
LREC-COLING 2024, pages 15362–15372
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

15362

Structure-aware Fine-tuning for Code Pre-trained Models

Jiayi Wu1, Renyu Zhu3, Nuo Chen1, Qiushi Sun4, Xiang Li1, Ming Gao1,2∗
1School of Data Science and Engineering, East China Normal University
2KLATASDS-MOE in School of Statistics, East China Normal University

3NetEase Fuxi AI Lab, 4National University of Singapore
{jiayiwu, nuochen}@stu.ecnu.edu.cn, zhurenyu@corp.netease.com

qiushisun@u.nus.edu, {xiangli,mgao}@dase.ecnu.edu.cn

Abstract
Over the past few years, we have witnessed remarkable advancements in Code Pre-trained Models (CodePTMs).
These models achieved excellent representation capabilities by designing structure-based pre-training tasks for
code. However, how to enhance the absorption of structural knowledge when fine-tuning CodePTMs still remains
a significant challenge. To fill this gap, in this paper, we present Structure-aware Fine-tuning (SAT), a novel
structure-enhanced and plug-and-play fine-tuning method for CodePTMs. We first propose a structure loss to
quantify the difference between the information learned by CodePTMs and the knowledge extracted from code
structure. Specifically, we use the attention scores extracted from Transformer layer as the learned structural
information, and the shortest path length between leaves in abstract syntax trees as the structural knowledge.
Subsequently, multi-task learning is introduced to improve the performance of fine-tuning. Experiments conducted
on four pre-trained models and two generation tasks demonstrate the effectiveness of our proposed method as a
plug-and-play solution. Furthermore, we observed that SAT can benefit CodePTMs more with limited training data.

Keywords: Pre-traind Language Models, Model Tuning, Code Structure

1. Introduction

Pre-trained language Models (PTMs) (Liu et al.,
2019) with Transformer architecture (Vaswani et al.,
2017) have greatly improved a wide range of natu-
ral language processing (NLP) tasks. The success
of PTMs in NLP also fosters the development of
Code Pre-trained Models (CodePTMs) for process-
ing programming languages (Sun et al., 2024b).
Since Feng et al. (2020) proposed CodeBERT, a
model with multi-layer bidirectional Transformer ar-
chitecture pre-trained on NL-PL pairs, pre-training,
and fine-tuning PTMs has gradually become the
de facto paradigm for various code-related tasks
leading to stunning performance.

Existing CodePTMs can be mainly catego-
rized into two types: structure-free and structure-
based models. The former, exemplified by Code-
BERT (Feng et al., 2020), regards code snippets
as a sequence of tokens, thereby ignoring the in-
herent structure of code. The latter, such as Graph-
CodeBERT (Guo et al., 2021) and CodeT5 (Wang
et al., 2021) both incorporate structure-based pre-
training tasks to capture more structural knowl-
edge. Previous research (Xu and Zhu, 2022; Chen
et al., 2023b,a) has shown that structure-based
CodePTMs that learn structural knowledge pos-
sess more substantial code representation capa-
bilities. These structure-based CodePTMs mainly
focus on adding structure-related tasks to learn
general structural knowledge during pre-training.
However, as demonstrated by Wan et al. (2022)

∗Corresponding author

Cross Entropy Loss

Regular Code
Knowledge

Task-specific
Code Structural

Knowledge

Pre-trained
CodePTM

Regular Code Knowledge
Regular Fine-tuning

Structure-aware
Fine-tuning (SAT)

Cross Entropy Loss

Structure Loss
+

Figure 1: Compared to regular fine-tuning,
CodePTMs can effectively capture task-specific
code structure knowledge through structure-aware
fine-tuning by structure loss.

and Chen et al. (2022), the CodePTMs tend to
shift from general to task-specific structural knowl-
edge in the fine-tuning stage. It further inspires
us to think: Can we enhance the absorption of
task-specific structural knowledge in the fine-tuning
stage for CodePTMs?

Nevertheless, how to enhance the absorption
of structural knowledge during the fine-tuning of
CodePTMs still remains unaddressed (Sun et al.,
2024a). Furthermore, most methods for learning
structural code knowledge during the pre-training
phase are not applicable during fine-tuning. For
instance, if a fine-tuning approach were to imitate
Guo et al. (2022) and Hu et al. (2020) by using
traversed Abstract Syntax Trees (ASTs) as inputs,

15363

def context

Scaled
Dot-Product
Attention

render _ body (…

(a) Generation of the attention matrix

 def render_body(context, options)
 if options.key?(:partial)
 ……

function_definition

def render_body

parameters

if method_call

(content , options) call argument_list

parenthesized_
statementsoptions . key ?

(:partial)

((, options)

options . key ?

Non-leaves Leaves

AST edges

dis=3

distance

(b) Generation of the distance matrix

Figure 2: Schematic illustration of generation of the attention matrix and the distance matrix. (a)
Generation of the attention matrix. The code sequence is input into the multi-head self-attention block of
CodePTMs, then the scaled dot-product values are computed to generate attention matrix. (b) Generation
of the distance matrix. We first parse the raw code into AST, and calculate the shortest path between
leaves on the AST to generate distance matrix.

it would also necessitate constructing ASTs during
inference. Other methods by Zügner et al. (2021)
and Peng et al. (2021) incorporate structural knowl-
edge by modifying the attention mechanism within
Transformer blocks, involve heavy model modifica-
tions and cannot be seamlessly applied to exist-
ing pre-trained models. Lastly, Guo et al. (2021)
and Wang et al. (2021) introduce structure-based
pre-training tasks, which require predicting specific
labels related to code structure, such as “data flow
edges” or “token identifier.” However, these tasks
are often unrelated to the fine-tuning tasks.

