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Abstract
As a cross-modal task, visual storytelling aims to generate a story for an ordered image sequence automatically.
Different from the image captioning task, visual storytelling requires not only modeling the relationships between
objects in the image but also mining the connections between adjacent images. Recent approaches primarily utilize
either end-to-end frameworks or multi-stage frameworks to generate relevant stories, but they usually overlook latent
topic information. In this paper, in order to generate a more coherent and relevant story, we propose a novel method,
Topic Aware Reinforcement Network for VIsual StoryTelling (TARN-VIST). In particular, we pre-extracted the topic
information of stories from both visual and linguistic perspectives. Then we apply two topic-consistent reinforcement
learning rewards to identify the discrepancy between the generated story and the human-labeled story so as to
refine the whole generation process. Extensive experimental results on the VIST dataset and human evaluation
demonstrate that our proposed model outperforms most of the competitive models across multiple evaluation metrics.
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1. Introduction

Nowadays, visual storytelling has garnered increas-
ing attention from the fields of both computer vision
(CV) and natural language processing (NLP) due
to its significance and practicality in some applica-
tions such as image retrieval, image subtitling, and
blind navigation (Fan et al., 2021). As opposed to
visual captioning, visual storytelling also involves
exploring the corresponding relationships between
object pairs in adjacent images. Additionally, when
humans tell stories, they usually revolve around a
specific central topic. Therefore, to generate high-
quality stories, visual storytelling models also re-
quire taking the topic information into account.

In the field of visual storytelling, existing methods
can be divided into two main categories: end-to-
end-based methods (Huang et al., 2016; Yu et al.,
2017; Kim et al., 2018; Wang et al., 2018, 2019; Hu
et al., 2020; Xu et al., 2021; Braude et al., 2022;
Chen et al., 2022; Yang and Jin, 2023; Li et al.,
2023) and multi-stage-based methods (Hsu et al.,
2020; Chen et al., 2021; Chu et al., 2021). Both
them, end-to-end-based methods typically map di-
rectly from the input image sequence to the output
story, while multi-stage-based methods employ dif-
ferent modules trained independently in distinct
stages, and the results of the previous stage are al-
ways used as the input for the subsequent one. The
common idea behind the end-to-end-based meth-
ods is to use a convolutional neural network (CNN)
as an encoder to extract high-dimensional image
features and overall image-stream features. These
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representational feature vectors are then fed into
a long short term memory (LSTM) to construct the
story. These approaches can always yield outstand-
ing stories with high score in automatic metrics. On
the other hand, multi-stage-based methods, known
as planning and writing strategies, advocate for sep-
arating the generation process into several steps.
Generally speaking, the first step is always to em-
ploy an object detection module to detect salient
concepts in the given images and the next step is
to generate a related story through a transformer-
based architecture. This kind of methods can gen-
erate stories that reflect human preferences.

Despite their remarkable progress, there are still
several technical limitations in the visual storytelling
task. One of the drawbacks is that few models con-
sider the latent topic information of the generated
story. The topic of the story serves as its central
idea, which is the core of the story. It is well known
that maintaining a coherent and engaging storyline
is crucial, and centering the narrative around a spe-
cific topic aids in achieving this coherence. Besides,
telling a story around a concrete topic can enhance
readers’ comprehension as well as facilitate better
content retention. Nevertheless, once the gener-
ated story goes off-topic, it will become incoherent
and lack narrative variety. To be noted, reinforce-
ment learning provides a unique technique to guide
the model towards generating stories that not only
capture the correct relationships between images
but also ensure a more consistent and accurate
topic information. Hence, we incorporate reinforce-
ment learning into our methodology to enhance the
overall quality of visual storytelling.
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Figure 1: Overview of TARN-VIST. In our model, image features are obtained by the pre-trained ResNet
and then fed into the hierarchical decoder which consists of a manager LSTM and a worker LSTM to
generate a sample story. Once the candidate story is generated, the two topic consistency rewards are
combined to refine the generation process. Furthermore, we also set a classical sentence-level BLEU
reward to control the fluency of the generated story.

