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Abstract

Speech-to-Speech and Speech-to-Text translation are currently dynamic areas of research. In our commitment
to advance these fields, we present SpeechAlign, a framework designed to evaluate the underexplored field of
source-target alignment in speech models. The SpeechAlign framework has two core components. First, to
tackle the absence of suitable evaluation datasets, we introduce the Speech Gold Alignment dataset, built upon a
English-German text translation gold alignment dataset. Secondly, we introduce two novel metrics, Speech Alignment
Error Rate (SAER) and Time-weighted Speech Alignment Error Rate (TW-SAER), which enable the evaluation of
alignment quality within speech models. While the former gives equal importance to each word, the latter assigns
weights based on the length of the words in the speech signal. By publishing SpeechAlign we provide an accessible
evaluation framework for model assessment, and we employ it to benchmark open-source Speech Translation
models. In doing so, we contribute to the ongoing research progress within the fields of Speech-to-Speech and
Speech-to-Text translation.

Keywords: Evaluation Methodologies,Speech Resource/Database, SpeechToSpeech Translation

1. Introduction Nevertheless, the performance of both cascade
and end-to-end architectures remains far from opti-
mal compared to text translation systems, indicating

that research in these areas is still ongoing.

Speech-to-text Translation (S2TT) and Speech-to-
speech Translation (S2ST) refer to the task of con-
verting spoken language into respectively written
text or speech in a different language. These tasks
are increasing their popularity, and can be used
for applications such as subtitling videos in a dif-
ferent language, translating between languages
that do not have a written form, and in general,
ensuring seamless communication across people
worldwide.

The initial approach to S2TT and S2ST involved
the integration of distinct models, forming what
is nowadays known as a cascade system (Ney,
1999). This systems consist of an Automatic
Speech Recognition (ASR) model that transcribes
the spoken sentence, and a Machine Translation
(MT) model that translates the sentence into an-
other language. In the case of S2ST an additional
speech synthesizer is needed, that is utilized to

generate the corresponding speech from the trans-
lated text. However, recent advancements have led
to the development of end-to-end models, that per-
form translation from speech to text or to speech,
without requiring an intermediate transcription step,
or a translated transcript. Known as direct Speech
Translation systems, these models have quickly
progressed, and currently, they can achieve state-
of-the-art results comparable to those of cascade
models (Ansari et al., 2020; Bentivogli et al., 2021).

Equal contribution.

Figure 1: Example of a S2ST alignment in the
Speech Gold Alignment dataset.

The recent growth of end-to-end models and the
shift in the field towards using them has raised
the need to understand their inner workings. One
related task is source-target alignment, which in-
volves analysing how models use the provided
source to make predictions, and whether they follow
common human intuition in this process.

This alignment task has been widely explored in
the context of text translation (Ghader and Monz,
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2017; Ferrando et al., 2022). The task is commonly
evaluated using Alignment Error Rate (AER) (Och
and Ney, 2003), a metric that measures the differ-
ences between a gold-standard alignment and a
hypothesized one. For this aim, human-labeled
alignment datasets have been published in the con-
text of text translation, such as (Vilar et al., 2006)
for translation between English and German.

In speech-related fields, little interpretability work
regarding alignments has been done. Some previ-
ous studies have focused on analysing the self-
attention in the encoder of speech recognition,
(Zhang et al., 2021; Shim et al., 2022) and speech
translation (Alastruey et al., 2022) systems. How-
ever, these models’ decoder, and consequently, its
alignment capabilities, have yet to be explored, po-
tentially due to the absence of suitable datasets
and metrics for evaluating the task in this setting.

In light of this, we introduce SpeechAlign frame-
work', which serves as a solution to the stated lack
of resources. SpeechAlign is formed of two core
components: a novel dataset and an evaluation
framework founded on our proposed metrics.

The dataset, named Speech Gold Alignment, is
specifically created to evaluate alignment in S2TT
and S2ST. This dataset is an extension of the text
translation gold alignment dataset introduced by
Vilar et al. (2006). To create it, we employ a Text-to-
Speech (TTS) model to generate synthetic speech
for the sentences in the dataset. The utilization
of a TTS model offers a main advantage: apart
from generating audio, it also provides timestamps
denoting the beginning and end of each word. An-
notating such timestamps would be very resource-
intensive if using non-synthetic audios. Gathering
the audios and the timestamps, we are able to
build the Speech Gold Alignment dataset, formed
of samples such as the one shown in Figure 1.