To address these issues, we present SAT, a
structure-aware fine-tuning method for CodePTMs.
As illustrated in Figure 1, SAT can help CodePTMs
to capture structural knowledge during the fine-
tuning phase effectively and seamlessly. Firstly, we
parse the code into an abstract syntax tree (AST)
and construct a distance matrix by calculating the
shortest path between two leaves in AST. Then, we
extract the attention matrix from the Transformer
layer of CodePTMs. After that, inspired by Weng
(2019) and Feydy et al. (2019), we introduce the
Sinkhorn divergence to compute the difference be-
tween the two matrices as a new objective func-
tion, namely structure loss. Finally, during the fine-
tuning phase, we optimize the model by jointly opti-
mizing the structure loss and the downstream task
objective function using a multi-task approach. We
evaluate SAT on code summarization and transla-
tion tasks with four pre-trained models. Our contri-
butions can be summarized as follows:

• We propose SAT, a novel multi-task learning
method that enhances the absorption of struc-
tural knowledge for CodePTMs during the fine-

tuning stage. To the best of our knowledge,
this is the first structure-aware fine-tuning
method for CodePTMs.

• SAT can be easily implemented with the ma-
jority of Transformer-based CodePTMs as a
plug-and-play solution.

• Our experiments involve four pre-trained mod-
els and two generation tasks, demonstrating
that our proposed method can further improve
the fine-tuning performance of CodePTMs.
Additionally, SAT shows greater improvement
in low-resource scenarios.

2. SAT

In this section, we introduce SAT. The detailed
architecture of the SAT is illustrated in Figure 3.

2.1. Code Basics

As shown in Figure 2b, AST is a tree-like model
used to represent the structure of a program, ab-
stracting the source code into nodes and connect-
ing edges. In this paper, we use Tree-sitter 1 to
generate ASTs.

2.2. Distance Matrix and Attention Matrix

Chen et al. (2022) proposed that the model’s per-
formance improves with its ability to explore struc-
tural knowledge, leading to a greater alignment be-
tween CodePTMs’ token-level attention scores and
AST nodes’ pair-wise distances. Inspired by this

1github.com/tree-sitter

https://github.com/tree-sitter

15364

Multi-Head
Attention

FFN & Add &
Norm

Scaled Dot-Product
Attention

En
co

de
r L

ay
er

 ×
N

Decoder

Sinkhorn Divergence

Structure LossCross Entropy
Loss

Multi-Task Learning/back-propagation

 def render_body(context, options)
 if options.key?(:partial)
 ……

Embedding

get shortest distance &
token alignment

AST Tree

parsed into AST

Structure Encoder

Figure 3: The architecture of the SAT method. Given a code snippet, we parsed it into an AST, and
the distance matrix is obtained by computing the shortest distances between leaf nodes. The structural
information is extracted using the struct encoder. The code snippet is then input into the CodePTMs, from
which the attention matrix is extracted from the multi-head attention blocks. The sinkhorn divergence
between the distance matrix and the attention matrix is calculated to obtain the structure loss.

work, we aim to quantify the disparity between the
learned structural information by the pre-trained
models and the structural knowledge from AST. To
achieve this, we introduce the attention matrix and
the distance matrix, respectively.

Figure 2 illustrates the process of generating
the attention matrix and the distance matrix. The
generation of the attention matrix is shown in Fig-
ure 2a, the raw code is input into the multi-head
self-attention block of CodePTMs as a sequence of
subtokens, where the scaled dot-product attention
between subtokens is calculated. These attention
values are extracted and used to construct the
attention matrix. And Figure 2b illustrates the gen-
eration of the distance matrix. We parse the raw
code into an AST, where each leaf node is derived
from the raw code. To calculate the distances be-
tween tokens, we treat the AST as an undirected
graph, where the distance between tokens corre-
sponds to the length of the shortest path between
the corresponding nodes in the AST. For example,
the distance between token “def” and token “(” is 3.
We extract the shortest distances between tokens
from the AST to construct the distance matrix.

So far, the shapes of the attention matrix and the
distance matrix are different. The attention matrix
is at the subtoken level, while the distance matrix
is at the token level. Subtokens are determined by
the tokenizer, while tokens are determined by the
tree-sitter. To facilitate the comparison between

the distance matrix and the attention matrix, we
convert the distance matrix from the token level
to the subtoken level, ensuring that both matrices
have the same shape. Specifically, subtokens are
generally contained within tokens, as shown in
Figure 2b, subtoken “render”, “_” and “body” corre-
spond to token “render_body”. By iterating through
the sequences of subtokens and tokens, we get
the mapping relationship between subtoken and
token. The distance between subtokens is the
distance between the corresponding tokens. In
Figure 2b, for example, the subtoken “render” is
contained within the token “render_body”, and the
subtoken “:” is contained within the token “:partial”.
The distance between them is 5.

2.3. Formal Definition of Structure Loss

Inspired by Weng (2019) and Feydy et al. (2019),
we employ Wasserstein distance to quantify the dif-
ferences between the attention matrix and distance
matrix. The Wasserstein distance is a smooth
metric for measuring the distance between two
probability distributions, even when these distribu-
tions reside in non-overlapping lower dimensional
manifolds (Weng, 2019). However, computing the
Wasserstein distance entails high computational
costs. To mitigate this, we utilize Sinkhorn diver-
gences, which are positive and definite approxima-
tions of Wasserstein distances, and offer efficient
batch computation on GPUs (Feydy et al., 2019).

15365

In this paper, we leverage the Geomloss 2 for cal-
culating Sinkhorn divergences.

Because the values of scaled dot-product at-
tention and distance are not on the same scale,
Sinkhorn divergences are not suitable for measur-
ing the differences between two matrices that have
values in different orders of magnitude. To address
this issue, we introduce a linear layer that applies
coefficients and biases to the distance matrix (Liu
et al., 2013). This linear layer, referred to as the
structure encoder, is treated as learnable parame-
ters integrated into the model.

