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Abstract
Unsupervised text style transfer aims to modify the style of a sentence while preserving its content without parallel
corpora. Existing approaches attempt to separate content from style, but some words contain both content and
style information. It makes them difficult to disentangle, where unsatisfactory disentanglement results in the loss
of the content information or the target style. To address this issue, researchers adopted a “cycle reconstruction”
mechanism to maintain content information, but it is still hard to achieve satisfactory content preservation due to
incomplete disentanglement. In this paper, we propose a new disentanglement-based method, StyleFlow, which
effectively avoids the loss of contents through a better cycle reconstruction via a reversible encoder. The reversible
encoder is a normalizing flow that can not only produce output given input but also infer the exact input given the
output reversely. We design a stack of attention-aware coupling layers, where each layer is reversible and adopts the
attention mechanism to improve the content-style disentanglement. Moreover, we propose a data augmentation
method based on normalizing flow to enhance the training data. Our experiments on sentiment transfer and for-
mality transfer tasks show that StyleFlow outperforms strong baselines on both content preservation and style transfer.
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1. Introduction

Text style transfer aims to convert a sentence with
a specific style into another style (e.g., sentiment,
formality) while retaining the original content (Hu
et al., 2022). Due to the lack of large parallel cor-
pora, most researchers focused on unsupervised
style transfer (Shen et al., 2017; Dai et al., 2019;
Lee et al., 2021; Reif et al., 2021).

On the one hand, some researchers encode the
content information of the input sentences and then
add the target style on it (Lample et al., 2018; Dai
et al., 2019). Those methods maintain the content
information well but do not effectively remove the
source style information, so the transferred sen-
tence may not express the target style information
well. Some recent works utilize large language
models (LLMs) (Touvron et al., 2023) that directly
feed the target style to LLMs through prompting
(Suzgun et al., 2022; Luo et al., 2023). However,
researchers (Ji et al., 2023) find that LLMs tend to
generate creative content and do not fully maintain
the original content in transferred sentences.

On the other hand, researchers attempt to dis-
entangle the style and content information explic-
itly or implicitly and then replace the style with
a new one (Shen et al., 2017; Reid and Zhong,
2021). Explicit disentanglement methods utilize
style marker detection at the token level to explic-
itly replace tokens that carry vital style information.

†Corresponding Author.

This approach heavily relies on the accuracy of
style marker detection and is only effective for sen-
tence types where the style is evident (Hu et al.,
2022). The implicit way disentangles word em-
beddings into style and content representations
and combines the source-content and target-style
representations to generate target-style sentences.
However, some words often carry both style and
content information. For example, the term "deli-
cious" conveys not only a positive sentiment (style)
but also the taste of food (content). Consequently,
these disentanglement-based methods struggle
to completely disentangle content and style repre-
sentations, leading to either the retention of style
information or the loss of content information.

To tackle this issue, researchers try to keep the
content information via the cycle reconstruction
(reconstructing the source sentence with the trans-
ferred sentence and source style information) (Lee
et al., 2021; Jin et al., 2022; Wen et al., 2023). How-
ever, an incomplete disentanglement makes the
models inevitably miss some content information,
which means they can hardly achieve a complete
cycle reconstruction (i.e., the cycle reconstruction
loss is always not zero) (Yi et al., 2021) and per-
form unsatisfactorily in content preservation.

In this paper, we propose StyleFlow, a novel
disentanglement-based method, to sharply avoid
the loss of content information via a reversible en-
coder. The reversible encoder is a normalizing
flow (Dinh et al., 2014) that can generate outputs
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by input and infer the exact input by the output
reversely. It means the output covers the input in-
formation in the reversible encoder. Unlike typical
encoder-decoder frameworks, StyleFlow has only
a reversible encoder to accomplish encoding and
decoding. It achieves the encoding in the forward
process and the decoding in the reverse process.
Specifically, we design a stack of attention-aware
coupling layers in the reversible encoder, where
each layer is reversible and adopts the attention
mechanism (Vaswani et al., 2017) to enhance the
effect of content-style disentanglement. They grad-
ually achieve content-style disentanglement layer-
by-layer. The structure ensures the reversibility of
the whole encoder. Its reversibility reduces the loss
of content by bridging a bijection between the in-
put and the output while ensuring the input can be
inferred exactly from the output. To further improve
the performance, we propose a data augmentation
method with the bijection of the normalizing flow. It
adds small perturbations to the source sentence
representations and reversely encodes them to
generate pseudo sentences located in the original
sentences’ neighborhood.

Our contributions are fourfold: (1) We propose
a novel disentanglement-based method with a re-
versible encoder. Its reversibility sharply avoids
content loss during the forward and reverse pro-
cesses. We also provide theoretical proof of the
reversibility. (2) We propose a stack of attention-
aware coupling layers to disentangle the content
and style information layer by layer gradually. (3)
We propose a data augmentation method with the
bijection of the normalizing flow. (4) Experiments
indicate StyleFlow outperforms other baselines on
most metrics.

