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Abstract
Few-shot nested named entity recognition (NER), identifying named entities that are nested with a small number
of labeled data, has attracted much attention. Recently, a span-based method based on three stages ( focusing,
bridging and prompting) has been proposed for few-shot nested NER. However, such a span-based approach
for few-shot nested NER suffers from two challenges: 1) error propagation because of its 3 stage pipeline based
framework; 2) ignoring the relationship between inner and outer entities, which is crucial for few-shot nested NER.
Therefore, in this work, we propose a two-stage approach with a controllable attention soft prompt for few-shot
nested named entity recognition (TECA). It consists of two components: span part identification and entity mention
recognition. The span part identification provides possible entity mentions without an extra filtering module. The
entity mention recognition pays fine-grained attention to the inner and outer entities and the corresponding adjacent
context through the controllable attention soft prompt to classify the candidate entity mentions. Experimental results
show that the TECA approach achieves state-of-the-art performance consistently on the four benchmark datasets
(ACE2004, ACE2005, GENIA, and KBP2017) and outperforms several competing baseline models on F1-score by
5.62% on ACE04, 5.11% on ACE05, 3.41% on KBP2017 and 0.7% on GENIA on the 10-shot setting.
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1. Introduction

Named Entity Recognition (NER) is a basic task
of information extraction (Tjong Kim Sang and
De Meulder, 2003), which aims to locate entity
mentions and label specific entity types such as
person, location, organization, or some types
unique to a certain vertical scenario. It serves as a
crucial component for many structured information
extraction tasks, such as relation extraction (Li and
Ji, 2014; Miwa and Bansal, 2016) and event extrac-
tion (McClosky et al., 2011; Wadden et al., 2019).
In some situations, it makes sense to allow enti-
ties to be nested inside other entities (Ohta et al.,
2002a; Alex et al., 2007), named nested NER.

However, in practice, nested NER encounters
the challenge of scarce annotated data, commonly
referred to as few-shot nested NER (Xu et al.,
2023b). In previous work to address the issue of
scarce annotations in few-shot flat NER, some opt
to augment dataset labeling automatically by lever-
aging external specific knowledge base, such as
methods like distant supervision and self-training
(Xu et al., 2023a; Li et al., 2023). Others choose
to mine knowledge from a limited set of annotated
data, employing methods like knowledge transfer
(Chen et al., 2022) or solely relying on few-shot
learning (Ma et al., 2022; Yang et al., 2022).

Recently, FIT (Xu et al., 2023b), a three-stage
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The News Agency reported Flad chairing the meeting as the delegation leader.
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Figure 1: (a) Erroneous filtering rate of the FIT
method. (b) The proportions of the entities of Pro-
tein being nested with the entities of other types
in GENIA. (c) An example sentence marked with
nested entities.

pipeline approach is proposed for few-shot nested
NER without using source domain data, which to
the best of our knowledge is the only viable few-
shot nested NER approach. The first two stages
play the role of entity mention extraction, and the
third stage classifies entity mentions based on soft
prompts and contrastive learning. However, it has
the following drawbacks: 1) serious error propaga-
tion issues. As shown in Figure 1 (a), in the first
two stages of FIT, 30.54% and 10.22% of entities
are incorrectly filtered out respectively, resulting
in only 59.24% of entities entering the classifica-
tion stage. 2) ignoring the relationship between
inner and outer entities. Based on our observation,
we found that the inner and outer nested entities
tend to have a stronger semantic correlation. For



15699

example, as shown in Figure 1 (c): “[ ] chairing
the meeting as the delegation leader”, as part of
the outer entity, is a description of the inner entity
“Flad” that explains Flad’s role and responsibilities
in the meeting. This semantic correlation helps
label “Flad” more like a PER (person) than a LOC
(location). Other findings also indicate that some
types of entities are prone to be nested with each
other more frequently. For example, the frequen-
cies of the entities of Protein type being nested
with the entities of DNA type are nearly five times
higher than that with the entities of RNA type in
the GENIA dataset as shown in Figure 1 (b). It is
crucial to utilize the relationship between inner and
outer entities in few-shot nested NER.

To address the issues mentioned above, we pro-
pose a novel two-stage approach with controllable
attention soft prompts (TECA). First, the first two
stages of FIT are merged into one stage, namely
the span part identification, to alleviate the error
propagation issue. Specifically, the span part ob-
tained by the IO tag classifier effectively reduces
the simple negatives by filtering out the continuous
O-tag parts. And then each span part is enumer-
ated directly, to obtain the possible entity mentions
without additional filtering modules. Subsequently,
in the entity mention recognition stage, prompt
learning with controllable attention soft prompts is
conducted to label each possible entity mention.
Specifically, the controllable attention soft prompts
forced the soft prompt toward specific parts of the
context during the initial learning phase, enabling
the module to pay fine-grained attention to the ad-
jacent context of inner and outer entity mentions
capturing their relationships, including their seman-
tic correlation. Moreover, by enumerating span
parts identified in the first stage, a large set of po-
tential entity mentions partially overlapping with
actual entities (referred to as hard negatives) was
generated, which helps to train a more proficient
classifier.

