing a vehicle, we choose
Nouns/phrases that do not share properties with
this vehicle; when replacing a property, we choose
an Adjective that does not have a relation to the
tenor and the vehicle. When the simile component
is more than one word, we use the first Noun or
Adjective in this component for replacement. When
the simile components are not available in the Con-
ceptNet or we cannot find a proper replacement,
we only follow the first rule and randomly select
words from ConceptNet.

3.1.2. Multi-level Simile Recognition Training

We adopt a multi-level contrastive learning method
(Ye et al., 2021; Ma et al., 2022) to train the PLM.
For each simile level in Figure 1, we assign a refer-
ence score between 0 and 1 (1.000, 0.667, 0.333,
0.000) to reflect the quality of the simile. During
training, the MLSR model learns to predict a score
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for the input sequence. The training goal is to mini-
mize the distance between the predicted score and
the reference score. Notice that we hypothesize
a linear relationship between the reference quality
score and the simile level, which is correlated to
the corruption of relations between simile elements
as in Figure 1. This setting is convenient for model
training but the scores do not accurately reflect sim-
ile qualities. A more reasonable way is to have
the model automatically learn the quality scores at
different levels. We leave the automatic learning
for future work.

Figure 2 (a) shows the model structure of MLSR
when using BERT as the backbone. The first out-
put position (a special token <cls> before the input
sequence) is used as the sequence representation
to calculate the Multi-level SR loss. When using our
method on other PLMs such as those with decoder
structure (Raffel et al., 2020), the first decoding vec-
tor is used as the input representation to calculate
the MLSR loss.

We denote the input sequence as D and the rep-
resentation for D as hD. The hD is passed through
a Multi-layer Perceptron (MLP) to get the predicted
quality score SD for D:

SD = σ(W2 · µ(W1 · hD + b1) + b2), (1)
where W1,2 and b1,2 are training parameters; σ/µ

is the sigmoid/tanh function, respectively. We de-
note Di (i ∈ {1, 2, 3, 4}) for each simile level in
Figure 1. Then we use a separation loss and a
compactness loss to train the MLSR model.

The separation loss separates different simile
levels by distinguishing their quality scores. For
each simile level i, we first calculate a centroid
score SDi= 1

Ki

∑Ki

k=1 S
Dk

i where SDk
i is the quality

score for this level, Ki is the example number of Di

in a training batch. The separation loss between
different simile levels is:

lsep=
3∑

j=1

4∑
l=j+1

max(0, ω*λ + SDj - SDl), (2)

where λ=0.333 is the lower bound for the distance
between two centroid scores, ω = l - j is the weight
used for amplifying the lower bound according to
the simile quality gap.

The compactness loss compacts the examples
within the same simile level, which served as a
regularization role to avoid outlier exceptions for
each level. Specifically, the simile quality score
SDk

i for k ∈ {1, 2, ...,Ki} is forced to be closer to
the corresponding centroid SDi as follows:

lcom=
4∑

i=1

Ki∑
k=1

max(0, |SDi - SDk
i | - γ), (3)

where γ is the upper bound for the distance be-
tween the centroid of a certain replacing level and
the score within this level2. γ allows the model to
automatically adjust the quality score of each level
within a certain range. The final loss for MLSR is:

Lmlsr= - 1

N

N∑
(lseq + lcom), (4)

where N is the number of training examples. Af-
ter training, the MLSR model can assign a simile
quality score for an input sequence. Next, we will
introduce the SI/SG tasks and how we leverage the
quality score given by MLSR to assist the SI/SG
tasks in a single PLM.

3.2. Simile Interpretation (SI) and Simile
Generation (SG) Training

As shown in Figure 2 (b), when using BERT as
the back-bone, SI and SG tasks are the same as
the masked language model task where the BERT
learns to recover the masked property or vehicle
(Song et al., 2021; He et al., 2022). When using
other PLMs with decoder structure (Radford et al.,
2019; Raffel et al., 2020) for SI/SG tasks, we give
the PLMs a task instruction and the masked se-
quence3 and ask the PLMs to generate the missing
component. The loss is:

Lsi/sg = - 1

N

N∑
i=1

r∑
t=1

(logP (Rt
i)), (5)

where Rt
i is the t-th word of the masked prop-

erty/vehicle (total r words, r ≥ 1).

3.3. Training and Testing
We train a single PLM with all three simile tasks, i.e.,
MLSR, SI, and SG. The loss is Lmlsr + Lsi/sg. Dur-
ing SI/SG testing, following previous work (Song
et al., 2021; He et al., 2022), the PLMs choose
the missing property or vehicle from a candidate
pool. Two examples are shown in Table 3. In SI,
the masked word is the shared property. In SG, the
masked word is the vehicle.