2. Related Work

2.1. Unsupervised Text Style Transfer

In recent years, there has been a growing interest
in unsupervised text style transfer due to the lim-
ited availability of large parallel corpora for training.
One intuitive idea is to explicitly disentangle the
style from the content by removing explicit style
markers and infusing target style markers. Then, it
trains a generator to produce sentences with the
desired style. Different strategies have been pro-
posed to detect attribute markers. Li et al. (2018)
compute the relative co-occurrence frequency with
style information, while Zhang et al. (2018) em-
ploy LSTM and Sudhakar et al. (2019) endorse a
BERT-based classifier for marker detection, which
has shown superior performance. Wu et al. (2019)
combine frequency-ratio methods with attention-
driven techniques to prioritize attribute markers. To
enhance marker identification, Lee (2020) intro-

duce a word importance scoring method based on
attribute probability changes after token removal,
and Reid and Zhong (2021) use Levenshtein edit
operations to edit the prototype.

Although explicit disentanglement methods have
achieved good results to some extent, they heav-
ily depend on the classifier’s ability to recognize
markers. Researchers have explored implicit ap-
proaches to disentangle content and style repre-
sentations. Shen et al. (2017) use adversarial dis-
criminators to align source and transferred con-
tent distributions, Fu et al. (2018) concatenate dis-
cerned content distributions, and John et al. (2018)
employ multiple loss functions to constrain sen-
tences within a latent domain and separate them
into content and style sub-domains. Additionally,
Lee et al. (2021) use "reverse attention" to further
disentangle content and style representations.

In addition to the disentanglement methods men-
tioned above, some researchers argue that it is not
necessary to perform disentanglement and instead
propose directly modulating the stylistic attributes
of sentences to achieve style transfer (Dai et al.,
2019; Bayer et al., 2022; Diao et al., 2023). Dai
et al. (2019) propose StyleTransformer to overlay
style attributes onto sentence embeddings from
transformer, Luo et al. (2019) utilize reinforcement
learning and control conditions for effective style
modulation, and Jin et al. (2019) approximate un-
supervised training to supervised training using
pseudo data to enhance model performance.

Recently, the prompt-based technique has been
a promising approach for style transfer. It gener-
ates texts in a training-free or exemplar-free man-
ner. Reif et al. (2021) leverage large pre-trained
language models (PLMs) to interpret prompts and
generate sentences with varied styles. Suzgun
et al. (2022) apply prompts to PLMs and incorpo-
rate re-ranking mechanisms to select the most suit-
able style sentence. Besides, Luo et al. (2023) for-
mulates the generation process as a classification
problem and employs discrete search techniques
to generate sentences in the target style. However,
researchers (Ji et al., 2023) find that LLMs tend to
generate creative content and do not fully maintain
the original content in transferred sentences.

2.2. Normalizing Flow on NLP

Normalizing flow is a generative model class that
offers effective sampling and precise density evalu-
ation. This methodology has been applied to nat-
ural language processing tasks. Ma et al. (2019)
introduce Flowseq to combine non-autoregressive
conditional sequence generation with normalizing
flow. Li et al. (2020) utilize normalizing flow to
determine the cosine similarity of BERT embed-
dings. Zhao et al. (2021) propose multi-split re-
versible transformers based on normalizing flow.
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Tang et al. (2021) develop a flow-based language
model for machine translation and Liu et al. (2022)
apply normalizing flow to latent sentence represen-
tation optimization. Furthermore, normalizing flow
has also been leveraged in addressing text style
transfer tasks. Samanta et al. (2021) use normal-
izing flow to process embeddings from BERT and
only take the final dimension as the style repre-
sentations, which may not effectively capture the
characteristics of style information. Yi et al. (2021)
use normalizing flow as an assistive technology
to sample stylistic features from the latent style
space. However, neither uses normalizing flow as
the main framework of models. In contrast, Style-
Flow innovatively applies normalizing flow as the
main framework of the model to achieve text style
transfer. It facilitates a more efficient disentangle-
ment of content and style and enhances content
preservation in implicit disentanglement methods.

3. Approach

3.1. Coupling Layer

The coupling layer is a type of normalizing flow that
allows for efficient computations in both forward
and inverse directions by employing linear trans-
formations with special structures, often utilizing
triangular Jacobian matrices (Dinh et al., 2014). In
the forward process of the coupling layer, the input
x is split into two parts: xi≤d and xi>d. The first
part xi≤d is directly copied to obtain yi≤d. The The
second part xi>d is updated xi>d by feeding xi≤d

into arbitrary functions F and H to calculate the
coefficients β and γ (βi = F (xi≤d), γi = H(xi≤d)),
which are used to calculate yi>d = βixi + γi. Fi-
nally, we concatenate yi≤d and yi>d to obtain the
output y. The coupling layer is a powerful tool for
constructing a tractable and expressive function,
enabling efficient computations in both directions.
As a result, it has been widely used in many real-
world applications such as image generation and
density estimation (?).