We treat the attention matrix and the distance
matrix as two distributions. By applying the struc-
ture encoder to the distance matrix for scaling and
biasing, we utilize Sinkhorn divergences to mea-
sure the differences between the two matrices to
obtain the structure loss:

Li = Sinkhorn divergences(A,Linear(D)), (1)

Lstructure =

∑h
i=1 Li

h
(2)

where A,D ∈ Rn×n, A denotes the attention ma-
trix, D represents the distance matrix, n represents
the length of the input sequence in CodePTMs, and
h represents the number of attention heads.

Among the Transformer layers in CodePTMs,
the first layer captures the most structural informa-
tion (Chen et al., 2022). Therefore, we extract the
attention values from the first Transformer layer
and utilize them as the attention matrix.

We draw inspiration from the concept of multi-
task fine-tuning (Kalyan et al., 2021) to jointly op-
timize the objective function of downstream tasks
and the structure loss. This approach enables
the model to learn the structural information of the
code during the backpropagation phase. The final
objective function is followed as:

Lfinal = Ltask + α · Lstructure (3)

where Ltask represents the objective function of
the downstream task, such as cross entropy loss
for code translation and code summarization. And
α is a hyperparameter that controls the weight of
the structure loss.

As a plug-and-play method, the structure loss
can be easily applied when needed and is appli-
cable to majority Transformer-based CodePTMs,
demonstrating its generality.

3. Experiments

3.1. Tasks and Metrics

To evaluate the ability of our proposed method SAT,
we select two challenging tasks in the CodeXGLUE

2https://www.kernel-operations.io/geomloss/index.html

(Lu et al., 2021) Benchmark: code summarization
and code translation, to assess cross-modal gen-
eration and code-to-code generation capabilities,
respectively.

Code summarization aims to generate a natu-
ral language description for a given programming
language snippet. We evaluated the effectiveness
of our method using the CodeSearchNet (Husain
et al., 2019) dataset for code summarization across
five programming languages: Ruby, JavaScript, Go,
Python, and Java. We evaluate the results using
the smoothed BLEU-4 (Lin and Och, 2004) metric.

Code translation involves translating a code from
one programming language to a different one.
We conducted experiments on this task using the
dataset provided by CodeXGLUE, which consists
of ten thousand pairs of Java and C# code snip-
pets with equivalent functionality. We follow the
setting of CodeXGLUE and employ BLEU-4 and
exact match (EM) as evaluation metrics.

3.2. Backbone models

We implement SAT to four representative PTMs,
encompassing two distinct types: encoder-only
and encoder-decoder models.

For the encoder-only architecture, we em-
ployed RoBERTa (Liu et al., 2019), a pre-trained
model trained on a large-scale text corpus us-
ing masked language modeling (MLM). Addition-
ally, we choose two RoBERTa-based CodePTMs,
CodeBERT (Feng et al., 2020) and GraphCode-
BERT (Guo et al., 2021).

In the case of the encoder-decoder architecture,
we employ CodeT5 (Wang et al., 2021), a state-of-
the-art CodePTM based on the T5 framework (Raf-
fel et al., 2020), known for its exceptional perfor-
mance on various tasks within the CodeXGLUE
benchmark (Lu et al., 2021).

3.3. SAT Effectiveness

The results of the SAT method on the code summa-
rization and code translation tasks are presented
in Table 1. Upon analyzing these experimental
results, we discover that:

• SAT can enhance the absorption of struc-
tural knowledge for CodePTMs in the fine-
tuning stage: Our proposed SAT approach
obtains consistent improvements across the
RoBERTa, CodeBERT, GraphCodeBERT, and
CodeT5 models. In some scenarios, weaker
models enhanced by our method can out-
perform stronger models, e.g., on code sum-
marization task, RoBERTa enhanced by SAT
even surpasses the unaugmented Code-
BERT. Similarly, CodeBERT’s performance

https://www.kernel-operations.io/geomloss/index.html

15366

Model
Code summarization (Smoothed BLEU-4) Java to C# C# to Java

Ruby JavaScript Go Python Java Overall BLEU EM BLEU EM

RoBERTa 11.17 11.90 17.72 18.14 16.47 15.08 77.46 56.10 71.99 57.90
RoBERTa+SAT 11.82 15.68 17.85 18.49 18.21 16.41 80.28 59.30 76.67 61.00

(+0.65) (+3.78) (+0.13) (+0.35) (+1.74) (+1.33) (+2.82) (+3.20) (+4.68) (+3.10)

CodeBERT 12.16 14.90 18.07 19.06 17.65 16.37 79.92 59.00 72.14 58.80
CodeBERT+SAT 12.50 16.34 18.32 19.02 18.64 16.96 80.51 61.30 76.40 62.00

(+0.34) (+1.44) (+0.25) (-0.04) (+0.99) (+0.59) (+0.59) (+2.30) (+4.26) (+3.20)

GraphCodeBERT 12.39 14.81 18.41 18.06 19.00 16.53 80.58 59.40 72.64 58.80
GraphCodeBERT+SAT 13.16 16.33 18.63 19.24 19.15 17.30 81.74 62.30 77.30 61.50

(+0.77) (+1.52) (+0.22) (+1.18) (+0.15) (+0.77) (+1.16) (+2.90) (+4.66) (+2.70)

CodeT5 15.24 16.16 19.56 20.01 20.31 18.25 84.03 65.90 79.87 66.90
CodeT5+SAT 15.51 16.20 19.73 20.34 20.48 18.45 84.99 67.50 80.33 67.70

(+0.27) (+0.04) (+0.17) (+0.33) (+0.17) (+0.20) (+0.96) (+1.60) (+0.46) (+0.80)

Table 1: The results of SAT on code summarization and code translation tasks. The left half shows
the smoothed BLEU-4 scores on the code summarization tasks, while the right half shows the BLEU-4
scores and exact match (EM) accuracy for code translation tasks. “+SAT” indicates that the model was
enhanced with the SAT method. Better results in the same task are bolded.