As shown in Figure 2 (c), when using BERT for
experiments, we use the masked-word-prediction
heads of BERT to compute the probability for each
candidate. The candidate with the highest probabil-
ity will be chosen as the final choice. When using
other large PLMs with decoder structures (Raffel

2For example, if γ=0.1, the expecting quality score
ranges are [0.9, 1], [0.567, 0.767], [0.233, 0.433], and
[0, 0.1].

3For example, the input to T5 is "i run as () as a rabbit.
[choice] fast, wrong, bad, slow".
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Task Example and Candidates
SI My client is as [MASK] as a newborn lamb.

A. innocent. B. delicious. C. legal. D. guilty.
SG The participant swims like a [MASK].

A. plait. B. dolphin. C. depiction. D. pod.

Table 3: Test examples for SI/SG tasks, the correct
answer is innocent/dolphin, respectively. During
the test, the model needs to select one answer from
the candidates.

et al., 2020) for SI/SG tasks, we give an instruction
and ask the PLMs to generate the missing com-
ponent. The probability for each candidate is the
generation probability.

To leverage the MLSR results for self-verification,
we concatenate each of the candidates to the input
sequence (to the masked position) as a new in-
put. Then the model can calculate the MLSR score
for this candidate. The final score Sfinal for each
candidate is the weighted sum of the MLSR score
Smlsr and SI/SG score Ssi/sg:

Sfinal= β*Smlsr + (1 - β)*Ssi/sg, (6)

where β is a hyper-parameter.

4. Experimental Setup

4.1. Datasets
The multi-choice probing dataset (MCP) (He et al.,
2022) is proposed for the SI task. There are two test
sets named General Corpus and Quizzes. The mul-
tilingual simile dialogue dataset (MSD) (Ma et al.,
2023) is proposed for studying similes in dialogue.
We only use the English data in MSD. The SI/SG
test sets are both multi-choice tasks and both have
450 examples. MCP and MSD both annotate all
simile components. Hence, they are suitable for
constructing multi-level simile data. The difference
between MCP and MSD: 1) similes in MSD exist in
3-turn dialogues and the dialogue length is much
longer than the sentence in MCP; 2) tenors and
vehicles in MSD contain multiple formats such as
verbal phrases and sentences. Table 4 shows the
statistics of the datasets. For the MLSR task, we
construct an equal number of examples (equal to
the training set) for each simile level and randomly
split all data into 9:1 as training/validation sets.

4.2. Baselines
The baselines include: 1) BERT-base, BERT-large
and T5-3B (Raffel et al., 2020). They are not fine-
tuned with any simile data; 2) BERT-ANT (Chen
et al., 2022) is trained with masked word predic-
tion with a number of metaphor data. It is based

Dataset Train / Dev / Test Len. Format
MCP 4,510 / - / 775+858 12.2 sentence
MSD 3126 (4570) / - / 450 40.1 dialogue

Table 4: Statistics of datasets. "Len." means aver-
age length per example. 775+858 are numbers of
General Corpus + Quizzes. 3576 (4570) are num-
bers of similes (literals). Notice that the training set
of MSD was originally proposed for simile recog-
nition tasks. There are a total of 3576 examples.
We remove the 450 examples that appear in the
MSD SI/SG test sets, and only use the rest 3126
examples for MLSR and SR training.

on a BERT-large model and can solve the SI/ SG
tasks in a unified framework of simile triple comple-
tion. For example, when giving tenor=athlete and
vehicle=cheetah, BERT-ANT can generate a list
of words including the shared property like "fast"
or "agile". When performing our SI/SG tasks, we
match the candidates of each example with the
output list of BERT-ANT. An example is counted
correct if the ground truth answer is listed before
the other three distractors; 3) BERT-large(mlm)
(He et al., 2022) is based on BERT-large that fine-
tuned with masked-language model (MLM) training
on MCP data; 4) BERT-large(mlm+ke) (He et al.,
2022) is based on BERT-large that fine-tuned with
both MLM training and knowledge embedding (KE)
method (Bordes et al., 2013) on MCP data. The
BERT-large(mlm) and BERT-large(mlm+ke) were
originally trained for the SI task on MCP. We fur-
ther fine-tuned them for SI/SG tasks on the MSD
training set and reported their results on the test
sets.