3.2. Reversible Encoder

Unlike the typical encoder-decoder scheme, Style-
Flow has only a reversible encoder, consisting of
embedding layers and a stack of attention-aware
coupling layers, as shown in Fig. 1. Embedding
layers consist of a word embedding layer and a
style embedding layer. The word embedding layer
is a neural network that maps the input sentence
x (a sequence of words) into a series of embed-
dings, denoted as E = [e1, e2, . . . , eT]. The style
embedding layer is a learnable embedding layer
representing the target style information; its input
is a style label. Attention-aware coupling layers
are a series of reversible layers to disentangle the

content and style representations. Each attention-
aware coupling layer consists of an attention-aware
disentanglement layer and a basic coupling layer
as mentioned in Sec. 3.1. Firstly, we consider the
attention-aware disentanglement layer as a style
classifier to disentangle the content and style rep-
resentations according to attention scores with two
steps: (1) Obtaining the attention scores reflecting
the stylistic elements of embeddings. We used a
self-attention layer, which is initialized with a self-
attention layer in the pre-trained RoBERTa-Large
(Liu et al., 2019) classifier, to calculate attention
scores about the style of the input embeddings. (2)
Splitting style and content representations accord-
ing to their attention scores. We set the portion
of embeddings with attention scores that exceed
the mean score as style representations and those
with attention scores below the mean score as con-
tent representations. Secondly, for the basic cou-
pling layer, we first copy content representations
directly and then feed content representations into
the F and H (i.e., transformer block) to calculate
the coefficients β and γ, which are used to obtain
the new style representations. Finally, we concate-
nate the content and style representations from the
previous layer to form a new input fed into the next
layer and repeat the above operations.

3.3. Encoding with Disentanglement

In the encoding step, as the red arrows (from left
to right) shown in Fig. 1, we first feed the input
sentence x into the word embedding layer to obtain
the word embeddings Ex. Next, Ex is passed to a
stack of attention-aware coupling layers. Suppose
in the k-th layer (k ∈ [1,K] and K is the total),
the input is Z. We first use the attention-aware
disentanglement layer to calculate attention scores
of Z and disentangle Z into style representations
zs and content representations zc by the scores.
Then, the basic coupling layer takes zs and zc as
input to generate new style representations z′s and
new content representations z′c, which act as k +
1-th layer’s input. A stack of K layers repeatedly
conducts the operations one by one. The encoding
outputs of the reversible encoder are the outputs
of the last attention-aware coupling layer (content
representations Zc and style representations Zs.

3.4. Reverse Encoding

In the reverse encoding step, as the blue arrows
(from right to left) shown in Fig. 1, we first feed the
target style label ŝ to the style embedding layer to
get a target style embedding Zŝ. Next, we fuse
Zŝ and the content representation Zc from the en-
coding step to get target-style embeddings Ẑ and
input Ẑ to attention-aware coupling layers in the
reverse step. Specifically, in the k-th layer, we use
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Figure 1: Model overview of StyleFlow. The word embedding input first passes the attention-aware
disentanglement layer to compute attention scores of style information for disentanglement. Then, the
coupling layer disentangles the word embedding into content and style space layer-by-layer. Lastly,
source content space and target-style embeddings are fed into the encoder to generate the target-style
sentence by the reverse encoding process.

the reverse operation of attention-aware disentan-
glement layer to obtain ẑc and ẑs from Ẑ by using
the same disentanglement as those in the encod-
ing step. It means that in the inverse process, we
get new representations ẑc and ẑs by reversing the
operations of disentanglement in the encoding step
instead of recalculating the attention scores. By
the above process, we guarantee the reversibility
of the attention coupling layers in both encoding
and reverse encoding steps.

By repeating the above operations for a stack of
K layers, we obtain all the words’ representations
Ey of the target-style sentence y from the first
attention-aware coupling layer. At last, we conduct
the multiplication between the representation Ey

and a learnable vector to get scores for every word
over the vocabulary. Scores are fed into a softmax
layer to reach the target distribution for all words
in the sentence. Finally, we generate the target
sentence y according to the distribution.

3.5. Analysis of Reversibility

The reversibility of the reversible encoder comes
from the normalizing flow F . Suppose we have
observations x from an unknown data distribution
pX over X ⊂ Rd, and a tractable prior probability
distribution pZ over Z ⊂ Rk, from which we sample
a latent variable z. Eq. 1 shows two requirements
for reversibility: (1) the inverse function is easy
to calculate; (2) the determinant of Jacobian is
calculable.

pX (x) = pZ(F(x)) ·
∣∣∣∣det(∂F(x)

∂xT

)∣∣∣∣ (1)

Firstly, the inverse function in the coupling layer can
be done directly by the inverse process (x1:d = z1:d
and xd+1:D = zd+1:D−H(z1:d)

F (z1:d)
). Secondly, the Jaco-

bian determinant is a triangular matrix (the product
of its diagonal terms) as Eq. 2, where diagF (x1:d)
is the diagonal matrix whose diagonal elements
correspond to the vector F (x1:d).