Inspired by the above idea, we propose a novel
method called Topic Aware Reinforcement Network
for VIsual StoryTelling (TARN-VIST). As depicted
in Fig. (1), our model is an encoder-decoder archi-
tecture based on reinforcement learning. To be
specific, we first use contrastive language-image
pre-training (CLIP) and rapid automatic keyword
extraction (RAKE) to extract topic information of
the stories in the dataset from both visual and lin-
guistic perspectives, respectively. Subsequently,
we harness the extracted topic information along
with cosine similarity to design the topic-consistent
reinforcement learning rewards. The entire frame-
work aggregates the aforementioned rewards and
employs the reinforcement learning algorithm to
optimize them.

To summarize, our contributions in this paper are
as follows:

• We first take advantage of CLIP and RAKE
together to extract topic information of stories
from both visual and linguistic perspectives.

• To make full use of the topic information, we de-
sign reinforcement learning rewards for topic
consistency based on the extracted topic infor-
mation and cosine similarity.

• Experimental results on the VIST dataset and
human evaluation demonstrate that our pro-
posed model outperforms most of the leading
models on multiple evaluation metrics.

2. Related Work

2.1. Visual Storytelling

Visual storytelling is the task of generating a rea-
sonable paragraph-level story with the image se-
quence selected from a photo stream as input. It
necessitates a deeper understanding of the event
progression in the image stream. Based on their
technical characteristics, we can classify the cur-
rent visual storytelling techniques into end-to-end
frameworks and multi-stage frameworks. Where
end-to-end frameworks mainly make use of CNN
structure such as VGG (Simonyan and Zisserman,
2015) or ResNet (He et al., 2016) to extract visual
features and then apply LSTM to generate story.
For instance, Huang et al. (2016) encode an image
sequence by running a recurrent neural network
(RNN) over the fc7 vectors of each image and use
gated recurrent units (GRUs) for both the image
encoder and story decoder. Yu et al. (2017) design
a model composed of three hierarchically-attentive
RNNs to encode the album photos, select repre-
sentative photos, and compose the story. Kim et al.
(2018) put forward a deep learning network model
called GLAC net that combine global-local (glocal)
attention and context cascading mechanisms to-
gether to generate story. Wang et al. (2019) employ
a scene encoder and a photo encoder to detect
the scene changes and meanwhile aggregate the
scene information. Yang et al. (2019) present a
commonsense-driven generative model, which in-
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troduces related crucial commonsense from the
external knowledge base. Wang et al. (2020) raise
a novel graph-based architecture for visual story-
telling by modeling the two-level relationships on
scene graphs. Jung et al. (2020) propose to ex-
plicitly learn to imagine the storyline that bridges
the visual gap. Chen et al. (2021) introduce two
novel modules that consider both the correlation
among candidate concepts and the image-concept
correlation. Qi et al. (2021) present a novel Latent
Memory-augmented Graph Transformer (LMGT),
which directly inherits the merits from the Trans-
former structure. Xu et al. (2021) put forward a
novel imagine-reason-write generation framework
(IRW), which employs a relational reasoning mod-
ule to fully exploit the external knowledge and
task-specific knowledge. Braude et al. (2022) de-
velop a novel message-passing-like algorithm for
ordered image attention (OIA) that collects interac-
tions across all the images in the sequence. Yang
and Jin (2023) propose a multi-tasking memory-
augmented framework, which is jointly trained on
factual visual storytelling data and unpaired style
corpus. Gu et al. (2023) put forward a coherent
visual storytelling (CoVS) framework. It introduces
an image sequence encoder module and a new
parallel top-down attention module. This kind of
approaches can handle the mapping relationship
between images and text information well. Their
model structures are relatively easy and simple to
deploy. However, such methods lack the capacity
to model the global structure, and the generated
stories usually lack diversity.