Our contributions can be summarized as fol-
lows:

• A novel two-stage method with a controllable
attention soft prompt (TECA) for few-shot
nested NER was proposed to alleviate error
propagation and reduce the reliance between
stages.

• Controllable attention soft prompts were pro-
posed, enabling the module to pay fine-
grained attention to the inner and outer en-
tity mentions and their corresponding adjacent
context, which aims to capture the relation-
ships between inner and outer entity mentions.

• Experimental results show that TECA
achieves state-of-the-art performance con-

sistently on the four benchmark datasets
(ACE2004, ACE2005, GENIA and KBP2017)
and outperforms several competing baseline
models on F1-score by 5.62% on ACE2004,
5.11% on ACE2005, 3.41% on KBP2017 and
0.7% on GENIA on 10-shot setting.

2. Method

2.1. Overall Architecture

Given an input sentence X = {x1, . . . , xn} of n
tokens, nested NER aims to detect all the entity
mentions and the corresponding types. Let E =
{e1, . . . , en} be the set of possible entity mentions
in X . The task of nested NER is, for each entity
mentions ei ∈ E , to assign its label yi ∈ Y ∪ {ϵ},
where ϵ is the non-entity type, and Y is the set of
pre-defined entity classes. Unlike flat NEs, nested
NEs always overlap and the tokens in nested NEs
may be assigned multiple types.

We formalize nested NER as span part identifi-
cation and entity mention recognition. Figure 2 il-
lustrates how the proposed approach TECA works.
In the span part identification stage, the span parts,
such as “the president of the United States” shown
in Figure 2, are obtained. And then enumerating
each span part directly to obtain the possible en-
tity mentions without another filtering module for
alleviating error propagation issues. In the entity
mention recognition stage, the prompt learning with
controllable attention soft prompt is conducted on
the possible entity mentions. Entity mentions such
as “the United States” are collected and then clas-
sified. Moreover, by enumerating span parts in the
first stage, a larger set of possible entity mentions
partially overlap with actual entities (referred to as
hard negatives) was generated, which contributes
to training a more proficient labeler, reducing its
reliance on the performance of the previous stage.

2.2. Span Part Identification

Given an input text X = {x1, . . . , xn} consisting of
n tokens, the span part identification stage aims
to locate continuous sequences of tokens marked
with the I-tag and filter out the O-tag parts, as
illustrated in Figure 2. These identified span parts
are denoted as S = {s1, . . . , sk}, where each si =
{xl, . . . , xr} in X represents the i-th span part, with
xl and xr indicating the left and right boundary
tokens respectively. To achieve this, an IO classifier
was trained. The specific implementation details
are outlined below.

First, the input text is encoded using BERT to
obtain the representation h ∈ Rn×d, where d rep-
resents the dimension of the BERT hidden states.
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Figure 2: The architecture of the proposed approach, TECA.

The representation htag
i for each token xi is a con-

catenation of token representation hi and the rep-
resentation of the [CLS] token h[CLS].

htag
i = Concat(h[CLS], hi) (1)

Then, the probability ptagi is calculated as:

ptagi = Softmax(MLPtag(h
tag
i )) (2)

where MLP denotes the multilayer perceptron for
binary classification. The determination of whether
a token is part of a span is calculated as:

ŷtagi = argmax(ptagi ) (3)

For the binary classifier, we employ the cross-
entropy loss:

Ltag =
∑
i

CrossEntropyLoss(ptagi , ytagi ) (4)

where ytagi represents the ground truth label. A
value of 1 indicates that xi is part of an entity, while
0 denotes that it is not.

2.3. Entity Mention Recognition

Possible entity mentions, denoted as E , are derived
by enumerating each span part si obtained in the
span part identification stage. Then the prompt
learning with controllable attention soft prompt is

conducted to label each possible entity mention
with the corresponding type. The implementation
details are outlined below.

Let M be a pre-trained language model on a
large-scale corpus. Prompt learning formalizes the
classification task into a masked language mod-
eling problem. Following the common practice in
prompt learning (Schick and Schütze, 2021), the
modelM is tasked with predicting the label in the
[MASK] position. Followed (Xu et al., 2023b), for
each possible entity mention ei, we wrap it into
template:

xp = {xpart1 , [p1], ei, [p2], [MASK], [p3], xpart2}

where [pi] denotes the soft prompt. As an example,
consider the span “the United States” in the sen-
tence X shown in Figure 2, we wrap it into: xp =
“Israel is usually looking up to the president of [p1]
the United States [p2][MASK][p3] for some help”.
To achieve fine-grained mining of inner and outer
nested entities, we employ Controllable Attention
Soft Prompts. Subsequently,M predicts the prob-
ability of each label y to fill the [MASK] position,
and the predicted label ŷ is:

ŷ = argmax
y∈Y

PM([MASK] = y | xp) (5)

This objective function can be effectively opti-
mized by the cross-entropy loss. Additionally, a
sentence can be converted into a set of xp since
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there may be more than one possible entity men-
tion in a sentence. The distinction between xp

in the same set lies solely in the different posi-
tions of the soft prompts inserted. Consequently,
these sentence representations should be proxi-
mate, prompting the introduction of a sentence-
level proximity loss:

Lclose(xp1 ,xp2) = 1− cos(x[CLS]
p1

,x[CLS]
p2

) (6)

where x
[CLS]
pi denotes the [CLS] token representa-

tion of xpi
obtained from BERT.