∂y

∂x

T

=

[
Id 0

∂yd+1:D

∂xT
1:d

diagF (x1:d)

]
(2)

Due to the limited expression ability of a single
layer, we connect multiple coupling layers to obtain
a flow-based encoder. The reverse function f−1

exists and is easy to calculate as Eq. 4, where ◦
denotes composition, ℓ is the number of layers.

f = f1 ◦ · · · ◦ fℓ−1 ◦ fℓ, (3)

f−1 = f−1
ℓ ◦ · · · ◦ f−1

2 ◦ f−1
1 . (4)

Similarly, since every single layer’s Jacobian is
a triangular matrix, the Jacobian of a flow-based
encoder is a new triangular matrix composed of
small triangular matrices and easy to calculate
by the product of its diagonal terms. Note that
the attention mechanism only changes the way
the coupling layer splits inputs and does not affect
the reversibility of the structure, so the whole flow-
based encoder is reversible. In addition, we need
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to claim that our entire style transfer processing
is not entirely reversible since (1) the target style
directly replaces a part of representations; (2) the
randomness makes the processing nonreversible
if we apply top-k sampling to generate y.

3.6. Objective Functions

(1) Self reconstruction loss. The loss Lself is the
average of all words’ cross-entropy loss between
the reconstructed x̂ = f−1(f(x), s) and input x,
where f denotes the encoding and f−1 means the
reverse encoding. (2) Cycle reconstruction loss.
We transfer the input x with another style ŝ to ob-
tain a transferred sentence y by y = f−1(f(x), ŝ)
and transfer y with the original style s to recon-
struct the input by x̂′ = f−1(f(y), s). The loss
Lcycle is the average of all words’ cross-entropy
loss between x̂′ and x. (3) Content loss. The
content representation zc of the input x and the
content representation zĉ of the transferred sen-
tence y should be similar: Lc = E ∥zc − zĉ∥22. (4)
Style transfer loss. The transferred sentence y
would be regarded as the target style ŝ by the style
classifier C: Ls = −E[logPC(ŝ|y)]. Our objective
is to minimize L = λ1Lself+λ2Lcycle+λ3Lc+λ4Ls,
where λi, i = {1, 2, 3, 4} are hyper-parameters to
balance the losses.

4. Data Augmentation based on
Normalizing Flow

Text style transfer corpora usually have limited sam-
ples 1, resulting in poor model robustness. We
propose a data augmentation technique based on
normalizing flow inspired by Yüksel et al. (2021)
to address this issue. Specifically, the reversible
encoder establishes a bijection (X ↔ Z) between
the sample space X and the latent space Z. We
add perturbations P to the latent space Z to
generate pseudo samples via reverse encoding
(F−1(F(x) + P(F(x), ϵ1, ϵ2)). Parameter ϵ1 and
ϵ2 controls the perturbation size, and the pseudo
samples help extend the corpus for further training.

During training, we obtain the latent space zi =
F(xi) corresponding to a given sample xi with its
associated label li ( 1 ≤ i ≤ N ) and use the
trained normalizing flow to search for △zi ∈ Z
such that the loss achieved by the generated sam-
ple x̂i = F−1(zi + △zi) is maximal. Adversarial
perturbations can help the model find samples that
are difficult to handle during cycle reconstruction,
and △zi indicates the direction where the current
model cannot perform well by searching for the

1Usually less than 0.3M samples, much fewer than
other generation tasks.

fastest direction of gradient descent.

P = △⋆
zi = argmax

ϵ1≤∥△zi
∥ℓp≤ϵ2

Lθ(F−1(zi +△zi), li) (5)

where Lθ is the loss of function of the classifier,
and ℓp denotes the normalization method. In prac-
tice, we use the number of steps k and step size
α to optimize △zi ∈ Z as follows: (1) Initialize a
random △0

zi with ϵ1 ≤∥ △zi ∥ℓp≤ ϵ2. (2) Iteratively
update △j

zi for j = 1, . . . , k number of steps using
the following step size α and choose ℓ∞ as ℓp with
the projection operator σ:

△j
zi = σ

(
△j−1

zi + α · ∇Lθ(F−1(zi+△j−1
zi

),li)

∥∇Lθ(F−1(zi+△j−1
zi

),li)∥ ℓ∞

)
(6)

where σ(xi) = max(ϵ1,min(ϵ2, xi)) ensures that
ϵ1 ≤∥ △zi ∥ℓ∞≤ ϵ2 and gradient is with respect to
△j−1

zi . (3) Output P(zi, ϵ) = △k
zi . Multi-step search

encourages the model to search toward the fastest
gradient descent in the cycle reconstruction loss. In
the case where ℓp = ℓ∞, we replace normalization
of gradient with the sign(·) operator:

△j
zi = σ(△j−1

zi + α · sign(∇Lθ(F−1(zi +△j−1
zi ), li))) (7)

Therefore, we obtain the adversarial perturba-
tion △zi through the above steps, and obtain the
pseudo sample x̂i by x̂i = F−1(F (xi)+△zi). This
data augmentation method utilizes the reversible
normalizing flow and adversarial training to obtain
pseudo samples closer to real samples.