RoBERTa
CodeBERT

GraphCodeBERT
CodeT5

14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0

Av
er

ag
e

Sm
oo

th
ed

 B
LE

U

w/o SAT
w/ SAT

(a) The average smoothed BLEU-4
scores on the code summarization

RoBERTa
CodeBERT

GraphCodeBERT
CodeT5

74
75
76
77
78
79
80
81
82
83

Av
er

ag
e

BL
EU

w/o SAT
w/ SAT

(b) The average BLEU-4 scores for
the code translation

RoBERTa
CodeBERT

GraphCodeBERT
CodeT5

56

58

60

62

64

66

68

Av
er

ag
e

EM

w/o SAT
w/ SAT

(c) The average exact match (EM) for
the code translation.

Figure 4: Average results of SAT on code summarization and code translation tasks.

after SAT augmentation outperforms unaug-
mented GraphCodeBERT. Notably, significant
performance gains are observed in some mod-
els and tasks. For instance, RoBERTa+SAT
achieves a smooth BLEU-4 score improve-
ment of 3.78 on the JavaScript dataset for code
summarization. And for the task of translating
C# to Java, RoBERTa+SAT achieves an exact
match improvement of 4.68.

• SAT can improve more with weaker mod-
els: Figure 4 illustrates the performance im-
provement of the SAT method across differ-
ent backbone models. Among these mod-
els, RoBERTa exhibits the most substantial
enhancement, followed by CodeBERT and
GraphCodeBERT, while CodeT5 shows the
least improvement. This is likely due to the fact
that RoBERTa is trained on pure textual cor-
pora and lacks explicit code structural knowl-
edge during the pre-training phase. Conse-
quently, incorporating SAT during fine-tuning

significantly enhances the model’s perfor-
mance. In contrast, CodeT5 already acquires
extensive structural code information during
pre-training through identifiers modeling, re-
sulting in a smaller impact from SAT. These
findings demonstrate that SAT effectively as-
sists PTMs in learning structural code knowl-
edge during fine-tuning, with models possess-
ing less pre-trained code knowledge experi-
encing more notable performance gains.

3.4. Exploration of Different Training
Data Scales

In order to evaluate the ability of the SAT method
to extract code structural information from limited
data, we conducted experiments using both the
CodeBERT and CodeT5 models on code summa-
rization and code translation tasks with different
training data scale. We sampled 20%, 40%, 60%,
and 80% of the training data, and the results are
presented in Table 2. From the results, we observe

15367

Sample rate Model Code summarization Code Translation Model Code summarization Code Translation

Ruby Python BLEU EM Ruby Python BLEU EM

20%
CodeBERT 11.64 18.66 75.66 56.10 CodeT5 15.18 19.90 81.21 61.10
CodeBERT+SAT 11.98 18.98 76.58 57.20 CodeT5+SAT 15.89 20.27 81.97 61.90

(+0.34) (+0.32) (+0.92) (+1.10) (+0.71) (+0.37) (+0.76) (+0.80)

40%
CodeBERT 12.09 18.98 78.76 59.00 CodeT5 15.24 19.96 84.13 65.80
CodeBERT+SAT 12.27 19.00 79.55 60.40 CodeT5+SAT 15.66 20.17 84.52 66.00

(+0.18) (+0.02) (+0.79) (+1.40) (+0.42) (+0.21) (+0.39) (+0.2)

60%
CodeBERT 12.16 18.87 79.39 59.40 CodeT5 15.19 20.18 84.41 66.20
CodeBERT+SAT 12.37 19.03 80.03 59.50 CodeT5+SAT 15.35 20.24 84.58 66.80

(+0.21) (+0.16) (+0.64) (+0.10) (+0.16) (+0.06) (+0.17) (+0.60)

80%
CodeBERT 11.87 18.99 80.32 61.50 CodeT5 15.36 20.20 84.68 66.40
CodeBERT+SAT 11.75 19.11 80.88 61.90 CodeT5+SAT 15.56 20.21 84.77 66.20

(-0.12) (+0.12) (+0.56) (+0.40) (+0.20) (+0.01) (+0.09) (-0.20)

Table 2: Result of fine-tuning on a limited training dataset. The highest performance improvement is
bolded. (Code Translation refers to the task of translating Java to C#.)

20 40 60 80
Sampling Rate(%)

0.0

0.2

0.4

0.6

Im
pr

ov
es

CodeBERT
CodeT5

(a) Summarization on Ruby

20 40 60 80
Sampling Rate(%)

0.0

0.1

0.2

0.3

Im
pr

ov
es

CodeBERT
CodeT5

(b) Summarization on Python

20 40 60 80
Sampling Rate(%)

0.2

0.4

0.6

0.8

Im
pr

ov
es

CodeBERT
CodeT5

(c) Translate Java to C#

Figure 5: Performance improvement of fine-tuning with SAT on limited training datasets.

that the SAT method consistently enhances the
performance of the model across various training
data scales.

Significantly, as shown in Figure 5, we observe
that the SAT method yields more substantial
performance improvements as the training data
scale decreases. We believe this is because, un-
der the influence of the SAT method, the language
model can learn a sufficient amount of structural
information without requiring a large amount of
training data. This ability becomes evident when
the language model is fine-tuned with a small-scale
dataset, as it can learn a considerable amount of
code structural information even in the absence
of sufficient semantic knowledge, thus compensat-
ing for the limitations in semantic understanding.
This indicates that SAT can better assist models in
enhancing performance in low-resource scenarios.