In terms of metrics, we adapt the AER for the
speech domain, introducing two novel metrics:
Speech Alignment Error Rate (SAER) and Time-
weighted SAER (TW-SAER). These metrics quan-
tify the alignment error models have, with the key
distinction that the former treats each word equally,
and the latter factors in word durations.

To sum up, the main contribution of this paper is
the release of SpeechAlign, a framework designed
to simplify metrics computation using our dataset.
Additionally, we employ this framework to bench-
mark various open-source models. Through these
efforts, we aim to contribute to the exploration of
alignments in the domain of speech translation.

"https://github.com/mt-upc/speechalign

2. Related Work

Over the past decades, considerable interest has
been directed toward comprehending the alignment
capabilities of text translation models. In this tra-
jectory, both datasets and metrics have been de-
veloped to evaluate this task.

Numerous authors have published alignment
datasets (Lambert et al., 2005; Vilar et al., 2006;
Kruijff-Korbayova et al., 2006; Graca et al., 2008;
Macken, 2010; Holmqvist and Ahrenberg, 2011) for
the evaluation of alignments in translations in lan-
guages such as English, Spanish, German, Dutch,
and Czech. In this work, we hone in on the dataset
introduced by Vilar et al. (2006)? for text transla-
tion between English and German. This dataset
comprises 508 paired sentences in the specified
languages, along with precise information regard-
ing the alignment of words between these two lan-
guages. These sentences are sourced directly from
the EuroParl| dataset (Koehn, 2005), which contains
transcripts and translations of speeches delivered
in the European Parliament. We opt for this dataset
due to its coverage of the English-German trans-
lation pair, which is extensively studied in the field
of speech translation (Agarwal et al., 2023). More-
over, our work requires the generation of speech
utterances for the sentences in the dataset. Focus-
ing on well-resourced languages like English and
German provides greater confidence in the quality
of the speech generated by the TTS model.

As for metrics, a singular measure has predom-
inantly been used to evaluate alignments. Align-
ment Error Rate (AER), introduced by Och and Ney
(2003), is a measure of alignment quality between a
source sentence and its translation. It is calculated
as the ratio of alignment errors, where an alignment
error occurs when a unit in the translated sentence
is not aligned with the correct unit in the source.
The score is computed based on a manually anno-
tated gold-standard alignment of a parallel corpus.
Given a reference alignment, consisting of a set
S of “Sure”, unambiguous alignment points, and a
set P of “Possible”, ambiguous alignment points,
with S C P, the AER of an alignment A is defined
to be:

|[ANS|+|AN P

AER(S,P;A)=1—
(5, P;4) VIEaE

(1)

3. Speech Gold Alignment Dataset

The dataset we introduce, Speech Gold Alignment,
extends the bilingual text alignment dataset pre-
sented by Vilar et al. (2006) by adding speech ut-
terances to each pair of English and German sen-

thtps://www—i6.informatik.rwth—aachen.
de/goldAlignment/
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(a) T2T Translation.

(b) S2T Translation.

(c) S2S Translation.

Figure 2: Original alignment by (Vilar et al., 2006) and our extensions.

tences. Additionally, for each audio file, the dataset
contains a dictionary defining all the words in each
sentence and their corresponding start and end
time stamps, what gives us a text-to-audio mapping.
Once we have this, we incorporate the gold align-
ment correspondences from the original dataset to
obtain the alignments between speech segments.

This augmented dataset, can either be consid-
ered as two distinct datasets supporting S2TT from
English to German (and vice versa), or as a unified
S2ST dataset by combining both S2TT alignments.
In Figure 2 we show the three different modalities
of the dataset. Figure 2a shows a sample from
the original dataset presented by Vilar et al. (2006),
and Figures 2b and 2c show our extension for S2TT
and S2ST settings respectively.

As part of the SpeechAlign framework, we pub-
lish a pipeline to prepare the dataset, following the
steps that are described in section 3.1.

3.1. Methodology

The construction of this dataset can be divided
into two primary steps. First, we employed the
VITS model (Kim et al., 2021) to generate synthetic
speech for all the sentences, as detailed in sec-
tion 3.1.1. Subsequently, we aligned each word
to its corresponding time interval in the produced
speech signal, as explained in section 3.1.2. While
integrating the datasets, we found specific cases
where alignment was not immediate or direct. We
address these complexities in section 3.1.3.