2.4. Controllable Attention Soft Prompt

In order to pay fine-grained attention to the context
of the inner and outer entity mentions, we proposed
the controllable attention soft prompt. This involves
regulating the attention weight of the soft prompt,
directing it toward specific parts of the context. In
particular, we refer to these specific parts as the
“attention window”.

As shown in Algorithm 1, denoting the position in-
dices of the soft prompts in xp as P = {p1, p2, p3},
where pi is the position index of the soft prompt
pi. For each soft prompt pi, a distinct attention
window wi = {wil, . . . , wir} was calculated based
on pi, where wil and wil denote the left and right
indices of the attention window respectively. For
the attention weight matrix A of a certain layer, we
enhance the weight in the attention window:

A[:][pi][wi] = γ ·A[:][pi][wi] (7)

where γ represents the multiplier, and [:] denotes
all of attention heads.

This approach enables the soft prompts p1 and
p3 on the left and right sides of the entity to serve a
dual purpose. On the one hand, they serve as seg-
mentation cues, aiding the model in understand-
ing the boundaries of the entity mention required
labeling. On the other hand, they pay more fine-
grained attention to the adjacent context of the
entity mention to learn their relationship, and learn
the segmentation information of inner and outer
entities (since the segmentation boundaries of in-
ner and outer nested entities may also be included
in the attention window). For the soft prompt p2 in
the middle, it emphasizes the entity itself and the
shared context of inner and outer nested entities,
since we forced the window for p2 not to extend
beyond the entity’s boundary and must include the
intersection of the inner and outer nested entities.

2.5. Training Objectives

The overall loss function is:

L = αLtag + βLclose + ηLprompt (8)

Algorithm 1: Controllable Attention Soft
Prompt

Input: P = {p1, p2, p3}, attention weight
matrix A of a certain layer,
sentence length len, the multiplier
γ

Output: enhanced attention weight matrix
A

1 left← p1, right← p3;
2 δ ← max(1, (right− left+ 1)//2);
3 w1 = [max(0, left− δ),min(left+ δ, len));
4 w2 = (left, right);
5 w3 =

[max(0, right− δ),min(right+ δ, len));
6 for each head i in A do
7 for each pi in P do
8 A[i][pi][wi] = γ ·A[i][pi][wi];
9 end

10 end

where Ltag, Lclose and Lprompt are balanced with
hyper-parameters α, β, and η respectively, and
Lprompt denotes the loss function used in the
prompt-learning. Note that we train both two stages
at the same time since the BERT embedding is
shared between both two stages, and concurrent
training aids the model in obtaining a more suitable
embedding.

3. Experimental Settings

3.1. Datasets

Experiments are conducted on four widely used
nested NER datasets: ACE20041 (Mitchell et al.,
2005), ACE20052 (Walker et al., 2006), GENIA3

(Ohta et al., 2002) and KBP20174 (Ellis et al.,
2019). Please refer to Appendix A for the intro-
duction. For a fair comparison, we directly used
the data (Xu et al., 2023b) sampled.

3.2. Baselines

We select recent competitive models as our
baselines: Biaffine-CNN-NER (Yan et al., 2023),
ChatGPT-NER (Han et al., 2023), FIT (Xu et al.,
2023b), SEE-Few (Yang et al., 2022), SDNet (Chen
et al., 2022) and ESD (Wang et al., 2022). Biaffine-
CNN-NER is a fully supervised method, and the
last four are designed for the few-shot setting. In
addition, we compare our method with the perfor-
mance of ChatGPT reported by others (Han et al.,

1https://catalog.ldc.upenn.edu/LDC2005T09
2https://catalog.ldc.upenn.edu/LDC2006T06
3http://www.geniaproject.org/genia-corpus
4https://catalog.ldc.upenn.edu/LDC2019T12

https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06
http://www.geniaproject.org/genia-corpus
https://catalog.ldc.upenn.edu/LDC2019T12
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2023). It should be noted that since most few-shot
NER methods cannot solve few-shot nested NER,
the methods available to us are limited. Please
refer to Appendix B for detailed information.

3.3. Evaluation

Span-level precision, recall, and Micro-F1 scores
are used to measure the results. Note that the
nested NER datasets also contain a certain pro-
portion of flat entities, then the standard metrics
end up confusing flat and nested results and, con-
sequently, are not able to reflect well the ability of a
model to detect nesting. To measure this, following
(Xu et al., 2023b) we analyze the error rates for
nested entities and flat entities respectively.