In comparison to end-to-end frameworks, multi-
stage frameworks customarily separate the training
process into multiple steps and the outputs of the
previous step are often used as the input of the sub-
sequent step. For example, Hsu et al. (2020) put for-
ward a distill-enrich-generate framework. It distills a
set of representative words from the input prompts
and enriches the word set by using external knowl-
edge graphs. Chu et al. (2021) introduce PR-VIST
to represent the input image sequence as a story
graph in which it finds the best path to form a story-
line. Chen et al. (2022) propose a new sentiment-
aware generative model for VIST called SentiStory.
It uses a multi-layered sentiment extraction mod-
ule (MLSEM). Besides, some researchers have
attempted to extract the topic information of stories
and generate higher-quality content that closely re-
lated to the topic information. Li et al. (2020) directly
use the query vocabulary of the dataset itself as the
topic information of the story, but since the query
vocabulary is relatively extensive and a topic vo-
cabulary sometimes corresponds to hundreds of
sample stories, it cannot accurately represent the
theme of the story vocabulary. In addition, visual
storytelling is essentially a multi-modal task where

the input image sequence also contains plentiful
information, but previous studies do not consider
the topic vocabulary from the visual perspective.

2.2. Reinforcement Learning

Reinforcement learning is an important branch of
machine learning where an agent learns how to
make optimal decisions and maximize the return of
rewards obtained by interactions with a complicated
environment (Nie et al., 2023; Plaat et al., 2023).
The core concept of reinforcement learning is to
learn the most appropriate policy directly through
trial and error experiences. The agent performs
an action in the environment (Action), and then ob-
serves the feedback of the environment (Reward or
Punishment), and modifies its behavior in response
to the feedback, so as to increase the chances of
receiving better rewards in the future (Mnih et al.,
2013). In recent years, reinforcement learning has
been widely used in numerous fields, such as au-
tonomous driving (Kiran et al., 2022), robot con-
trol (Orr and Dutta, 2023), gaming (Perolat et al.,
2022) and healthcare (Yu et al., 2023), etc.

For the visual storytelling task, some researchers
have already tried to introduce reinforcement learn-
ing into the field of visual stories and achieved
promising generation results. Chen et al. (2018)
propose an adversarial reward learning (AREL)
framework to learn an implicit reward function from
human demonstrations, and then optimize policy
search with the learned reward function. Wang et al.
(2018) design the rewards with two critic networks,
including a multi-modal and a language-style dis-
criminator to generate relevant and story-style para-
graphs. Furthermore, through rethinking about prin-
ciples that make up high-quality story, Hu et al.
(2020) present three assessment criteria which
are relevance, coherence and expressiveness, and
then employed a reinforcement learning framework
called ReCo-RL to capture the essence of these
quality criteria. However, to the best of our knowl-
edge, attempts on formulating reward functions for
reinforcement learning based on topic information
are still in the blank stage. Hence, we first extract
the topic information of the dataset and design topic-
consistent reinforcement learning reward functions
to improve the overall generation process.

3. Approach

In this paper, we define the visual storytelling
task as follows: given an image sequence I =
{i1, i2, . . . , im}, the task aims to produce a human-
like story S = {s1, s2, . . . , sm} where si is a se-
quence of words describing the i-th image.
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3.1. Topic Information Extraction
In this section, we first describe the topic informa-
tion extraction process. As the visual storytelling
task is a multi-modal task, we utilize CLIP (Rad-
ford et al., 2021) and RAKE (Rose et al., 2010) to
extract the topic information of the story from the
visual and linguistic perspectives separately.

We use CLIP to extract the topic information of
the story from the visual perspective as shown in al-
gorithm 1. The algorithm mainly includes four steps:
candidate-concept extraction, image encoding, text
encoding and similarity calculation.

In the candidate concept extraction step, the
Clarifai′s image detection API1 is applied to re-
trieve the concepts that appear in the input image
sequence. Different from other common object de-
tection algorithms, this API can not only accurately
detect the objects, but also effectively identify the
scene and text information in the image stream. At
this point, it should be noticed that for each pic-
ture, only the top three concepts are taken. So
we need to remove some noise concepts (such as
"people", "person", "men", etc.). Next, we use the
sentence pattern "The topic of this photo is {con-
cept}" to assemble the extracted {concept} into the
sentence pattern. For example, for the concept
"graduation", the sentence formed is "The topic of
this photo is graduation". The reason for assem-
bling concepts into sentences is to use CLIP for
zero-shot prediction, and the pre-training of CLIP is
performed on a large number of "sentence-picture"
collections. Apart from this, after assembling into
sentences, the text encoder can acquire richer text
feature information, which is helpful and beneficial
for subsequent model processing.