5. Experiments

5.1. Experimental Settings

Datasets We conducted experiments on two
standard style transfer tasks: (1) Sentiment trans-
fer. We used the Yelp Review Dataset (Yelp) pro-
cessed by Li et al. (2018) and IMDb Movie Review
Dataset (IMDb) by Dai et al. (2019) for sentiment
style. YELP contains restaurant and business re-
views, and IMDb consists of movie reviews writ-
ten by online users. (2) Formality transfer. We
used Grammarly’s Yahoo Answers Formality Cor-
pus (GYAFC) (Rao and Tetreault, 2018) and chose
the “Family & Relationships” domain for formality
transfer. GYAFC consists of sentences extracted
from a question-answering forum (Yahoo Answers).

Implementation Details All transformer blocks
in StyleFlow are implemented as the basic block
of a T5-base encoder-decoder model with eight
attention heads. The hidden size and positional en-
coding size are all 256 dimensions. The word em-
beddings and the target-style embeddings of 300
dimensions are both learned from scratch. The
optimizer is Adam (Kingma and Ba, 2014) with
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Method Model Para
Yelp IMDb

ACC ↓ s-sBLEU ↑ r-sBLEU ↑ GM ↑ HM ↑ PPL ↓ ACC ↓ s-sBLEU ↑ PPL ↓

Explicit
disentanglement

DeleteAndRetrieve (Li et al., 2018)

<1B

87.7 29.1 10.4 30.2 18.6 60 58.8 55.4 57
MaskAndInfill (Wu et al., 2019) 97.3 32.5 14.4 37.4 14.4 54 93.1 58.1 53

SST (Lee, 2020) 70.4 49.1 12.7 29.9 21.5 197 76.5 45.5 71
MaskTransfomerC (Wu et al., 2020) 91.8 54.6 19.3 42.1 31.9 81 94.7 63.9 92
MaskTransfomerM (Wu et al., 2020) 88.3 55.4 20.1 42.1 32.8 75 91 66.2 86

LEWIS (Reid and Zhong, 2021) 93.1 58.5 24 47.3 38.2 66 94.4 68.9 76

Implicit
disentanglement

Cross-alignment (Shen et al., 2017)

<1B

76.3 13.2 4.3 19.3 8.1 244 63.9 1.1 29
ControlledGen (Hu et al., 2017) 88.8 45.7 14.3 35.6 24.6 219 94.3 62.2 143
Disentangled (John et al., 2018) 91.7 16.7 6.7 24.8 12.5 26 62.3 14.4 31

StyIns (Yi et al., 2021) 90.8 53.9 20.3 39.6 29.1 109 83.8 64.6 121
RACoLN (Lee et al., 2021) 91.3 59.4 20 42.7 32.8 60 83.1 70.9 45
TSST (Xiao et al., 2021) 91.8 59.3 19.8 42.6 32.6 108 82.7 69.3 101

W/o disentanglement

DualRL (Luo et al., 2019)

<1B

87.9 58.9 25.9 47.8 40 133 79.2 68.5 118
IMaT (Jin et al., 2019) 94.4 38.5 22.5 46.1 36.3 49 90.2 34.1 62

StyleTransfomerC (Dai et al., 2019) 91.8 52.8 22.9 45.9 36.7 223 82.3 67.5 108
StyleTransfomerM (Dai et al., 2019) 85.5 63 26.4 47.6 40.4 75 80.3 70.5 105

M&M LM (Mireshghallah et al., 2022) 90.6 59.2 20.1 42.7 32.9 78 81.4 69.2 85

W/o disentanglement
(LLMs-based)

AugZS0-shot (Reif et al., 2021) GPT-3 175B 63.2 45.7 19.9 35.5 19.9 55 58.6 58.4 69
AugZS4-shot (Reif et al., 2021) GPT-3 175B 78.5 48.3 23.2 42.7 35.8 77 73.4 61 91
P&R0-shot (Suzgun et al., 2022) GPT2-XL 1.6B 87.2 28.7 14.8 35.9 25.3 65 57.7 54.2 63
P&R4-shot (Suzgun et al., 2022) GPT2-XL 1.6B 87.4 47.5 23 44.8 36.4 80 83.5 68.1 52
P&R0-shot (Suzgun et al., 2022) GPT-J-6B 6B 61.3 34.2 14.3 29.6 23.2 54 57.6 59 47
P&R4-shot (Suzgun et al., 2022) GPT-J-6B 6B 87.9 47.4 23 45 36.5 80 83.1 55.9 69

Ours
StyleFlow w/o DA

<1B
93.7 61.2 28.6 51.8 43.8 42 93.7 72.4 45

StyleFlow w DA 95.1 63.8 29.2 52.7 44.7 49 94.5 73.6 58

Table 1: Automatic evaluation results on Yelp and IMDb datasets. #Para: Number of parameters. We
took the average value of five runs as experimental results. For MaskTransformer and StyleTransformer, C
and M refer to conditional and multi-class settings, respectively. For LLMs-based methods, n-shot means
using n exemplars in the few-shot setting. Bolded data indicates optimal performance and underlined
data indicates suboptimal performance. Note that all other tables have similar settings.