3.4. Implementation Details

For few-shot learning, we conduct 1, 5, 10, and
20-shot experiments without pre-training on the
rich-resource source domain. For a k-shot exper-
iment, all the original test sets are preserved for
testing, and the training and development sets are
sampled for training. For a fair comparison, we
asked (Xu et al., 2023b) and directly used the data
they sampled. 10 sets of data for each shot and all
subsequent metrics are taken from the average of
these 10 sets of data. For all datasets, we train our
model for 35 epochs and choose the checkpoint
with the best validation performance to test. Please
refer to Appendix C for more detailed settings 5.

4. Results and Analysis

4.1. Main Results

Table 1 illustrates the performance of TECA as
well as baselines on ACE04, ACE05, GENIA and
KBP2017. We can observe that: 1) TECA con-
sistently outperforms all the baselines on ACE04,
ACE05, GENIA, and KBP2017 datasets. In partic-
ular, TECA outperforms the FIT method, which is
also dedicated to processing the few-shot nested
NER task. 2) For fully supervised methods, the
idea of fusing information around nested entities,
as proposed by the Biaffine-CNN-NER approach,
bears a strong resemblance to our starting point.
However, they perform poorly on few-shot nested
NER, suggesting that complex modules such as
the combination of Biaffine and CNN may have in-
herent flaws in few-shot NER. Table 2 illustrates the
error rates on the ACE04 dataset under few-shot
settings. We can observe that: Among all meth-
ods, TECA significantly reduces the error rates

5 Our code is available at https://github.com/
xuyy6789/TECA-NER.

of nested entities on the ACE04 dataset. In addi-
tion, we also calculated the erroneous filtering rate
of TECA on the ACE04 dataset, which is 31.7%,
smaller than FIT’s 40.76%, showing our approach
alleviates the error propagation issue. We also
used the gold span to evaluate the performance
of the second stage and the results show +1.21%
over FIT on 5-shot setting in ACE04. Moreover, to
illustrate the decoupling effect of our method, we
enumerate the entire sentence to get the possible
entity mentions but retain the training of the IO tag
classifier module to simulate the situation where
there is a failure to filter negatives well in the first
stage. The result shows that the F1 score of our
model outperforms the FIT by +15.14% on average.
This shows that our labeler works better and is less
dependent on the previous stage.

4.2. Comparison with ChatGPT

We compare the performance of TECA with that of
ChatGPT reported by (Han et al., 2023) and the re-
sults are shown in Table 3. The proposed method,
TECA, is competitive to ChatGPT by +1.66% and
+3.02% on the ACE04 and ACE05 datasets in the
5-shot setting respectively. On the GENIA dataset,
TECA performs significantly worse than ChatGPT,
which we attribute to the fact that ChatGPT exhibits
much better performance on flat NER than it does
on nested NER due to their autoregressive archi-
tecture (Han et al., 2023; Bubeck et al., 2023). The
GENIA dataset has a nesting rate of only 21.78%
on the test set, lower than the 46.69% on ACE04
and 39.08% on ACE05, and thus ChatGPT has a
natural advantage on the GENIA dataset.

4.3. Ablation Study

We conduct ablation experiments and the results
are shown in Table 4.

W/o sentence-level closing. Directly remove
the sentence-level closing loss during training and
the rest remains the same. The results show that
sentence-level closing improves the model’s per-
formance by shortening the distance of sentence-
level representation [CLS].

W/o controllable attention soft prompt. Di-
rectly remove the controllable attention soft prompt
and retain the vanilla soft prompt. The results show
that the controllable attention soft prompt plays an
important role, which we attribute to its learning of
fine-grained contextual information and interactive
information of inner and outer nested entities.

4.4. Parameter Analysis

Controllable attention soft prompts were added
to different layers to explore their impact. Fig-
ure 5 reports the performance of the proposed

https://github.com/xuyy6789/TECA-NER
https://github.com/xuyy6789/TECA-NER
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Datasets Methods
5-shot 10-shot 20-shot

P R F1 ↑ P R F1 ↑ P R F1 ↑

ACE04

Biaffine-CNN-NER 56.41 4.51 8.20±3.65 58.09 5.09 9.27±3.88 57.23 18.68 28.05±2.98

FIT† 46.87 29.31 35.87±4.92 51.43 40.18 44.88±4.82 60.14 48.93 53.92±2.99

SEE-Few† 50.08 18.69 26.54±6.60 57.74 29.70 38.89±4.07 63.53 39.91 48.94±2.27

SDNet† 61.40 12.45 20.55±4.64 65.73 23.81 34.82±4.71 67.18 31.52 42.87±2.13

ESD† 34.51 13.69 19.25±5.74 53.95 35.44 42.75±5.11 56.94 48.27 52.17±3.76

TECA(ours) 49.59 34.25 40.18±4.32 60.03 43.78 50.50±1.81 63.32 54.02 58.19±1.57

ACE05

Biaffine-CNN-NER 51.92 5.83 7.76±2.99 63.21 5.06 9.37±2.27 56.01 19.35 28.52±5.26