3.1.1. Speech Generation

To produce synthetic speech for the sentences in
the Gold Alignment dataset, we employed the VITS
model. This TTS system uses a phonemizer to
obtain the phonemes corresponding to the input se-
quence. Then, to generate the speech output, the
model uses a stochastic duration predictor that as-

signs a duration to each phoneme. The chosen du-
ration is randomly sampled from each phoneme’s
durations distribution. By doing this, the model is
able to synthesize natural speech and can gener-
ate different speech utterances for the same input
text.

To build our dataset, we generated separate syn-
thetic versions for the 508 sentences in both English
and German. In English, we utilized LJ Speech
(Ito and Johnson, 2017), while for the German
language, the Thorsten voice (Miller and Kreutz,
2021) was employed. This task was done using
the VITS model available through the Coqui toolkit
(Eren and The Coqui TTS Team, 2021).

3.1.2. Word-Audio Matching

The Gold Alignment dataset constitutes a word-
to-word alignment reference, to which we add our
newly generated audios, product of VITS. Never-
theless, to achieve an alignment between speech
intervals, we first need to establish a linkage be-
tween audio segments and words in the original
dataset.

The approach followed to accomplish this starts
by acquiring intermediate representations from
VITS. Specifically, we gather the output generated
by the phonemizer, which is the phonemized sen-
tence, as well as the output of the duration predictor.
This predictor creates a dictionary containing du-
ration in integer units of each phoneme. With this
information in hand, we perform a two-step match-
ing procedure, that ultimately yields the mapping
from audio to words, via the intermediate represen-
tation of phonemes:

1. Phoneme-Word Matching. In this stage, we
focus on aligning the phonemes with the words
present in the original dataset.

2. Phoneme-Audio Matching. In this phase, we
establish a time mapping between the audio

15139



and its corresponding sequence of phonemes.

Figure 3 provides a visual representation of the
sequential steps followed for deriving both the wave-
form and the alignment between words and audio,
which constitute the dataset we present.

With the basic steps outlined, now we will dive
deeper into the details of each of the phases to
obtain the audio-word matching.

Phoneme-Word Matching. The goal of this
phase is to achieve a mapping between the se-
quence of phonemes extracted from the phone-
mizer and the sequence of words in the original
dataset (Vilar et al., 2006). To do so, we use blank
spaces as delimiters for words in the phonemes
sequence, and we monotonically map them with
the sequence of words. It is important to note that
the original dataset underwent tokenization through
Moses, introducing some challenges in this process
that are outlined in detail in Section 3.1.3.

Phoneme-Audio Matching. After obtain-
ing the correspondence between words and
phonemes, we now need to map phonemes to the
audio. Ideally, the entire audio must be partitioned
into separate time intervals, each containing the
pronunciation of a single word. To accomplish this,
it is necessary to compute the overall duration of
each individual word.

To compute the total duration of each word, we
take the output of the duration predictor and sum
the duration in units of all the phonemes belong-
ing to a same word. As previously stated, blank
spaces are used as delimiters between words in
the phoneme transcription. Consequently, the du-
ration assigned to a blank space is equally dis-
tributed and added to the neighboring words, both
preceding and succeeding the blank space. The
same approach applies to units attributed to punc-
tuation marks, that we decided not to include in our
alignment dataset given that they cannot be found
explicitly in speech utterances.

Next, our objective is to establish the correspond-
ing word duration in seconds based on their dura-
tion in units. To achieve this, we divide the total
length of the audio by the aggregate duration in
units of all the phonemes in the sentence. This com-
putation establishes a correlation between VITS
duration units and the equivalent time in seconds.
Using this derived relationship, we convert the word
durations from units to seconds and find the start
and end times for each word.

3.1.3. Special Cases

After the two phases of the dataset construction we
perform a manual revision of the generated data

and encounter some special challenges that need
special handling.