3.5. Did the SAT really learn the
structural information?

Analysis from the perspective of structure loss
We optimize the structure loss by multi-task fine-
tuning. The curve of structure loss with the number
of training iterations is shown in Figure 6. We ob-
serve that the structure loss gradually decreases
as the number of iterations increases. This indi-

cates a diminishing difference between the atten-
tion and distance matrices, suggesting that the
model is learning structural information. Notably,
in the early stages of fine-tuning, the structure loss
of CodeT5+SAT is consistently lower than that of
GraphCodeBERT+SAT. This observation indicates
that CodeT5 has learned more structural knowl-
edge during the pre-training phase.

Analyzing from CAT-probing CAT-probing
(Chen et al., 2022) is a probing method to quan-
titatively interpret how CodePTMs attend code
structure. It defines a new metric CAT-score to
measure the commonality between the token-level
attention scores generated in CodePTMs and the
pair-wise distances between corresponding AST
nodes. The higher the CAT-score, the stronger the
ability of CodePTMs to capture code structure.

To assess whether SAT enhances the absorb-
tion of code structural knowledge, we selected the
RoBERTa, CodeBERT, and GraphCodeBERT mod-
els and conducted code summarization tasks on
Ruby and Java datasets and computed the CAT-
score for each model with and without the incorpo-
ration of SAT.

As shown in Figure 7, we observed that all mod-
els exhibited an increase in their CAT-scores upon
the introduction of SAT. This indicates that SAT has

15368

0 25 50 75 100
Train Iterations

0.00

0.05

0.10

0.15
St

ru
ct

ur
e

Lo
ss

GraphCodeBERT
CodeT5

(a) Translate C# to Java

0 25 50 75 100
Train Iterations

0.000

0.025

0.050

0.075

0.100

St
ru

ct
ur

e
Lo

ss

GraphCodeBERT
CodeT5

(b) Translate Java to C#

0 5 10
Train Iterations

0.6

0.8

1.0

1.2

1.4

St
ru

ct
ur

e
Lo

ss

GraphCodeBERT
CodeT5

(c) Summarizaiton on Ruby

Figure 6: Curve of structure loss

RoBERTa CodeBERT GraphCodeBERT0.30

0.35

0.40

0.45

0.50

0.55

CA
T-

sc
or

e

w/o SAT
w/ SAT

(a) Summarization on Ruby

RoBERTa CodeBERT GraphCodeBERT0.30

0.35

0.40

0.45

0.50

0.55

CA
T-

sc
or

e

w/o SAT
w/ SAT

(b) Summarization on Java

Figure 7: Comparative of CAT Scores with and
without the SAT

the ability to enhance pre-trained models to cap-
ture a greater amount of code structural knowledge.
The degree of improvement in CAT-scores is corre-
lated with the level of code knowledge acquired dur-
ing the pre-training phase by the backbone models,
with RoBERTa exhibiting the greatest improvement,
followed by CodeBERT and GraphCodeBERT. This
indicates that SAT is particularly effective in as-
sisting models with relatively weaker performance,
thus compensating for their deficiency in acquiring
an adequate level of code structural knowledge
during the training phase. This observation aligns
with the findings presented in Section 3.3.

Analyzing from a case study We select two
representative cases to illustrate the difference in
model outputs with and without the SAT method.

As shown in Table 3, we provide two examples
of the test data of translating C# to Java. In the
first example, the output structure with the SAT
method is consistent with the correct answer, ex-
cept for the token “value”, which differs from the
correct answer, while the output structure without
the SAT method is entirely dissimilar to the cor-
rect answer. In the second example, the output
with the SAT method is identical to the correct an-
swer, whereas the output without the SAT method
has misaligned variable assignments, indicating
a lack of learned structural information from the
input code sequence. These two examples demon-
strate that SAT aids CodePTMs in acquiring more
structural knowledge.

4. Related Work

4.1. Pre-Trained Language Models for
Programming Languages

With the great success of pre-trained lan-
guage models in natural language processing,
transformer-based CodePTMs (Guo et al., 2021;
Wang et al., 2021, 2023) have significantly pro-
pelled the development of code intelligence. Exist-
ing CodePTMs can be mainly categorized into two
classes: struct-free and struct-based. In the struct-
free category, Feng et al. (2020) first proposes
CodeBERT, a bimodal pre-trained model based on
RoBERTa, which leverages masked language mod-
eling and replaced token detection to learn NL-PL
bimodal information. Ahmad et al. (2021) follows
the BART architecture and is pre-trained with de-
noising autoencoding on Python/Java code and NL
corpus. In the struct-aware category, GraphCode-
BERT (Guo et al., 2021) builds upon CodeBERT
and incorporates the inherent structure of code by
utilizing data flow to enhance code representation.
CodeT5 (Wang et al., 2021) builds on a unified
encoder-decoder architecture based on T5 (Raf-
fel et al., 2020) and supports various downstream
tasks and multitask learning. It introduces a novel

15369

Case 1 Case 2

Source
public override V next()
{

return this.nextEntry().value;
}

public SinglePositionTokenStream(string word)
{

termAtt = addAttribute(CharTermAttribute.class);
posIncrAtt = addAttribute(PositionIncrementAttribute.class);
this.word = word;

Target
public V next()
{

return super.nextEntry().getValue();
}

public SinglePositionTokenStream(String word)
{

termAtt = addAttribute(CharTermAttribute.class);
posIncrAtt = addAttribute(PositionIncrementAttribute.class);
this.word = word;
returned = true;

}

RoBERTa

public V next()
{

V v = nextValue;
advance();
return v;

}

public SinglePositionTokenStream(String word)
{

termAtt = addAttribute(CharTermAttribute.class);
posIncrAtt = word;
returned = true;

}

RoBERTa
+SAT

public V next()
{

return super.nextEntry().value;
}

public SinglePositionTokenStream(String word)
{

termAtt = addAttribute(CharTermAttribute.class);
posIncrAtt = addAttribute(PositionIncrementAttribute.class);
this.word = word;
returned = true;

}

Table 3: Case study

identifier-aware pre-training task that considers the
identifiers from code. UniXcoder (Guo et al., 2022)
adapts UniLM (Dong et al., 2019) and enhances
code representation by employing AST and code
comments, using mask attention matrices with pre-
fix adapters to control the model’s behavior. Xu
and Zhu (2022) has found that CodePTMs with
learned structural knowledge have more powerful
code representation capabilities. We pursue this
research line, adding structural knowledge in the
fine-tuning phase.