For the image encoding and text encoding pro-
cesses, we primarily leverage CLIP’s text encoder,
image encoder, and zero-sample prediction func-
tion. The zero-shot prediction function is realized
through the semantic knowledge learned in the pre-
training phase, and it can perform image and text
classification without the need for additional sam-
ple data. Besides, CLIP can comprehend image
content through text annotation and image classifi-
cation. At this stage, the text features of the above
text information and the visual features of the input
image are extracted by using the text encoder and
the image encoder of CLIP, respectively. The over-
all image features are then calculated by average
weighting and adding the individual image features.
Finally, we take advantage of cosine similarity to
calculate the information with the highest similar-
ity between text features and image features, and
then extract the top 1 element from the tensor Sim-
ilarity[0]. It is worth noting that the topk function
is commonly used to retrieve the top k elements

1https://clarifai.com/clarifai/main/models

Algorithm 1 Visual Perspective Topic Information
Extraction Process
Input: Image Sequence I with 5 images and
Candidate− Concept
Output: Topic Information
1: Initialise Candidate− Concept← [ ]
2: /* Candidate-Concept Extraction */
3: for i = 1 to 5 do
4: Extract top-3 concept cji from Image i with

Clarifai′s Image Detection API
5: Filter out some useless concepts and assem-

ble concepts into sentences sji
6: Candidate− Concept. append (sji )
7: end for
8: /* Image Encoding */
9: for i = 1 to 5 do

10: Image-feature i = CLIP-Image-Encoder (Im-
age i)

11: end for
12: Image-mean-feature = mean (Image-feature i)
13: /* Text Encoding */
14: Text-features=CLIP-Text-Encoder(Candidate-

Concept)
15: /* Similarity Calculation */
16: Similarity = Image-mean-feature @ Text-

features
17: Topic Information = Similarity[0]. topk(1)
18: return Topic Information

from a tensor in practice and the eventual extracted
element is a word or phrase, which is the desired
image topic information.

Furthermore, we also apply RAKE to extract the
topic vocabulary of the stories as the topic informa-
tion from the linguistic perspective in the dataset.
Compared to latent dirichlet allocation (LDA), RAKE
can not only rapidly extract keywords from exten-
sive textual data but also excels in identify and
extract multi-word phrases, rather than limited to
some single keywords. It is versatile, effective, fast
and applicable for various text types, including both
long and short texts. The core idea behind RAKE
is to identify words or phrases with high frequency
and importance in the text as the topic information.

3.2. Topic Aware Storytelling Model
The Encoder We first feed the image sequences
into ResNet (He et al., 2016) and extract their high-
level image features. For the follow-up require-
ments, we compute the average value of all the
image features vi as follows:

V =
1

n

∑
i

vi (1)

Then, the image features vi and overall image
sequences features V are combined by direct con-
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catenation along the channel dimension and sent
into decoder together.

The Decoder The decoder is hierarchical which
involves a manager LSTM and a worker LSTM
(Huang et al., 2019). The manager LSTM serves
as a supervisor to control the overall flow of the
story, which is denoted as follows:

hm,i = LSTMM

([
V; vi; h

T
w,i−1

]
,hm,i−1

)
(2)

When describing i-th image, the manager LSTM
will take three kinds of information into considera-
tion, which are: 1) overall information of the image
sequence V; 2) image information in the i-th im-
age vi; 3) sentences generated for previous image
hTw,i−1. Then, the manager LSTM will predict a hid-
den state hm,i as the goal vector and passes the
vector to the worker LSTM.