FIT† 44.74 33.05 37.74±5.33 46.83 38.85 42.25±10.65 58.02 48.50 52.71±2.55

SEE-Few† 49.42 17.69 25.58±6.61 55.92 27.45 36.36±6.63 61.37 44.19 51.31±2.27

SDNet† 57.46 13.81 22.03±6.12 61.17 22.08 32.20±4.89 65.84 32.03 43.00±3.55

ESD† 36.36 28.51 31.57±6.45 42.99 35.72 38.81±7.04 55.01 46.39 50.30±3.37

TECA(ours) 49.35 32.68 39.19±6.24 54.29 42.05 47.36±2.87 60.33 52.43 55.99±3.50

GENIA

Biaffine-CNN-NER 53.09 3.02 5.59±3.59 52.36 7.12 12.33±4.04 53.79 21.62 30.58±4.59

FIT† 40.72 30.30 34.43±9.06 52.91 39.51 44.95±3.38 57.00 46.81 51.26±3.96

SEE-Few† 30.92 14.41 19.31±6.95 52.35 29.84 37.78±5.04 59.36 45.10 50.93±4.66

SDNet† 41.25 11.36 17.46±6.97 48.57 12.18 19.03±7.07 57.03 23.54 33.27±3.71

ESD† 36.44 20.24 25.03±9.88 48.86 28.00 35.23±4.96 55.49 41.62 47.22±4.36

TECA(ours) 44.92 28.63 34.60±5.88 54.16 40.27 45.65±3.71 59.23 47.81 52.69±3.92

KBP2017

Biaffine-CNN-NER 54.43 4.31 7.82±3.59 56.32 4.85 8.83±4.42 57.74 19.62 29.18±2.90

FIT† 44.68 27.20 33.50±4.37 50.69 39.43 44.21±4.64 56.39 52.70 54.27±5.07

SEE-Few† 47.02 15.34 22.87±4.82 55.07 27.48 36.26±6.08 58.86 41.99 48.65±5.51

SDNet† 62.28 12.24 20.25±3.88 65.11 21.03 31.57±4.55 64.92 33.98 44.48±4.34

ESD† 34.27 24.39 28.38±9.02 49.13 38.61 42.99±4.20 54.64 51.00 52.54±3.76

TECA(ours) 49.38 29.04 36.14±6.85 55.58 41.92 47.62±2.71 58.88 54.00 56.10±3.05

Table 1: Performance comparison of TECA and baselines on four datasets under different shots. The
existing results marked with † are retrieved from (Xu et al., 2023b).

Methods
5-shot 10-shot 20-shot

etotal ↓ eflat ↓ enested ↓ einner ↓ eouter ↓ etotal ↓ eflat ↓ enested ↓ einner ↓ eouter ↓ etotal ↓ eflat ↓ enested ↓ einner ↓ eouter ↓
SEE-Few† 81.31 77.71 85.42 89.26 83.40 70.30 64.81 76.58 81.73 74.06 60.09 51.91 69.43 75.71 66.18

SDNet† 87.54 77.31 99.24 98.99 99.55 76.19 56.89 98.23 98.03 98.66 68.48 43.05 97.51 97.38 97.96
ESD† 86.31 82.39 90.78 94.44 88.78 64.56 57.89 72.17 76.53 70.41 51.73 42.13 62.68 65.22 62.16
FIT† 70.69 63.81 78.53 78.30 78.99 59.83 51.73 69.07 71.43 68.24 51.07 41.57 61.91 64.26 61.58

TECA(ours) 65.75 58.22 74.35 76.11 73.61 56.22 48.42 65.12 67.96 63.63 45.98 38.02 55.06 59.45 52.28

Table 2: The error rates comparison of TECA and baselines on the ACE04 dataset under different shots.
The existing results marked with † are retrieved from (Xu et al., 2023b).

Datasets ChatGPT TECA

F1 ↑ F1 ↑

ACE04 38.52±2.51
‡ 40.18±4.32

ACE05 36.17±1.78
‡ 39.19±6.24

GENIA 48.82±1.31
‡ 34.60±5.88

Table 3: Performance comparison between TECA
and ChatGPT on 5-shot setting. ‡ are retrieved
from (Han et al., 2023) with different data

model TECA after adding controllable attention
soft prompts to the first n layers under the ACE04

dataset, where n is 0 for not adding and n is 4 for
adding all the first 4 layers. We can observe that:
1) In the 1-shot setting, the model outperforms by
not adding or only adding controllable attention soft
prompts in the lower layers rather than by adding
them up to the higher layers. The possible reason
is that adding controllable attention soft prompts
also introduces some interference. However, the
labeled data is too few to fully train the model. 2)
As n increases, the performance improves to a
certain extent. However, when n is 4, the perfor-
mance decreases on the 5-shot, from which we
believe that there is a limit to the number of layers
for adding controllable attention soft prompts, i.e.,
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Methods
5-shot 10-shot 20-shot