10−4 initial learning rate for training. To match the
traditional 16-layer (8 encoder blocks and eight de-
coder blocks) transformer model parameters, we
set the length K of flow to 8. For balancing pa-
rameters of the objective functions, we chose the
best-performed 1/6, 1/2, 1/6, and 1/6 for λ1, λ2,
λ3 and λ4 in Eq. 3.6. It shows that the cycle recon-
struction loss is the most important loss function.
For data augmentation in Eq. 6, we use k = 10
and α = 0.5. The hyper-parameters ϵ1 ϵ2 are set
to 0.1 and 1.0, respectively. We conducted our
experiments on RTX 3090Ti GPUs.

Model
GYAFC

ACC ↑ s-sBLEU ↑ r-sBLEU ↑ GM ↑ HM ↑ PPL ↓
DeleteAndRetrieve 61.1 27.6 21.2 34 31.5 110

MaskAndInfill 75.2 29.5 25.4 43.7 38 105
SST 53.9 46.2 36.9 44.6 43.8 178

MaskTransfomerC 62.7 59.7 42.6 51.7 50.7 129
MaskTransfomerM 58.6 60.2 43.3 50.4 49.8 117

LEWIS 75.2 62.9 51.8 62.4 61.3 82
Cross-alignment 61.6 2.2 3.25 14.1 6.2 37
ControlledGen 68.2 55.9 41.6 53.3 51.7 195
Disentangled 67.5 7.4 8.1 23.4 14.5 24

StyIns 67.8 61.9 46.7 56.3 55.3 92
RACoLN 74.7 59.9 50.6 61.5 60.3 78

TSST 74.4 63.7 50.5 60.1 61.2 103
DualRL 71.7 52.8 41.9 54.6 52.7 159
IMaT 72.1 59.4 38.2 52.5 49.9 33

StyleTransfomerC 60.3 61.2 43.9 51.5 50.8 168
StyleTransfomerM 57.6 63.1 46.4 51.7 51.4 126

M&M LM 72.2 60.2 27.7 44.7 40 119
AugZS0-shot GPT-3 48.3 53.6 46.6 47.4 47.4 54
AugZS4-shot GPT-3 59.6 58.2 51.2 55.2 55.1 64
P&R0-shot GPT2-XL 60.9 26.7 25.8 39.6 36.2 122
P&R4-shot GPT2-XL 82.2 32.7 41.9 58.7 55.5 58
P&R0-shot GPT-J-6B 58.6 31.3 25.2 42.8 40.8 99
P&R4-shot GPT-J-6B 68.8 47.9 52.3 60 59.4 49

StyleFlow w/o DA 85.4 65.4 54.1 68 66.2 61
StyleFlow w DA 85.6 67.6 56 69.2 67.7 67

Table 2: Automatic evaluation results on GYAFC.

Evaluation Metrics (1) Style transfer accuracy
(ACC) measures whether a generated output is cor-
rectly transferred. We used a finetuned RoBERTa-
Large (Hartmann et al., 2023) for sentiment clas-
sification. This model correctly classifies 98.2% of
the sentiment classification test set by Shen et al.
(2017). We finetuned another classifier initialized
with RoBERTa-Large (Liu et al., 2019) for formality
classification with accuracy 93.0%. (2) BLEU is the
standard metric for measuring semantic content
preservation. It is shown that SacreBLEU is a more
reliable and accessible metric than BLEU (Post,
2018; Liu et al., 2020; Suzgun et al., 2022). We
used SacreBLEU (sBLEU) implementation to com-
pute both self-sBLEU (s-sBLEU) and reference-
BLEU (r-sBLEU) scores. Whereas s-sBLEU indi-
cates the degree to which the model directly copies
the source, r-sBLEU helps measure the distance of
generated sentences from the ground-truth refer-
ences 2. (3) Geometric mean and harmonic mean.
We use the accuracy and r-sBLEU averages to
evaluate the overall performance of text style trans-
fer following Luo et al. (2019). For brevity, GM and
HM represent the geometric mean and harmonic
mean, respectively. (4) PPL. For fluency, we used
GPT-2 (117M) (Radford et al., 2019) to measure
the perplexity (PPL) of transferred sentences. The
sentences with smaller PPL scores are considered

2Since the IMDb dataset lacks human references as
ground truth, we do not use r-sBLEU metric on the IMDb
dataset. Similarly, we do not evaluate the scores of hu-
man references on IMDb in human evaluation (Sec. 5.2).
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Yelp IMDb GYAFC
Style ↑ Content ↑ Fluency ↑ Style ↓ Content ↑ Fluency ↑ Style ↑ Content ↑ Fluency ↑