Phonemic Fusion. Inthe majority of instances,
phonemized words align with the original text words,
primarily through sentence segmentation using
blank spaces. Nevertheless, in certain cases
the phonemizer merges adjacent words during
phonetic transcription, creating what we name as
phonemic fusion. This occurrence is primarily ob-
served in short English words such as prepositions,
articles, and pronouns, which are pronounced
seamlessly without pauses. Table 1 provides ex-
amples of this phenomenon. In such particular in-
stances, we first determine the combined duration
of these merged words and subsequently distribute
the total time proportional to the length among the
constituent words. While this approach may not be
entirely precise, we believe the approximation is
enough, given its applicability to very short words
and few cases.

Phonemic Fusion
Words: | am
Phonemes: /aiam/
Words: of the
Phonemes: /ovdi/
Words: as it is
Phonemes: /zzitiz/
Words: that the
Phonemes: /8aetdi/

Phonemic Fragmentation

Words: 124

Phonemes: /wun hundred twent: fo/
Words: 34%

Phonemes: /det1 fo posent/

Words: 1996

Phonemes: /namtm namtr siks/

Table 1: Examples of the special cases encoun-
tered when aligning words and their phonemization.

Phonemic Fragmentation. Furthermore, we
have encountered a contrasting phenomenon in
comparison to phonemic fusion. The phonemizer
carries out a normalization process on the text be-
fore phonemization. Occasionally, this normaliza-
tion procedure results in the conversion of single
words into multiple words —a phenomenon we refer
to as Phonemic Fragmentation. This behavior is
particularly noticeable in cases involving numbers,
percentages, years, and similar elements. To ad-
dress this matter, we aggregate the durations of all
the split words and attribute the total duration to the
original solitary word.
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Figure 3: Pipeline used to generate the dataset.

Possesives ('s) The original Gold Alignment
dataset does not provide alignments between natu-
ral sentences, but for sentences tokenized with
Moses. However, VITS works on natural text,
and this missmatch creates some difficulties along
the matching process. This is the case of words
such as "Parliament’s", that is considered a single
word when dealing with VITS ("Parliament’s" —
/paloments/) , but it is actually two different words
with independent alignments in the original dataset
("Parliament ’s"), due to Moses tokenization.

This is a case of Phonemic Fusion (and it's
addressed as such). However, unlike previously
shown cases caused by the phonemizer, this fusion
stems from the tokenization in the original dataset.

Percent Sign (%) A similar behaviour arises
when dealing with percent signs. These signs ap-
pear alongside numbers in natural text ("34%"), but
in the Gold Alignment dataset, they’re separate
tokens due to Moses tokenization ("34 %"). How-
ever, as illustrated in Table 1, percents are a case
of Phonemic Fragmentation, with the phonemizer
breaking this construction into multiple phonemized
words ("34%" — /det1 fo posent/).

In this particular cases of Phonemic Fragmen-
tation, we aim to separate the expanded phonetic
text into two segments: the first containing phone-
mized words associated with the number (/dett
fa/), and the last containing the phonemized word
corresponding to the percent (/pesent/). In this
instances, the merging of time intervals encom-
passes all words except the final one in the expan-
sion.

German Phonemizer In our utilization of the
German phonemizer, we have noticed that it oc-
casionally produces inaccurate phonetic transcrip-
tions for certain single input words. These inac-
curacies tend to occur with special symbols (e.g.,
"%", /"), years (e.g., "1996"), acronyms (e.g., "EU",

"Nr"), compound nouns (e.g., "EU-Staate"), among
others. To rectify these inaccuracies in phonetic
transcription, we have replaced specific words in
the input sentences with their expanded and "spo-
ken" format ("EU" — "E U", "1996" — "nineteen
ninety six"). This adjustment assists the phonem-
izer in producing more accurate transcriptions.

3.2. Dataset Quality Assessment

Within this section, we aim to examine the qual-
ity of the synthetic audio produced by VITS. We
conduct an assessment comparing EuroParl ST
(Iranzo-Sanchez et al., 2020) test set and our own
synthesized data, which is also derived from a sub-
set of the EuroParl dataset (Koehn, 2005). With
this aim, we evaluate the performance of the Whis-
per Tiny model (Radford et al., 2022) on the task
of speech recognition on these two datasets. This
strategy allows us to understand the implications
of using synthetic audio without the influence of
content domain. We choose to perform this evalua-
tion in the setting of speech recognition, and not in
translation, because of the simplicity of the former
due to its monotonic alignment process. This en-
sures that the overall model performance and the
complexity of the task are less likely to influence the
results. We have opted to conduct this evaluation
using the smallest Whisper model. Our hypothe-
sis behind this choice is that if no issues arise in
the smallest model, they are unlikely to manifest in
larger models.