Besides applying our method on BERT-base,
BERT-large, and T5-3B, we also provide different
settings for our models. (- MLSR) means we re-
move the multi-level simile recognition training in
the unified training process. Similarly, (- SI) and
(- SG) mean we remove the SI and SG training,
respectively. (- MLSR, +SR) means we replace
MLSR training with traditional simile recognition
(SR) training, where the model is trained to dis-
tinguish simile and literal. Notice that the MSD
provides SR training data while the MCP does not.
To train (- MLSR, +SR) on MCP, we obtain the lit-
eral data of MCP by replacing the vehicle with the
synonym of the tenor as the second simile level in
Figure 1. We consider the replacing results literal
because they not only have the comparator words
but also have a valid meaning that is not against
the commonsense knowledge.

4.3. Evaluation Metrics
Following previous SI/SG work (Chen et al., 2022;
He et al., 2022), we use Hit@1 for measuring multi-
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Model MCP MSD
level-1 level-2 level-3 level-4 total level-1 level-2 level-3 level-4 total

random 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
BERT-base 0.7598 0.6797 0.6779 0.8203 0.7344 0.5723 0.5345 0.5389 0.6188 0.5661
(Joint Train) 0.7535 0.6755 0.6746 0.8200 0.7309 0.5523 0.5307 0.5344 0.5994 0.5524

BERT-large 0.7712 0.7025 0.7018 0.8317 0.7518 0.6123 0.5845 0.5889 0.6588 0.6111
(Joint Train) 0.7723 0.7028 0.7114 0.8310 0.7543 0.6137 0.5856 0.5910 0.6547 0.6112

T5-3B 0.8594 0.7740 0.7722 0.8790 0.8212 0.6505 0.6302 0.6314 0.6990 0.6528
(Joint Train) 0.8598 0.7675 0.7731 0.8791 0.8199 0.6498 0.6311 0.6325 0.7005 0.6534

Table 5: Multi-level simile recognition results. "(Joint Train)" means after joint training.

choice accuracy. For MLSR, we report accuracy
for each simile level.

4.4. Implementation Details
The pre-trained models are all based on the public
Pytorch implementation4. We use a single Tesla
v100s GPU with 32GB memory for experiments.
The batch size is all set to 24. The model is op-
timized using the Adam optimizer with a learning
rate of 5e-6. The learning rate is scheduled by a
warm-up and linear decay. The gradient clipping
threshold is set as 10.0. During MLSR training, γ
is set to 0.1 and early stopping on the correspond-
ing validation data is adopted as a regularization
strategy. The training epochs are 5.

5. Results and Analysis

We aim to answer the following questions: 1) Can
MLSR training help to assign a reasonable score
for different simile levels? (section 5.1) 2) Does the
join training reduce the MLSR accuracy? (section
5.1) 3) Does our method outperform the state-of-
the-art models when exploring simile knowledge
from PLMs? (section 5.2.1) 4) Is our method useful
for PLMs in different sizes or structures? (section
5.2.1) 5) Where do the gains come from? (section
5.2.2) 6) What is the effect when replacing MLSR
with SR in our method? (section 5.2.2) 7) How are
the hyper-parameters decided? (section 5.3)

5.1. Multi-level Simile Recognition
As introduced in Section 4.1, we construct the
multi-level simile data with the MCP/MSD training
sets and split the data into 9:1 for MLSR train-
ing/validation. In Table 5, we report the perfor-
mance of different PLMs on the validation set. This
experiment tests whether the PLMs assign reason-
able scores for different simile levels. Firstly, the
PLMs have a much better performance than ran-
dom results. It means the PLMs learn how to dis-
tinguish different simile levels through the MLSR
training. Level-2 and level-3 have lower accuracy

4https://github.com/huggingface/transformers

Model SI(MCP) SI(MSD) SG(MSD)
BERT-base 0.6948 0.5333 0.2800
BERT-large 0.7755 0.5600 0.2977
BERT-ANT 0.7620 0.4622 0.3333
BERT-large(mlm) 0.7924 0.6867 0.5511
BERT-large(mlm+ke) 0.8005 0.6889 0.5556
BERT-base(ours) 0.8201* 0.7233* 0.5778*
BERT-large(ours) 0.8464* 0.7467* 0.6155*

(- MLSR) 0.8145* 0.6978* 0.5578*
(- SI) 0.7876* 0.6476* 0.6000*
(- SG) 0.8332* 0.7413* 0.5689*
(- MLSR, +SR) 0.8089* 0.7069* 0.5578*