Human (Upper Bound) 4.8 4.7 4.9 - - - 4.8 4.7 4.8
LEWIS (Reid and Zhong, 2021) 4.5 4.3 4.4 4.6 4.3 4.1 4.4 4.2 4.1

RACoLN (Hu et al., 2017) 4.2 3.9 4.4 4.2 4.5 4.4 4.3 4.0 4.3
TSST (Xiao et al., 2021) 4.1 3.8 3.9 4.1 4.4 3.8 4.0 4.3 3.9
DualRL (Wu et al., 2020) 3.9 4.4 4.0 3.8 4.3 3.3 3.8 3.9 3.7

P&R4-shot (Lee et al., 2021) 3.9 4.2 4.2 4.2 3.8 4.3 3.9 3.8 4.6
StyleFlow 4.6 4.6 4.5 4.6 4.6 4.4 4.6 4.5 4.5

Table 3: Human evaluation results on three datasets. For a fair comparison, our model does not use
data augmentation. For the LLMs-based methods, we selected P&R4-shot with GPT-J-6B as the baseline.
Krippendorff’s alpha of human rating on three datasets is 0.77, 0.74, and 0.78, respectively, indicating
acceptable inter-annotator agreement.

more fluent. We also performed a human evalu-
ation to evaluate transferred sentences on three
aspects: Style (style transfer accuracy, Content
(content preservation), and Fluency (see Sec. 5.2
for more details).

Baselines As shown in Table 1, our baselines
cover different approaches: explicit disentangle-
ment, implicit disentanglement, and without disen-
tanglement (including LLMs-based methods). For
a fair comparison, we select Augmented zero-shot
learning (AugZS) (Reif et al., 2021), Prompt and
Rerank (P&R) (Suzgun et al., 2022) in different few-
shot settings as baselines of LLMs-based methods.

5.2. Main Results

Automatic Evaluation Results. From Tables 1
and 2, it is evident that our model consistently out-
performs other baselines across all three datasets,
even without data augmentation. Specifically,
MaskAndInfill (Wu et al., 2019) achieves the high-
est accuracy on the Yelp dataset, while MaskTrans-
former (Wu et al., 2020) performs best on IMDb.
However, both models exhibit poor content preser-
vation and low GM and HM scores. It highlights
the challenge of effectively balancing accuracy and
content preservation in explicit disentanglement
methods. On the other hand, Cross-alignment
(Shen et al., 2017) and Disentangled (John et al.,
2018) consistently obtain the lowest PPL scores,
indicating their struggles in generating meaning-
ful tokens and preserving content, thus leading
to inferior GM and HM scores. It demonstrates
the limitations of incomplete disentanglement ap-
proaches in achieving successful style transfer.
In contrast, our model significantly improves GM
and HM scores, showcasing its proficiency in style
transfer and preserving content. Moreover, the
substantial increases in s-sBLEU and r-sBLEU
further validate StyleFlow’s expertise in content
preservation. Our model also achieves highly com-
petitive results in terms of accuracy and fluency.
Furthermore, we observe further improvements

in most metrics by employing data augmentation
techniques (see Sec. 5.3 for more details).

Human Evaluation Results. We selected five
representative methods from different categories
for human evaluation, as shown in Table 3. We ran-
domly selected 100 outputs from five baselines for
each dataset and our approach without data aug-
mentation. It can be seen that human evaluation
results are consistent with automatic evaluation
results, and our model performs significantly bet-
ter than other methods in style transfer accuracy
and content preservation, as well as fluency of the
target sentence.

Model ACC s-sBLEU r-sBLEU GM HM PPL
StyleFlow 93.7 61.2 28.6 51.8 43.8 42

(-) reversible 87.5 52.9 25.4 47.1 39.4 78
(-) attention 89.6 50.1 23.2 45.6 36.9 95
(-) Lself 51.3 0.4 0.4 4.5 0.8 N/A
(-) Lcycle 89.4 51.5 24.9 47.2 39 86
(-) Lc 90.2 53.3 25.8 48.2 40.1 97
(-) Ls 3.4 100 22.7 8.8 5.9 18

Table 4: Ablation study of the proposed model
on Yelp datasets, where (-) indicates removing the
corresponding component from the model or the
loss terms in the objective functions, and N/A is
a tremendous value. "Reversible" means the re-
versible encoder, and "attention" refers to attention-
aware coupling layers. StyleFlow does not use
data augmentation.

5.3. Detailed Analysis

Ablation Study To delve into the influence of var-
ious components and loss functions on the overall
performance, we conducted an ablation study in Ta-
ble 4. Our observations indicate a notable decline
in performance concerning content preservation
(evidenced by an 11.1-point decrease in s-sBLEU
and a 5.4-point drop in r-sBLEU) when substituting
the attention-aware coupling layer with its vanilla
counterpart, which segregates inputs without con-
sidering style attention scores. This setback stems
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from the model’s impaired capability to disentan-
gle content and style vectors, a consequence of
omitting the attention mechanism’s guidance.