The worker LSTM attempts to complete the gen-
eration of word description based on the goal vector.
When generating t-th word for the i-th image, the
worker LSTM decoder will take the current image
information vi, word embedding of the previously
generated word et−1

i and goal vector hm,i as input
to predict its hidden state ht

w,i. Then, the worker
LSTM enforces a linear layer f(·) to approximate
the probability of choosing the next word:

htw,i = LSTM
([
vi;hm,i; e

t−1
i

]
, ht−1

w,i

)
(3)

pθ
(
yti | y1:t−1

i , vi, V̄
)
= softmax

(
f
(
ht
w,i

))
(4)

Topic Consistency Rewards Design For a
given image sequence, we define that the extracted
topic information from the perspective of vision and
language are topicv and topicl. For the story gener-
ated by the model, we use RAKE to extract its topic
information topicc, and then propose three reward
functions rbleu, rtopic−cv and rtopic−cl based on the
text cosine similarity and topic consistency:

rbleu = sentence-bleu(storyc, storyg) (5)

rtopic−cv = cosine-similarity(topicc, topicv) (6)

rtopic−cl = cosine-similarity(topicc, topicl) (7)

where story_c means the story generated by our
model and story_g represents the corresponding
ground-truth story. In summary, the total reward
function is:

r = λ · rbleu + γ · rtopic−cv + η · rtopic−cl (8)

where λ, γ and η are the hyper-parameters con-
trolling the proportion of each part.

3.3. Training
Reinforcement learning can learn a policy that en-
courages the model to focus more on those key as-
pects and then generate stories with more emotion
and fluency through maximizing the given reward:

JRL(β) =
∑

Y,V ∈D′

Eyi∼πi [(b− r (yi)) log πi] (9)

r (yi) = λrbleu (yi)+γrtopic−cv (yi)+ηrtopic−cl (yi)
(10)

where π≡pθ (yi | vi,v) is the policy and b is the
baseline that reduces the given reward variance.

During training, we find that optimizing only with
the reinforcement learning loss has the potential
to increase expected rewards while sacrificing the
quality of our generative model. To address this
concern, we first train our model with maximum like-
lihood estimation (MLE) and then continue to train
the model jointly with reinforcement loss LossRL

and MLE loss LossMLE . This training strategy can
strike a balance between reward optimization and
model fidelity, resulting in improved storytelling abil-
ity. MLE loss and the mixed training loss Lossmixed

are defined as follows:

LossMLE =
∑

Y,V ∈D′

N∑
i=1

T∑
t=1

−log P (Wi,t = Yi,t)

(11)

Lossmixed = ωLossRL + (1− ω)LossMLE (12)

Following Hu et al. (2020), we set the ω=0.5 in eq.
(12) as it is a good trade-off between reinforcement
learning loss and MLE loss.

4. Experiments

4.1. Dataset and Evaluation Metrics
We train and evaluate our model on the VIST
dataset (Huang et al., 2016), which is the most
widely used dataset for the visual storytelling task.
The VIST dataset1 includes 10,117 Flicker albums
with 21,0819 unique images and it is split into train-
ing/validation/testing sets with 400,98/4,988/5,050
samples, respectively.

During the whole experiment process, we uti-
lize two groups of automatic metrics for the quan-
titative evaluation. One group consists of several
surface-level-based similarity measures, including
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE (Lin, 2004), CIDEr

1https://visionandlanguage.net/VIST/
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Method BLEU-1 BLEU-2 BLEU-4 METEOR ROUGE CIDEr SPICE
Seq2seq - - 3.5 31.4 - 6.8 -

H-Attn-Rank - - - 34.1 29.5 7.5 -
BARNN - - - 33.3 - - -

SRT 43.4 21.4 5.2 12.3 - 11.4 -
XE-ss 62.3 38.2 13.7 34.8 29.7 8.7 -
AREL 63.7 39.0 14.0 35.0 29.6 9.5 8.9
HPSR 61.9 37.8 12.2 34.4 31.2 8.0 -
HSRL - - 12.3 35.2 30.8 10.7 7.5

SGVST 65.1 40.1 14.7 35.8 29.9 9.8 -
ReCo-RL - - 12.4 33.9 29.9 8.6 8.3

INet 64.4 40.1 14.7 35.6 29.6 11.0 -
IRW 66.7 41.6 15.4 35.6 29.6 11.0 -

CKAKS - - 12.0 35.4 30.0 10.5 -
LGMT 67.5 41.6 15.1 35.6 29.7 10.0 -

Sentistory 64.8 39.8 14.2 35.3 29.8 9.7 -
TARN-VIST 69.0 43.5 13.4 35.8 29.5 12.1 11.3

Table 1: Quantitative results on the VIST dataset for surface-level-based automatic metrics. For all these
metrics, higher score means better performance.