4.2. Neural Networks With Code
Structure

In addition to the CodePTMs discussed in Sec-
tion 4.1 that attempt to incorporate structural-
related pre-training tasks during the pre-training
process, other studies have explored different ap-
proaches for introducing code structural knowledge.
Hu et al. (2023) proposed DeepM to measure
code maintainability by exploiting the lexical se-
mantics and the structural features of text in source
code. UnixCoder(Guo et al., 2022) and Hybrid-
DeepCom(Hu et al., 2020) take traversed ASTs
as inputs during the pre-training phase. However,
this approach is not applicable for fine-tuning, as
the inputs for fine-tuning and inference should ide-
ally align. Great (Hellendoorn et al., 2020), Code
Transformer (Zügner et al., 2021), and TPTrans
(Peng et al., 2021) incorporate structural knowl-
edge into the attention computation, enabling the
model to integrate program context and structure
information. Great utilizes edge type embedding in
the program graph, Code Transformer leverages
node distances across the AST, and TPTrans em-
ploys relative and absolute path encoding. How-
ever, these Transformer-based methods require
heavy model modifications. As a result, they can-
not be readily transferred to existing pre-trained

models and are not suitable for implementation
during the fine-tuning phase. To address this issue,
we incorporate structural information through the
structure loss and multi-task fine-tuning, enabling
a plug-and-play approach for our method.

4.3. Fine-tuning Approaches for
Pre-trained Models

Existing methods for fine-tuning pre-trained models
can be categorized into five types: vanilla fine-
tuning, intermediate fine-tuning, multi-task fine-
tuning, parameter-efficient fine-tuning, and prompt-
based fine-tuning (Kalyan et al., 2021). For pro-
gramming language processing, some researchers
(Bogomolov et al., 2022; Wang et al., 2022; Ayupov
and Chirkova, 2022) have explored the fine-tuning
of CodePTMs based on the methods above. Bo-
gomolov et al. (2022) conducted vanilla fine-tuning
under different settings and observed that perfor-
mance improves as the training data becomes
more relevant to the task domain. Wang et al.
(2022) conducted prompt-based fine-tuning on
CodePTMs and observed better results than vanilla
fine-tuning. Ayupov and Chirkova (2022) ad-
dressed the issue of deploying large-scale pre-
trained models in integrated development environ-
ments by employing parameter-efficient fine-tuning.
Sun et al. (2023) endeavored to capture the inher-
ent connections between different programming
languages and code-related tasks to enhance the
efficacy of fine-tuning. Recently, Liu et al. (2024)
proposed an efficient yet effective paradigm to
adapt frozen large-scale PTMs to specific down-
stream tasks by learns dense representations. To
the best of our knowledge, there has yet to be any
prior research on applying multi-task fine-tuning
specifically for code pretraining models. In this
study, we fine-tune CodePTMs using the multi-task
fine-tuning approach.

15370

5. Conclusion

In this paper, we propose SAT, a novel multi-task
fine-tuning approach that enhances the structural
knowledge of CodePTMs during the fine-tuning
phase. We quantify the difference between the
attention matrix from the Transformer block and
the distance matrix extracted from the AST as
the structure loss using Sinkhorn divergences.
By employing multi-task learning, CodePTMs can
learn code structural knowledge during the fine-
tuning phase. This approach does not require
modifying the model architecture, enabling SAT
to possess strong portability. To validate the ef-
fectiveness of SAT, We conducted experiments on
four pre-trained models and two code generation
tasks. Experimental results demonstrate that our
approach enhances the representational capacity
of CodePTMs and benefits tasks in low-resource
scenarios.

6. Limitations

SAT focuses on code-to-code and code-to-text
tasks but cannot be applied to text-to-code tasks.
For encoder-only models, we can only leverage the
structural knowledge absorption of the source se-
quence during fine-tuning, while we cannot absorb
structural information from the target sequence
due to the absence of a corresponding attention
matrix. In our future work, we will explore struc-
tural enhancement methods suitable for text-to-
code tasks.

7. Ethical Considerations

The proposed method does not exhibit potential
risks. All the scientific artifacts used or created in
this study are duly cited and properly licensed, and
their usage aligns with their intended purpose.

8. Acknowledgments

This work has been supported by the National Nat-
ural Science Foundation of China under Grant No.
62377012.

9. Bibliographical References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2021. Unified pre-
training for program understanding and genera-
tion. In Proceedings of the 2021 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June

6-11, 2021, pages 2655–2668. Association for
Computational Linguistics.

Shamil Ayupov and Nadezhda Chirkova. 2022.
Parameter-efficient finetuning of transformers for
source code. CoRR, abs/2212.05901.

Egor Bogomolov, Sergey Zhuravlev, Egor Spirin,
and Timofey Bryksin. 2022. Assessing project-
level fine-tuning of ML4SE models. CoRR,
abs/2206.03333.

Nuo Chen, Qiushi Sun, Jianing Wang, Ming Gao,
Xiaoli Li, and Xiang Li. 2023a. Evaluating and en-
hancing the robustness of code pre-trained mod-
els through structure-aware adversarial samples
generation. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
14857–14873, Singapore. Association for Com-
putational Linguistics.