In Table 2, we present the Word Error Rate
(WER) results obtained on both datasets, and we
observe that our synthetic audios result in a lower
WER than standard EuroParl ST dataset. Further-
more, we notice a disparity in performance be-
tween the German and English synthetic data. This
discrepancy may stem from differences in the un-
derlying VITS models, that are trained on distinct
datasets for each language. This quality discrep-
ancy between the German and English outputs was
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Dataset Language WER
EuroParl ST En 29.7
Speech Gold Alignment En 3.9
EuroParl ST De 31.0
Speech Gold Alignment De 23.1

Table 2: Quality assessment results.

confirmed during the manual inspection of the gen-
erated speech. Despite this variance, it's important
to point out that WER for German remains below
the threshold established by Europarl ST, which
serves as a quality reference in our study. Con-
sequently, we can conclude that the synthesized
data does not pose a problem and appears to be
easily handled by the models in both languages,
possibly due to the clarity of the generated audios
compared to European Parliament recordings.

4. Proposed Evaluation

The objective of this section is to define an eval-
uation procedure and metrics that are able as-
sess models’ ability to establish source-target align-
ments. To analyse this capability, our focus is
on the contribution maps generated by the mod-
els. These maps indicate the relationship between
source and target tokens, such that the contribu-
tion of a source token to a target one is always a
non-negative value, and that the sum of contribu-
tions from all source tokens to a target token must
equal 1 (i.e. attention weights or more advanced
interpretability methods (Kobayashi et al., 2021;
Ferrando et al., 2022)). Then, to measure the align-
ments, we build new metrics around the intuition
of the Alignment Error Rate (AER) score, initially
introduced by (Och and Ney, 2003) and defined in
section 2. However, extracting the alignments from
the contribution map and adapting AER for speech
sequences is not straightforward process.

4.1. Preprocessing

The metric of AER assesses the error rate between
a hypothesis and a target alignment. Hence, to
compute this score, we need a gold alignment
dataset. In most text alignment datasets, such
as the one we extend (Vilar et al., 2006), these
alignments are provided as word-to-word relations.
Consequently, the hypothesis alignment needs to
be structured in a word-to-word format too. How-
ever, in speech settings, the system input tokens
correspond to frames of a spectrogram or ranges
of a waveform. As a consequence, the contribution
maps usually extract token-to-token interactions,
being each token a speech frame. Thus, a conver-
sion process is necessary to derive word-to-word

Algorithm 1: Contributions Preprocessing

Input:

C'_t2t: token-to-token contribution matrix,
src. source words & durations,

tgt: tgt words & durations

Output:

C_w2w: word-to-word contribution matrix

maz_duration_src < src[—1][end]
mazx_tokens_src < C_t2t.shape[l]
for word, word_idx < src do
s_time <« srclword][start]
e_time < src[word][end]
s_token < ceil(s_time x
mazx_tokens_src/mazx_duration_src)
e_token < floor(e_time *
maz_tokens_src/max_duration_src)
C_w2t[:, word_idz] + sum(C_t2t[:, s_token :
e_token],dim = 1)
maz_duration_tgt « tgt[—1][end]
mazx_tokens_tgt < C_t2t.shape[0]
for word, word_idxz < tgt do
s_time < tgt{word][start]
e_time < tgtfword][end]
s_token <+ ceil(s_time x
maz_tokens_tgt/maz_duration_tgt)
e_token < floor(e_time *
max_tokens_tgt/maz_duration_tgt)
C_w2wlword_idx, :] + avg(C_w2t[s_token :
e_token,:],dim = 0)

alignments from a tokens-to-tokens contribution
map, and consequently being able to evaluate the
alignment to obtain an AER score.

Nonetheless, a similar challenge is faced in the
setting of text translation, where tokens are often
sub-words rather than complete words. In this case,
the conversion from tokens to words involves a
two-step process.When dealing with sub-words in
the source, their contributions are aggregated by
summing them together. This approach is rooted
in the principle that the combined contribution of
two tokens to a target is the sum of their individual
contributions. Handling sub-words in the target
sequence proves to be more complex. Each token
has a distinct distribution of contributions across
the source. To address this, the average of each
sub-word distribution is computed. By following this
approach, we are able to effectively establish the
alignment between words despite the presence of
sub-word units.