Method BERTScore BARTScore BLEURT
KE-VIST(No KG) 28.25 17.21 43.63

KE-VIST (With OpenIE) 29.12 17.93 46.85
KE-VIST (with VG) 29.16 18.03 47.54

PR-VIST 27.64 18.09 48.92
TARN-VIST 30.47 18.51 49.43

Table 2: Quantitative results on the VIST dataset for semantic understanding evaluation metric. For all
these metrics, higher score means better performance.

(Vedantam et al., 2015) and SPICE (Anderson et al.,
2016). In particular, BLEU is a classical metric
that computes the geometric average of overlap-
ping n-grams between the generated sentence and
the reference sentence. Commonly used ones are
BLEU-1, BLEU-2 and BLEU-4. METEOR calcu-
lates the sentence-level similarity scores based on
the harmonic mean of uni-gram recall and preci-
sion. It is sensitive to the text length. ROUGE is
a recall-based metric which captures the length
of the most common sub-sequence between the
generated story and the reference. CIDEr adopts
higher order n-grams to account for fluency and
uses term frequency-inverse document frequency
(TF-IDF) weighting for each n-gram to down-weigh
commonly occurring ones. SPICE is an automated
caption evaluation metric that defined over scene
graphs. It can effectively capture and reflect human
judgments over model-generated captions.

What’s more, since previous researchers (Chen
et al., 2018) have pointed out that current surface-
level automatic metrics may correlate poorly with
human judgments, we also use BERTScore (Zhang
et al., 2020), BARTScore (Yuan et al., 2021) and
BLEURT (Sellam et al., 2020) in the expriments.
Among them, BERTScore measures the BERT
embedding similarity between each token as a

more semantic and robust measure rather than
common string-match-based similarity measure.
BARTScore is an unsupervised metric that does
not require human judgment. It can better evaluate
the generated text from various aspects. BLEURT
is a transfer learning based metric for natural lan-
guage generation. It excels in capturing significant
semantic similarities between sentences.

4.2. Implementation Details

We implement our framework in PyTorch (Paszke
et al., 2019). In the phase of encoding, we lever-
age the official pre-trained Resnet-152 model1 to
extract the deeper image features. Additionally, in
the phase of decoding, the hidden size of man-
ager LSTM and worker LSTM are both set to 512.
When calculating the cosine similarity, we employ
the Bert-base model from HuggingFace2. Further-
more, during the model training with MLE loss, we
set learning rate to 0.0001 and the dropout rate to
0.6. Our experiments are conducted on GeForce
RTX 3090 GPU with a batch size of 128.

1https://huggingface.co/microsoft/resnet-152
2https://huggingface.co/google-bert/bert-base-

uncased
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Model BLEU-4 METEOR CIDEr SPICE
Baseline 12.40 33.90 8.60 8.30

Baseline+rbleu 12.82 35.36 11.58 10.84
Baseline+rbleu+rtopic−cv 13.10 35.62 11.70 11.37
Baseline+rbleu+rtopic−cl 13.44 35.80 10.99 11.36

TARN-VIST 13.46 35.88 12.07 11.25

Table 3: Ablation experiment results on different combinations of the reward functions. Note that here
our basic model is ReCo-RL.

γ η BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr SPICE
0.3 0.7 68.43 42.48 23.51 12.85 29.14 35.52 11.23 10.76
0.4 0.6 68.38 42.55 23.56 12.88 29.21 35.62 11.69 10.85
0.5 0.5 69.01 43.56 24.27 13.46 29.28 35.88 12.07 11.36
0.6 0.4 68.58 42.79 23.77 13.09 29.24 35.63 11.91 10.94
0.7 0.3 68.24 42.46 23.57 12.92 29.12 35.53 11.44 10.78
0.8 0.2 68.24 42.58 23.66 12.90 29.24 35.48 11.69 10.77

Table 4: Ablation experiment results of TARN-VIST with different γ and θ.