T5-3B 0.5754 0.6733 0.3111
T5-3B(ours) 0.8158* 0.8111* 0.7756*

(- MLSR) 0.7012* 0.7222* 0.6711*
(- SI) 0.7043* 0.7111* 0.7178*
(- SG) 0.7861* 0.7778* 0.6689*
(- MLSR, +SR) 0.6916* 0.7244* 0.6733*

Table 6: SI and SG results (Hit@1) on MCP and
MSD. The BERT-large(mlm) is the base model to
do the significant test for our models (* means sta-
tistically significant with p<0.01). There are two
sub-sets in MCP test data, we report the results of
each sub-set in section 7.

than level-1 and level-4. This is reasonable since
level-2 and level-3 only corrupt parts of the sim-
ile relations as in Figure 1. They are harder to
distinguish than the correct ones (level-1) or the
fully corrupt ones (level-4). The performance has
consistent performance across different PLMs and
the performance increases when the model size
becomes larger. BERT-large is better than BERT-
base, and T5-3B is more accurate than BERT-large.
The performance is very close before or after the
joint training, which means the PLMs can maintain
the MLSR capability in the joint training. BERT-
large and T5-3B even have a small improvement in
MCP and MSD after the joint training, respectively.

To sum up, the MLSR training helps the PLMs
to assign a reasonable quality score for different
simile levels we defined and the performance does
not drop after the joint training.
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5.2. Simile Interpretation and Generation

Table 6 shows the SI (both MCP and MSD) and SG
(MSD) results. We categorize the model into two
groups: BERT-based and T5-based models.

5.2.1. Comparing with Baselines

In the first group, BERT-base and BERT-large are
not fine-tuned. BERT-large outperforms BERT-
base, especially on the MCP dataset. BERT-ANT
is based on BERT-large and trained with a large cor-
pus through Adjective-Noun mask Training. BERT-
ANT outperforms the BERT-large on SG tasks.
However, its performance on SI tasks is worse than
BERT-large. This is because the training data of
BERT-ANT is metaphor data, a large portion of the
metaphor data does not have shared properties.
Hence, BERT-ANT is better at predicting vehicles
but worse at predicting shared properties. The
BERT-large(mlm) is also based on a BERT-large
model and fine-tuned with the corresponding train-
ing sets. Benefiting from the fine-tuning, BERT-
large(mlm) largely outperforms all previous base-
lines on both SI/SG tasks. BERT-large(mlm+ke) is
better than BERT-large(mlm) because the knowl-
edge embedding method provides additional se-
mantic features to align the simile components.

On the other hand, our self-verified method helps
the BERT-base and BERT-large model to yield
higher performance improvements. The BERT-
base (ours) surpasses the strong BERT-large
(mlm+ke) on both SI/SG. Our method also helps
the BERT-large to obtain the highest performance
among all models. BERT-large (ours) outperforms
BERT-large (mlm+ke) by 4.59%/5.78%/5.99% on
SI(MCP)/SI(MSD)/SG(MSD), respectively. The
MCP SI test set has a much higher accuracy than
the MSD SI test set, showing the simile in dialogue
(MSD) task is more difficult than the simile in a
single sentence (MCP). In the second group, a sim-
ilar trend to the first group is observed on T5-3B.
When using our self-verified method, T5-3B has
consistent improvements on all three test sets. The
results show that our method explores more accu-
rate simile knowledge from PLMs.

5.2.2. Ablation Study on SI/SG

We also report the ablation study in Table 6. We
can see that on both the MCP test set and MSD
test sets, removing the training component of our
model will cause declines.

For the BERT-large(ours), we can see that (-
MLSR) causes 4.19%/6.00%/5.77% declines on
SI(MCP)/SI(MSD)/SG(MSD), respectively. The re-
sults show that the MLSR score helps BERT to
generate more accurate simile knowledge.

γ value β is fixed with 0.8
0.0 0.05 0.1 0.15 0.20

SI results 75.01 81.17 84.64 84.43 84.31

γ value β is fixed with 0.9
0.0 0.05 0.1 0.15 0.20

SI results 76.23 81.20 84.32 84.30 84.25

β value γ is fixed with 0.1
0.1 0.2 0.3 0.4 0.5

SI results 84.15 84.17 84.17 84.27 84.32

β value γ is fixed with 0.1
0.6 0.7 0.8 0.9 1

SI results 84.45 84.54 84.64 84.60 84.46

Table 7: The SI results (Hit@1) on MCP dataset
with different values of γ/β. The back-bone model
is BERT-large.