Nuo Chen, Qiushi Sun, Jianing Wang, Xiang Li,
and Ming Gao. 2023b. Pass-tuning: Towards
structure-aware parameter-efficient tuning for
code representation learning. In Findings of
the Association for Computational Linguistics:
EMNLP 2023, pages 577–591, Singapore. As-
sociation for Computational Linguistics.

Nuo Chen, Qiushi Sun, Renyu Zhu, Xiang Li,
Xuesong Lu, and Ming Gao. 2022. Cat-probing:
A metric-based approach to interpret how pre-
trained models for programming language attend
code structure. In Findings of the Association for
Computational Linguistics: EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11,
2022, pages 4000–4008. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers), pages 4171–4186.
Association for Computational Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language under-
standing and generation. In Advances in Neu-
ral Information Processing Systems 32: Annual
Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 13042–
13054.

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.48550/arXiv.2212.05901
https://doi.org/10.48550/arXiv.2212.05901
https://doi.org/10.48550/arXiv.2206.03333
https://doi.org/10.48550/arXiv.2206.03333
https://doi.org/10.18653/v1/2023.findings-emnlp.991
https://doi.org/10.18653/v1/2023.findings-emnlp.991
https://doi.org/10.18653/v1/2023.findings-emnlp.991
https://doi.org/10.18653/v1/2023.findings-emnlp.991
https://doi.org/10.18653/v1/2023.findings-emnlp.42
https://doi.org/10.18653/v1/2023.findings-emnlp.42
https://doi.org/10.18653/v1/2023.findings-emnlp.42
https://doi.org/10.18653/v1/2022.findings-emnlp.295
https://doi.org/10.18653/v1/2022.findings-emnlp.295
https://doi.org/10.18653/v1/2022.findings-emnlp.295
https://doi.org/10.18653/v1/2022.findings-emnlp.295
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html

15371

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
Codebert: A pre-trained model for programming
and natural languages. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020, vol-
ume EMNLP 2020 of Findings of ACL, pages
1536–1547. Association for Computational Lin-
guistics.

Jean Feydy, Thibault Séjourné, François-Xavier
Vialard, Shun-ichi Amari, Alain Trouvé, and
Gabriel Peyré. 2019. Interpolating between op-
timal transport and MMD using sinkhorn diver-
gences. In The 22nd International Conference
on Artificial Intelligence and Statistics, AISTATS
2019, 16-18 April 2019, Naha, Okinawa, Japan,
volume 89 of Proceedings of Machine Learning
Research, pages 2681–2690. PMLR.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified
cross-modal pre-training for code representation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 7212–7225. Associa-
tion for Computational Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tu-
fano, Shao Kun Deng, Colin B. Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. Graphcodebert: Pre-
training code representations with data flow. In
9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Vincent J. Hellendoorn, Charles Sutton, Rishabh
Singh, Petros Maniatis, and David Bieber. 2020.
Global relational models of source code. In 8th
International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin.
2020. Deep code comment generation with hy-
brid lexical and syntactical information. Empir.
Softw. Eng., 25(3):2179–2217.

Yamin Hu, Hao Jiang, and Zongyao Hu. 2023. Mea-
suring code maintainability with deep neural net-
works. Frontiers Comput. Sci., 17(6):176214.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit,
Miltiadis Allamanis, and Marc Brockschmidt.
2019. Codesearchnet challenge: Evaluating
the state of semantic code search. CoRR,
abs/1909.09436.

Katikapalli Subramanyam Kalyan, Ajit Rajasekha-
ran, and Sivanesan Sangeetha. 2021. AM-
MUS : A survey of transformer-based pretrained
models in natural language processing. CoRR,
abs/2108.05542.

Anjan Karmakar and Romain Robbes. 2021. What
do pre-trained code models know about code?
In 36th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2021,
Melbourne, Australia, November 15-19, 2021,
pages 1332–1336. IEEE.

Chin-Yew Lin and Franz Josef Och. 2004. OR-
ANGE: a method for evaluating automatic evalu-
ation metrics for machine translation. In COLING
2004, 20th International Conference on Compu-
tational Linguistics, Proceedings of the Confer-
ence, 23-27 August 2004, Geneva, Switzerland.

Hui Lin, Xiaopeng Hong, Zhiheng Ma, Xing Wei,
Yunfeng Qiu, Yaowei Wang, and Yihong Gong.
2021. Direct measure matching for crowd count-
ing. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI
2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 837–844. ijcai.org.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan,
Ju Sun, Yong Yu, and Yi Ma. 2013. Robust
recovery of subspace structures by low-rank rep-
resentation. IEEE Trans. Pattern Anal. Mach.
Intell., 35(1):171–184.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

Yitao Liu, Chenxin An, and Xipeng Qiu. 2024. Y-
tuning: an efficient tuning paradigm for large-
scale pre-trained models via label representation
learning. Frontiers Comput. Sci., 18(4).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang,
Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang,
Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. 2021. Codexglue:
A machine learning benchmark dataset for code
understanding and generation. In Proceedings
of the Neural Information Processing Systems
Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December
2021, virtual.

Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and
Zhi Jin. 2021. Integrating tree path in transformer

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://proceedings.mlr.press/v89/feydy19a.html
http://proceedings.mlr.press/v89/feydy19a.html
http://proceedings.mlr.press/v89/feydy19a.html
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=B1lnbRNtwr
https://doi.org/10.1007/s10664-019-09730-9
https://doi.org/10.1007/s10664-019-09730-9
https://doi.org/10.1007/S11704-022-2313-0
https://doi.org/10.1007/S11704-022-2313-0
https://doi.org/10.1007/S11704-022-2313-0
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/2108.05542
https://doi.org/10.1109/ASE51524.2021.9678927
https://doi.org/10.1109/ASE51524.2021.9678927
https://aclanthology.org/C04-1072/
https://aclanthology.org/C04-1072/
https://aclanthology.org/C04-1072/
https://doi.org/10.24963/ijcai.2021/116
https://doi.org/10.24963/ijcai.2021/116
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.1109/TPAMI.2012.88
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/S11704-023-3131-8
https://doi.org/10.1007/S11704-023-3131-8
https://doi.org/10.1007/S11704-023-3131-8
https://doi.org/10.1007/S11704-023-3131-8
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://proceedings.neurips.cc/paper/2021/hash/4e0223a87610176ef0d24ef6d2dcde3a-Abstract.html

15372

for code representation. In Advances in Neu-
ral Information Processing Systems 34: Annual
Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 9343–9354.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. J. Mach. Learn.
Res., 21:140:1–140:67.

Qiushi Sun, Nuo Chen, Jianing Wang, Xiang Li,
and Ming Gao. 2023. Transcoder: Towards uni-
fied transferable code representation learning
inspired by human skills.

Qiushi Sun, Nuo Chen, Jianing Wang, and Xiaoli Li.
2024a. Rethinking the role of structural informa-
tion: How it enhances code representation learn-
ing? In International Joint Conference on Neural
Networks, IJCNN 2024, Yokohama, Japan, June
30 - July 5, 2024. IEEE.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi
Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan,
Qipeng Guo, Xipeng Qiu, Pengcheng Yin, Xi-
aoli Li, Fei Yuan, Lingpeng Kong, Xiang Li, and
Zhiyong Wu. 2024b. A survey of neural code
intelligence: Paradigms, advances and beyond.

Sergey Troshin and Nadezhda Chirkova. 2022.
Probing pretrained models of source codes. In
Proceedings of the Fifth BlackboxNLP Work-
shop on Analyzing and Interpreting Neural Net-
works for NLP, BlackboxNLP@EMNLP 2022,
Abu Dhabi, United Arab Emirates (Hybrid), De-
cember 8, 2022, pages 371–383. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. Advances in neural informa-
tion processing systems, 30.

Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui,
Guandong Xu, and Hai Jin. 2022. What do
they capture? - A structural analysis of pre-
trained language models for source code. In
44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh,
PA, USA, May 25-27, 2022, pages 2377–2388.
ACM.

Chaozheng Wang, Yuanhang Yang, Cuiyun Gao,
Yun Peng, Hongyu Zhang, and Michael R. Lyu.
2022. No more fine-tuning? an experimental
evaluation of prompt tuning in code intelligence.

In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineer-
ing, ESEC/FSE 2022, Singapore, Singapore,
November 14-18, 2022, pages 382–394. ACM.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi D. Q. Bui, Junnan Li, and Steven C. H.
Hoi. 2023. Codet5+: Open code large language
models for code understanding and generation.
CoRR, abs/2305.07922.

Yue Wang, Weishi Wang, Shafiq R. Joty, and
Steven C. H. Hoi. 2021. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for
code understanding and generation. In Proceed-
ings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Re-
public, 7-11 November, 2021, pages 8696–8708.
Association for Computational Linguistics.

Lilian Weng. 2019. From GAN to WGAN. CoRR,
abs/1904.08994.

Yichen Xu and Yanqiao Zhu. 2022. A survey on
pretrained language models for neural code in-
telligence. CoRR, abs/2212.10079.

Renyu Zhu, Lei Yuan, Xiang Li, Ming Gao, and
Wenyuan Cai. 2022. A neural network archi-
tecture for program understanding inspired by
human behaviors. In Proceedings of the 60th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 5142–5153, Dublin, Ireland. Association
for Computational Linguistics.

Daniel Zügner, Tobias Kirschstein, Michele
Catasta, Jure Leskovec, and Stephan Günne-
mann. 2021. Language-agnostic representation
learning of source code from structure and con-
text. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net.

https://proceedings.neurips.cc/paper/2021/hash/4e0223a87610176ef0d24ef6d2dcde3a-Abstract.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2306.07285
http://arxiv.org/abs/2306.07285
http://arxiv.org/abs/2306.07285
http://arxiv.org/abs/2403.14734
http://arxiv.org/abs/2403.14734
https://doi.org/10.18653/v1/2022.blackboxnlp-1.31
https://doi.org/10.1145/3510003.3510050
https://doi.org/10.1145/3510003.3510050
https://doi.org/10.1145/3510003.3510050
https://doi.org/10.1145/3540250.3549113
https://doi.org/10.1145/3540250.3549113
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
http://arxiv.org/abs/1904.08994
https://doi.org/10.48550/arXiv.2212.10079
https://doi.org/10.48550/arXiv.2212.10079
https://doi.org/10.48550/arXiv.2212.10079
https://doi.org/10.18653/v1/2022.acl-long.353
https://doi.org/10.18653/v1/2022.acl-long.353
https://doi.org/10.18653/v1/2022.acl-long.353
https://openreview.net/forum?id=Xh5eMZVONGF
https://openreview.net/forum?id=Xh5eMZVONGF
https://openreview.net/forum?id=Xh5eMZVONGF

	Introduction
	SAT
	Code Basics
	Distance Matrix and Attention Matrix
	Formal Definition of Structure Loss

	Experiments
	Tasks and Metrics
	Backbone models
	SAT Effectiveness
	Exploration of Different Training Data Scales
	Did the SAT really learn the structural information?

	Related Work
	Pre-Trained Language Models for Programming Languages
	Neural Networks With Code Structure
	Fine-tuning Approaches for Pre-trained Models

	Conclusion
	Limitations
	Ethical Considerations
	Acknowledgments
	Bibliographical References