Turning to the loss functions, the empirical data
reaffirms the critical role Lcycle holds in fortify-
ing content preservation. To further demonstrate
our model’s competency in reducing Lcycle, we
show the fluctuations of Lcycle for both StyleFlow
and StyleTransformer during various training and
testing phases in Fig.2. Intriguingly, StyleFlow
and StyleTransformer demonstrate convergence at
approximately 2k iterations in the training phase.
However, Lcycle of StyleFlow remarkably tapers to
an absolute zero, a feat attributable to the integra-
tion of the reversible encoder. This trend persists
in the testing phase, with Lcycle of StyleFlow con-
verging at a markedly lower threshold than Style-
Transformer. These findings compellingly attest to
StyleFlow’s superior capacity in curtailing Lcycle.

Figure 2: Cycle reconstruction loss of different models.

Comparison of Different Data Augmentation
Methods Table 5 shows the effects of different
data augmentation methods. We selected three
data augmentation methods for comparison and
results show that these three methods showed no
significant improvement: (1) word-level mix-up in-
terpolates word embeddings without considering
stylistic words carrying both content and style in-
formation (John et al., 2018; Lee et al., 2021); (2)
sentence-level mix-up interpolates the sentence-
level representations (Kwon and Lee, 2022; Zheng
et al., 2023) without considering semantic informa-
tion leading to a large gap between pseudo sam-
ples and original samples; (3) latent perturbation
adds noise perturbations on the latent representa-
tions from VAE (Yoo et al., 2018) but the random-
ness of perturbations makes the pseudo samples
of low quality (Yüksel et al., 2021). Our data aug-
mentation method based on normalizing flow has
significantly improved the model’s performance be-
cause it generates more diverse pseudo samples
and enhances content preservation through adver-
sarial training.

Figure 3: Visualizations with t-SNE on Yelp.

Comparison of Disentanglement of Style and
Content Space We utilize t-SNE for visualizing
sentences from Yelp, projected into content and
style spaces by both RACoLN (Lee et al., 2021)
and StyleFlow, as depicted in Fig. 3. Compared
to RACoLN, StyleFlow distinguishes sentences
of different sentiments more clearly in the style
space. This discriminative distribution underscores
the robust style transfer capabilities of the attention-
aware coupling layer. Furthermore, the distribution
of StyleFlow in the content space is more concen-
trated, indicating its superior content preservation
abilities. Consequently, these visual results intu-
itively demonstrate StyleFlow’s enhanced capacity
for disentangling style and content.

ACC s-sBLEU r-sBLEU GM HM PPL
StyleFlow w/o DA 93.7 61.2 28.6 51.8 43.8 42
+ word-level mix-up 93.1 60.8 27.7 50.8 42.7 52
+ sentence-level mix-up 94 61.6 28.7 51.9 44 59
+ latent perturbation 94.2 61.4 28.9 52.2 44.2 55
+ DA-normalizing flow 95.1 63.8 29.2 52.7 44.7 49

Table 5: Results of data augmentation methods
on Yelp. We augmented the data by doubling the
amount of available data.

6. Conclusion

This paper proposes a new disentanglement-
based model that leverages a reversible encoder to
improve content preservation in unsupervised text
style transfer. We design attention-aware coupling
layers to gradually disentangle content and style
information for a better cycle reconstruction, which
can sharply reduce the cycle loss and preserve
the content information. Moreover, we augment
training data using data augmentation, which adds
perturbation to latent space based on normalizing
flow. Results from sentiment and formality trans-
fer experiments show that StyleFlow outperforms
several strong baselines, achieving better content
preservation and accuracy with a lower cycle re-
construction loss.
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8. Ethical Considerations

There is excellent potential for style transfer to be a
powerful tool for editing and regulating text content.
However, this technology has ethical implications
that must be considered. It is crucial to recog-
nize the potential for misuse and abuse of text
style transfer when using it for specific styles from
text, such as hate speech or offensive language.
Text style transfer should not be used to propagate
hate or harmful messages. Furthermore, text style
transfer can be beneficial for reducing hate and
promoting more inclusive and positive messages.
As researchers and users of text style transfer, we
are responsible for considering these ethical is-
sues and using this technology responsibly and
respectfully.

9. Limitations

Some of the limitations of StyleFlow are the fol-
lowing. First, although normalizing flow has an
advantage in the interpretability of the neural net-
works (Rezende and Mohamed, 2015; Ho et al.,
2019; Liu et al., 2022), we pay less attention to
use it to improve the interpretability of our model,
which will be explored in depth in future work. Sec-
ond, there are only two different types of styles
in our experiment setting, such as sentiment and
formality. However, there are often more than two
styles in the natural language environment. The
multiple styles transfer will be feasible in future
works. Thirdly, our model only applies to a single
language and will be extended to multilingual text
style transfer tasks in future work.
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