On the MCP test set, (- SI) causes 6.88% de-
clines. On the MSD SI test set, (- SI) has an 11.02%
decline. The results are reasonable since the MSD
test set is a more difficult scenario which is harder
for the PLM so it is more sensitive to the fine-tuning
process. A similar trend can be observed with the (-
MLSR) model, where SI(MSD) has more declines
than SI(MCP). Meanwhile, (- SI) causes 1.55% de-
clines in SG(MSD), which is much smaller than the
declines in SI(MCP) and SI(MSD). It is also reason-
able since SI and SG focus on different simile com-
ponents. A similar trend happens with (-SG), which
causes 4.66% declines on SG(MSD), but only en-
tails 2.32%/1.65% declines on SI(MCP)/SI(MSD),
respectively. However, removing SI does entail
a performance drop on the SG task, which indi-
cates the PLMs can leverage the simile knowledge
learned from SI training to help the SG task, and
vice versa.

On all test sets, (- MLSR, +SR) is very close
to (-MLSR). The results indicate that the SR score
contributes little to SI/SG tasks. This is because the
SR score can only reflect whether an input contains
a simile, it could not reflect the quality of the simile
as the MLSR. On the other hand, whether SI/SG
training can contribute to the SR task is beyond the
scope of this paper.

In the second group, a similar trend to the first
group is observed on T5-3B. When removing the
training process, T5-3B has consistent declines on
all three test sets.

5.2.3. Sum up of the SI/SG experiments

To sum up, experimental results show that 1) our
self-verified method can explore more accurate sim-
ile knowledge from PLMs and largely increase the
performance on SI/SG tasks; 2) our method can be
applied to PLMs with different sizes and structures;
3) each fine-tuning task contributes to the perfor-
mance; 4) the SR training is not as useful as the
MLSR training.
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Model General Corpus Quizzes
BERT-base 0.6413 0.7436
BERT-large 0.7239 0.8322
BERT-ANT 0.7410 0.8364
BERT-large(mlm) 0.7385 0.8458
BERT-large(mlm+ke) 0.7407 0.8594
BERT-base(ours) 0.7554* 0.8473*
BERT-large(ours) 0.7962* 0.8898*
T5-3B 0.5991 0.5432
T5-3B(ours) 0.7443* 0.8862*

Table 8: SI and SG results (Hit@1) on MCP. The
BERT-large(mlm) is the base model to do the sig-
nificant test for our models (* means statistically
significant with p<0.01).

5.3. Hyper-parameters

Hyper-parameter γ in Section 3.1.2 and β in Section
3.3 are decided by experiments. For γ/β, we test
with steps 0.05/0.1, respectively. Results on the
SI(MCP) task are shown in Table 7. We finally
choose γ=0.1 and β=0.8 according to the results.

6. Case Study

We randomly choose one SI example in the MSD
test set for the case study. The dialogue is:
"Speaker A: "What’s a good tip you hope you never
have to use ?" Speaker B: "four pounds of weight
can pull off a human ear, your pinky finger is as
[MASK] as a baby carrot."" The four choices are:
"easy to bite or snap off, painless to poison or noise
smoke, difficult to grip or thumb irritation, uneasy
to champ or sound on". This is a difficult exam-
ple since the shared property has six words. The
T5-3B model in Table 6 assign a higher probability
for "difficult to grip or thumb irritation". The wrong
choice may be caused by the semantic connection
between finger and thumb. After using our method,
T5-3B model choose the correct answer "easy to
bite or snap off". It benefits from the MLSR score
which considers "your pinky finger is as easy to bite
or snap off as a baby carrot" as a first level simile
and assigns a higher score for "easy to bite or snap
off".

7. More Experimental Results

There are two test sets in the MCP dataset, General
Corpus and Quizzes. In Table 6, we combine them
as a single test set for saving space. In Table 8,
we report the experimental results on each of them
separately. The trends are similar to Table 6.

8. Conclusion

This paper proposes a self-verified method to ex-
plore simile knowledge from PLMs. A multi-level
simile recognition (MLSR) task is designed to train
the PLMs to evaluate simile qualities. The MLSR
score aligns simile recognition knowledge with sim-
ile generation knowledge and is used to assist in
SI/SG tasks. Experimental results show that our
method 1) can help explore more accurate simile
knowledge from PLMs; 2) can be used on different
kinds of PLMs and more large-scale PLMs. Future
works include but are not limited to 1) designing a
method to automatically learn the quality scores at
different levels; 2) testing the self-verified method
on more languages and larger-size PLMs.
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