P R F1 ↑ P R F1 ↑ P R F1 ↑

Full model (ACE04) 49.59 34.25 40.18±4.32 60.03 43.78 50.50±1.81 63.32 54.02 58.19±1.57

-w/o sentence-level closing 44.25 31.80 36.73±3.98 57.90 40.74 47.73±3.31 63.42 50.11 55.84±2.02

-w/o attention soft prompt p1 46.11 32.98 38.10±5.12 57.61 42.02 48.50±3.01 63.10 53.17 57.60±1.66

-w/o attention soft prompt p2 51.47 32.06 39.16±3.97 62.09 41.80 49.88±2.57 63.27 51.79 56.83±3.56

-w/o attention soft prompt p3 50.07 33.58 40.05±4.48 56.86 44.40 49.60±3.34 63.05 51.93 56.81±3.10

Table 4: Ablation study of TECA and baselines on the ACE04 dataset under different shots.

Datasets Layers n
1-shot 5-shot 10-shot 20-shot

P R F1 ↑ P R F1 ↑ P R F1 ↑ P R F1 ↑

ACE04

n = 0 32.88 10.11 15.18±6.51 46.05 30.68 35.35±5.11 57.35 43.80 49.48±3.15 63.40 52.08 57.15±1.96

n = 1 36.19 12.14 16.90±7.59 51.22 27.89 36.11±3.70 58.05 43.67 49.74±2.52 63.71 52.92 57.68±2.35

n = 2 32.70 11.75 16.64±5.72 49.59 34.25 40.18±4.32 60.03 43.78 50.50±1.81 63.32 54.02 58.19±1.57

n = 3 32.75 10.95 14.77±5.86 49.77 33.23 39.67±5.00 58.09 44.78 50.41±2.62 64.12 52.31 57.56±2.41

n = 4 32.84 9.47 14.12±5.24 50.31 31.86 38.40±4.94 59.79 43.80 50.44±2.59 63.05 51.76 56.75±2.05

Table 5: Performance comparison of adding controllable attention soft prompts to different layers.

adding it at higher levels may disrupt the continuity
of parameter learning. We only add controllable
attention soft prompts at lower layers to direct the
model to the specific parts during the initial learn-
ing phase to force the model towards specific parts
of the context.

4.5. Attention Weight Visualization

In order to analyze the attention weight, attention
heads in BERT are visualized for an example input
sentence. We visualize the soft prompts in each
attention head of the last layer of BERT (while n =
3, e.g., only the first three layers add controllable
attention soft prompt). As shown in Figure 3, in
the last layer, [p2] in head2 focuses on the entity to
be classified “his", while in head3, [p2] pays more
attention to the outer part “family". It can be seen
that the attention weight on these heads reflects
the model’s attention to the relationship between
the inner and outer entities to a certain extent. As
well as on head4, when classifying the inner entity
“his", the attention weights of all the soft prompts
focus on the “family", which is part of the outer
entity “his family". In addition, similar findings were
also found in head5, head6, head9 and head12.

5. Case Study

Examples of model predictions are shown in Ta-
ble 6. The first line illustrates that our model can
recognize entities with nested structures. We can
see that the nested entities from inside to outside
are “her” and “her husband”, both of which can
be accurately recognized by our model. The sec-
ond line illustrates that our model still falls short in

identifying long entities. As shown in the second
line, our model incorrectly identifies and classifies
the phrase “parts of Nebraska, Iowa, Minnesota,
Wisconsin, northern Missouri, Illinois, Indiana, and
Michigan”. This could be addressed through the
pre-training and fine-tuning paradigm.

6. Related Work

6.1. Nested NER

Most of the existing nested NER methods focus
on the fully supervised learning paradigm. Ac-
cording to the models used, they can be divided
into: sequence-labeling-based methods (Straková
et al., 2019; Wang et al., 2020; Ma et al., 2022;
Huang et al., 2022b; Das et al., 2022); generative-
based methods (Cui et al., 2021; Hou et al., 2022;
Chen et al., 2022); span-based methods (Yan
et al., 2023; Nguyen et al., 2023; Yuan et al., 2022;
Huang et al., 2022a); programming-algorithm-
based methods (Corro, 2023); and so on. However,
these supervised nested NER methods are not suit-
able for the few-shot setting because of plenty of
labeled data needed.

6.2. Few-shot NER

In recent years, several methods have been pro-
posed to solve the few-shot flat NER task, which
can be divided into two categories according to
whether to expand the datasets. some approaches
augment dataset labeling automatically by lever-
aging external specific knowledge base. These
weakly supervised datasets are then used to train
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Figure 3: Attention heads in BERT are visualized for an example input sentence in the ACE04 dataset. In
this example sentence, his is the inner entity to be classified and hisfamily is the corresponding outer
entity. The darker the blue line, the greater the attention weight.