Aspect KE-VIST TARN-VIST Tie PR-VIST TARN-VIST Tie
Relevance 19% 67% 14% 30% 60% 10%
Coherence 22% 50% 28% 18% 62% 20%

Information Richness 28% 64% 8% 33% 50% 17%

Table 5: Human Pairwise Evaluation between TARN-VIST and other models. For each pairwise compari-
son, each of the three columns stands for the percentage of volunteers that prefer this story to the other
one, and consider both stories are of equal quality.

4.3. Quantitative Evaluation

We compare our model with the following base-
lines: (1) Seq2seq (Huang et al., 2016), a classi-
cal end-to-end sequence learning approach; (2)
H-Attn-Rank (Yu et al., 2017), a model composed
of three hierarchically-attentive recurrent neural
nets (RNNs); (3) BARNN (Liu et al., 2017), an
attention-based RNN with a skip gated recurrent
unit (GRU) which leverages the semantic relation
between photo streams and stories; (4) Show, Re-
ward and Tell (SRT) (Wang et al., 2018), a hierarchi-
cal generative model with reinforcement learning
and adversarial training; (5) XE-ss and AREL (Chen
et al., 2018), an adversarial reward learning frame-
work with imitation learning and GAN; (6) HPSR
(Wang et al., 2019), a novel model with a hierarchi-
cal photo-scene encoder and a reconstructor; (7)
HSRL (Huang et al., 2019), a structured reinforce-
ment learning approach with hierarchical decoder;
(8) SGVST (Wang et al., 2020), a framework based
on scene graphs with GCN and TCN; (9) ReCo-RL
(Hu et al., 2020), a reinforcement learning algo-
rithm while the reward is relevance, coherence and
expressiveness; (10) INet (Jung et al., 2020), a
hide-and-tell training scheme; (11) KE-VIST (Hsu
et al., 2020), a three-stage generation framework;
(12) IRW (Xu et al., 2021), an imagine-reason-write
generation framework; (13) CKAKS (Chen et al.,
2021), an extract-enrich-generate framework; (14)

PR-VIST (Chu et al., 2021), a plot and rework frame-
work; (15) LMGT (Qi et al., 2021), a Transformer
based framework for visual story generation; (16)
Sentistory (Chen et al., 2022), a sentiment-aware
generative model.

In table (1), we observe that our proposed model
TARN-VIST achieves state-of-the-art on the BLEU-
1, BLEU-2, METEOR, CIDEr and SPICE. Specif-
ically, compared with the previous best model,
TARN-VIST makes the improvement by 1.5% on
BLEU-1, 1.9% on BLEU-2, 0.2% on METEOR,
1.1% on CIDEr and 2.4% on SPICE. In addition,
the performance of BLEU-4 and ROUGE is also
very competitive. In table (2), we find that TARN-
VIST achieves state-of-the-art on all the metrics.
The reason for the excellent performance of TARN-
VIST can be attributed to our proposed composite
reward function, which can enable the model to
effectively achieve topic alignment and generate
high-quality stories.

4.4. Ablation Study
To analyze the effectiveness of our proposed re-
ward functions, we carry out a number of abla-
tion experiments on different combinations of the
reward functions. The experimental results are
shown in Table (3). Note that our basic model is
ReCo-RL (Hu et al., 2020), which is an encoder-
decoder framework trained through reinforcement
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Figure 2: Examples of extracted topic information

Figure 3: Example story generated from TARN-VIST and several competitive baselines.

learning. From the table, we can see that when
BLEU is used as the reward function of reinforce-
ment learning, the performance of the model has
been improved to a certain extent compared with
the baseline. For instance, the evaluation indica-
tors of CIDEr and SPICE have increased by 2.98%
and 2.54%, respectively. Besides, when using
rtopic−cv or rtopic−cl alone, the model also has differ-
ent degrees of improvement. In addition, when rbleu
and rtopic−cv are combined, the relative improve-
ments of CIDEr and SPICE are 0.12% and 0.53%.
Furthermore, when rbleu, rtopic−cl and rtopic−cv are
integrated together, the model performs best on
most evaluation metrics.

In eq. (10), λ, γ and η are three important hyper-
parameters. Therefore, we also implement different
combinations of the hyper-parameters. To be no-

ticed, λ is set to 0.5 by the control variable method
and the sum of γ and η is set to 1. We carry out
several experiments on different value pairs of γ
and η. The experimental results are shown in Table
(4). It can be obviously seen that when γ and η are
all equal to 0.5, the model can better balance the
effects of the three reward functions, thus making
the model reach a local optimal result.