In a press release, [1[1LVMH1]ORG
1]ORG said [1[1it1]ORG

1]ORG aimed to combine [1[1Gabrielle1]PER
1]ORG and

[1[1Donna Karan International1]ORG
1]ORG and that [1[1it1]ORG

1]ORG expected that [1[1Karan1]PER
1]PER and

[2[2[1[1her1]PER
1]PER husband2]PER

2]PER "will exchange a significant portion of their [1DKI1]ORG shares for, and
purchase additional stock in, [1[1the combined entity1]ORG

1]ORG."

An area of low pressure area over [1[1the Midwest1]LOC
1]LOC carried light to moderate snow across [2[2parts of

[1[1Nebraska1]GPE
1]GPE

2]GPE, [1[1Iowa1]GPE
1]GPE, [1[1Minnesota1]GPE

1]GPE, [1[1Wisconsin1]GPE
1]GPE, [1[1northern

Missouri1]LOC
1]LOC, [1[1Illinois1]GPE

1]GPE, [1[1Indiana1]GPE
1]GPE, and [1[1Michigan1]GPE

1]GPE
2]LOC.

Table 6: Cases Study. Blue brackets indicate entities predicted by the model, red brackets indicate true
entities, the labels in the lower right corner indicate the type of entity, and the superscripts indicate the
level of the nesting.

the model, such as methods like distant supervi-
sion and self-training (Xu et al., 2023a; Li et al.,
2023; Si et al., 2023; Ma et al., 2023). Others
choose to thoroughly mine knowledge from a lim-
ited set of annotated samples, employing methods
like knowledge transfer (Chen et al., 2022; Das
et al., 2022; Zhang et al., 2023; Chen et al., 2023;
Fang et al., 2023) or solely relying on few-shot
learning (Ma et al., 2022; Xu et al., 2023b; Huang
et al., 2022b; Yang et al., 2022). To the best of our

knowledge, FIT (Xu et al., 2023b) is the only viable
few-shot nested NER approach. FIT is a three-
stage pipeline method for few-shot nested NER
without using source domain data. Both focusing
and bridging stages play the role of entity men-
tions extraction, and the prompting stage classifies
entity mentions based on soft prompts and con-
trastive learning. However, the three-stage pipeline
method has serious error propagation issues.
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7. Conclusion

In this work, we propose a two-stage method for
few-shot nested NER without using source domain
data. The span part identification stage, with an
IO tag classifier and enumerating without an ex-
tra filtering module, provides possible entity men-
tions. The entity mention recognition stage pays
fine-grained attention to the inner and outer entities
and the corresponding adjacent context through
the controllable attention soft prompt to classify the
possible entity mentions. Our proposed method,
TECA, alleviates the error propagation issues effec-
tively and learns the relationship between inner and
outer entities. Experimental results show that our
method achieves state-of-the-art performance con-
sistently on the four benchmark datasets (including
ACE2004, ACE2005, GENIA, and KBP2017), and
outperforms several competing baseline models
on F1-score and the corresponding error rates of
nested entities.
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A. Datasets

We conduct experiments on four nested NER
datasets: ACE20046, ACE20057, GENIA8 and
KBP20179. GENIA dataset is available under the li-
cense of CC-BY 3.0, whereas ACE2004, ACE2005,
and KBP2017 require a license from LDC. The de-
tails are as follows:

ACE 2004 and ACE 2005 (Doddington et al.,
2004; Walker et al., 2005) are two nested datasets,
each of them containing 7 entity categories. The
two nested datasets also contain more than two
layers of nesting and the proportion of long entities
is relatively large.

GENIA (Ohta et al., 2002b) is a biology nested
named entity dataset and contains five entity types,
including DNA, RNA, protein, cell line, and cell type
categories.

KBP2017 (Ji et al., 2017) has 5 entity categories,
including GPE, ORG, PER, LOC, and FAC.

6https://catalog.ldc.upenn.edu/LDC2005T09
7https://catalog.ldc.upenn.edu/LDC2006T06
8http://www.geniaproject.org/genia-corpus
9https://catalog.ldc.upenn.edu/LDC2019T12

Table 7 reports the number of sentences, the
number of sentences containing nested entities,
the average sentence length, the total number of
entities, the number of nested entities, and the
nested ratio on the ACE2004, ACE2005, GENIA,
and KBP2017 datasets.

B. Baselines

We select the following models as baselines for
few-shot nested NER. The first one is a model
under the fully supervised setting, and the last four
are models under the few-shot setting.

• Biaffine-CNN-NER (Yan et al., 2023) combine
the biaffine and CNN to recognize NEs. First,
a multi-head Biaffine decoder is used to gener-
ate the representation of each adjacent span,
and then CNN is used to model the interaction
of adjacent spans. Lastly, the representation
incorporating information from adjacent spans
is used for classification.

• FIT (Xu et al., 2023b) is based on focusing,
bridging, and prompting pipeline for few shot
nested NER without using source domain data.
Both focusing and bridging stages play the role
of entity mentions extraction, and the prompt-
ing stage classifies entity mentions based on
soft prompts and contrastive learning.

• SEE-Few (Yang et al., 2022) is a span-based
method applied to the few-shot flat NER, which
extracts spans with seeding and expanding,
then classifies them via natural language infer-
ence. It can be naturally extended to few-shot
nested NER.

• SDNet (Chen et al., 2022) is a self-describing
generation model for few-shot NER. In the pre-
training stage, the external data is used to
jointly train mention describing and entity gen-
eration tasks. In the fine-tuning stage, SDNet
first conducts mention describing to summa-
rize type concept descriptions and then con-
ducts entity generation based on the gener-
ated descriptions.

• ESD (Wang et al., 2022) formulates the
few-shot sequence labeling task as a span-
level similarity matching problem between
test query and supporting instances to solve
few-shot NER. Wang et al. (2022) mentions
that their approach can be extended to few-
shot nested NER by modifying pre-training
datasets. Specifically, they sample from Few-
NERD (Ding et al., 2021) dataset and GE-
NIA dataset in a certain proportion to form
the FewNERD-nested dataset and then pre-
trained on it.

https://doi.org/10.18653/v1/2023.findings-acl.203
https://doi.org/10.18653/v1/2023.findings-acl.203
https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06
http://www.geniaproject.org/genia-corpus
https://catalog.ldc.upenn.edu/LDC2019T12
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Dataset Statistics ACE04 ACE05 GENIA KBP2017

Train Dev Test Train Dev Test Train Dev Test Train Dev Test
# sentences 6202 745 812 7299 971 1060 15023 1669 1854 2126 722 720
# sent. nested entities 2712 294 388 2799 352 340 3197 325 446 622 208 217
avg sentence length 22.50 23.02 23.05 19.94 19.71 17.90 25.43 24.63 25.99 24.11 25.41 25.10
# total entities 22202 2514 3035 24708 3218 3030 46142 4367 5506 7515 2630 2564
# nested entities 10148 1092 1417 9940 1189 1184 8265 799 1199 2145 725 726
nested ratio (%) 45.71 43.44 46.69 40.23 36.95 39.08 17.91 18.30 21.78 28.54 27.57 28.32

Table 7: Statistics of the four datasets used in the experiments.

Tags ACE04 ACE05 GENIA KBP2017
# WEA weapon weapon - -
# GPE geography geography - geography
# PER person person - person
# FAC facility facility - facility
# ORG organization organization - organization
# LOC location location - location
# VEH vehicle vehicle - -
# DNA - - DNA -
# RNA - - RNA -
# cell_type - - cell -
# protein - - protein -
# cell_line - - group -
# No Entity none none none none

Table 8: Verbalizer used in the prompting stage.

C. Implementation Details

We implement TECA with Huggingface Transform-
ers 4.11.3 and PyTorch 1.7.1. In most exper-
iments, we use BERT (Devlin et al., 2019) as
PLM. For the GENIA dataset, replacing BERT
with BioBERT (Lee et al., 2019). In the exper-
imental details, we use bert-base-uncased10 for
ACE2004, ACE2005 and KBP2017 datasets and
dmis-lab/biobert-base-cased-v1.211 for GENIA
dataset (the two model sizes: all about 110M). The
soft prompts are initialized by the embedding of “,”
“(” and “)”. The verbalizer is a simple 1-to-1 map-
ping as shown in Table 8, that is, only the word
corresponding to the semantics of the tag is used
as a mapping. We use the Adam Optimizer with
a linear warmup-decay learning rate schedule, a
dropout before the io classifier with a rate of 0.1.
Please see Table 9 for details. We train our model
on a single NVIDIA 3090 GPU with 24GB mem-
ory. For all datasets, we train our model for 35
epochs and choose the checkpoint with the best
validation performance to test. The model usu-
ally converges in less than 35 epochs. Taking the
5-shot of the ACE04 dataset as an example, the
model converges in the 13th epoch on average in
10 groups of samples (variance is 15.96).

10https://huggingface.co/bert-base-uncased
11https://huggingface.co/dmis-lab/

biobert-base-cased-v1.2

P ACE04 ACE05 KBP17 GENIA

lr 3e-05 3e-05 3e-05 3e-05

The first stage batch size 1 1 1 1

The second stage batch size 8 8 8 8

n 2 3 3/2/3 3

α 1.0

β 1.0

η 1.0

γ 1.1

drop out rate 0.1

lr_warmup 0.1

weight_TECAy 0.01

Table 9: Detailed Parameter(P) Settings. 3/2/3
means n = 3 for 5-shot and 20-shot, n = 2 for
10-shot.

https://huggingface.co/bert-base-uncased
https://huggingface.co/dmis-lab/biobert-base-cased-v1.2
https://huggingface.co/dmis-lab/biobert-base-cased-v1.2
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