4.5. Human Evaluation
Previous visual storytelling work has highlighted
that current string-match-based automatic metrics
are not a perfect way to evaluate the model’s per-
formance (Chen et al., 2018). Therefore, we fur-
ther conduct pairwise human evaluation to assess
the subjective quality of our model. In particular,
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we randomly selected 100 generated sample sto-
ries from the test set and invited 20 well-educated
volunteers to evaluate results based on the story
relevance, the story coherence, and the story infor-
mation richness. All the evaluators have received
college degree or above. Meanwhile, the choices
are shuffled before evaluation to avoid any bias.
Our model is compared with KE-VIST (Hsu et al.,
2020) and PR-VIST (Chu et al., 2021). For each
sample pair, given a photo stream and the two sto-
ries generated by two models, the volunteers are
asked to perform pairwise evaluation based on the
relevance, coherence, and information richness.
Among them, relevance assesses how the story
accurately describes what is happening in the im-
age sequence. Coherence evaluates whether the
story is semantically coherent with other sentences.
Information richness assesses whether the infor-
mation is fully expressed in the story. To be more
fair, we also a provide neutral option for cases that
volunteers consider the two stories to be equally
good on one particular criterion. The experimental
results are displayed in Table (5). From the table,
we can observe that our proposed model signifi-
cantly outperforms other models in term of these
three metrics.

4.6. Qualitative Evaluation
In order to provide a more intuitively analysis on
the rationality of our proposed topic information
extraction method, we randomly choose several
image sequences, and the topic information topicv
and topicl extracted from the visual and linguistic
perspectives are also displayed. The experimen-
tal results are shown in Fig. (2). It can be found
that both the topic information can well summarize
the content of the image sequence. Take the first
set of image sequences as an illustration, the topic
information extracted from the visual perspective
is "Seashore" and the topic information extracted
from the linguistic perspective is "Good Day". We
infer that when extracting the topic information from
the visual perspective, multiple beach-related vo-
cabulary would be extracted when using the image
recognition module to extract the concept of the in-
put image sequence, so the final topic information
is "Seashore". Meanwhile, when extracting topic
vocabulary from the linguistic perspective, since the
story in the dataset describes the picture from the
protagonist’s point of view, the content is probably
"spent a good day at the beach" and other informa-
tion. Therefore, the extracted topic information is
"Good Day".

In addition, to qualitatively evaluate the TARN-
VIST, we also compares the sample stories gener-
ated by this model with the other two models in a
specific image sequence. The results are exhibited
in Fig. (3). We can see that the image sequence

topics extracted by our model are closely related
to weddings. For the stories generated by the PR-
VIST model, "birthday party", "their room was so
proud of them" and "her mom got married today"
are less pertinent to the topic of the input image se-
quence. For the stories generated by the KE-VIST
model, the two short sentences "everyone danced"
and "then came out after" have serious expression
problems such as grammatical errors and low co-
herence. On the contrary, the stories generated
by the TARN-VIST are more relevant than those
generated by the other two models. For instance,
in each sentence, there are words such as "bride",
"groom" and "wedding". The presence of a story
brings the tone of the story and the topic informa-
tion closer together so that the stories generated
by TARN-VIST are more coherent.

5. Conclusion and Future Work

In this paper, we propose TARN-VIST, an innovative
topic aware reinforcement network for visual story-
telling to generate more cogent story. We first utilize
CLIP and RAKE to mine the topic information of the
story from both visual and linguistic perspectives.
Subsequently, we employ the reinforcement learn-
ing and design topic consistency rewards to refine
the generation process. Extensive experimental
results on the benchmark dataset demonstrate that
our model outperforms most competitive baselines
across a number of evaluation metrics.

In future work, we will explore grammar and dis-
course structure in visual storytelling tasks, as they
play a key role in the accuracy, coherence, and
readability of the generated stories. Besides, it is
also interesting and practical to further analyse lin-
guistic style to improve the quality and diversity of
generated stories.
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