In the case of speech, we propose to employ
a similar approach when aggregating tokens from
each word, in order to obtain a word-to-word con-
tributions plot. Leveraging our dataset, which pro-
vides details into the correspondence between seg-
ments of input/output audio and individual words,
we define which tokens correspond to each word un-
der with the assumption of a linear relation between
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Figure 4: Example of the token-to-token attention weights of a S2TT decoder layer on Whisper Small.

mmmmmm

T 8 5 B £ 8

Figure 5: Example in Figure 4 after the preprocess-
ing, obtaining a word-to-word contributions map.

tokens and audio, and dismissing any overlap. Do-
ing this allows us to employ a similar approach to
the one used for merging sub-words, but this time,
we apply it to the set of all tokens linked to a single
word. Given a contributions map C where ¢; ; is
the contribution of the j-th source token to the i-th
prediction, the resulting word-to-word contributions
map is computed using our dataset as shown in
Algorithm 1. In Figures 4 and 5 we show an ex-
ample of a contributions map before and after the
preprocessing.

Following this conversion and before comput-
ing the alignment scores, we derive the hard align-
ments. This is accomplished by aligning each tar-
get word with the source word that has the highest
contribution.

4.2. Speech Alignment Error Rate

Once we have the hard alignments, we define the
Speech Alignment Error Rate (SAER) in the same
manner the AER is defined. This is, given a set S
of unambiguous alignments, a set P of ambiguous
alignment and a set A of hypothesis alignment:

|[ANS|+ AN P
Al +15]

Note that while the equation remains identical to

SAER =1—

(2)

that in the original AER case, the definitions of A,
S, and P change due to the preprocessing required
to derive them.

Furthermore, it's important to note that SAER
doesn’t fully address a key aspect in the speech
setting — the noticeable disparity in the number of
different tokens that form each word, which cor-
responds to audio durations. Instead, when com-
puting SAER each word contributes equally to the
final score, regardless of its duration. Hence, to-
kens that correspond to short words are assigned
a higher weight in the metric than those that corre-
spond to longer words. This differs from the model
perspective, where each token holds equal impor-
tance.

4.3. Time-Weighted SAER

To address the limitations of the SAER, we define
the Time-weighted SAER, a metric that accounts
for the variability in word durations. To do so, we
introduce a new element — the incorporation of a
weight for each alignment. These weights are de-
fined using the area of each alignment, as shown
in Figure 6, and defined as follows:
if S2ST

- S5+ 84

YT s 01 ifs2TT

where w; ; is the weight of an alignment between

the j-th source word and the i-th target word, and

s;, s; is the duration in seconds of these words

respectively. Therefore, given a set set S of un-

ambiguous alignments and a set P of ambiguous

alignment, the TW-SAER is defined as the sum of

areas of the alignments in AN S plus the sum of

areas in An P, divided by the total alignment area
of Aand S:

(3)

Zi,jeAﬁS wi,j + Zi,jeAﬂP Wi, 5
Zz’,jeA Wij + Zi,jes Wi, 5
(4)
By including the weights we account for the tem-
poral duration of each word within the audio, refin-
ing our evaluation process. Note that SAER and
TW-SAER are equivalent if w; ; = 1Vi, j.

TW — SAER =1 —

5. SpeechAlign

The main contribution of this paper is the release
of SpeechAlign, an accessible open-source frame-
work that encompasses the Speech Gold Align-
ment dataset presented in section 3 and the SAER
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Size Parameters \SAER(%, }) TW-SAER(%,|) BLEU(?)

Tiny 39M 75.3
Base 74M 72.9
Small 244M 70.7
Medium 769M 69.5
Large 1.55B 68.9

70.1 3.6
67.8 8.4
65.7 15.4
64.1 20.2
63.5 22.1

Table 3: Benchmarking of different sizes of Whisper models on De-En S2TT.

Figure 6: TW-SAER weights.

and TW-SAER metrics defined in section 4. This
tool seamlessly handles raw token-to-token align-
ment maps and computes both proposed alignment
error rates. This framework is versatile, and can
be used in attention weights or more sophisticated
contribution maps. The pipeline starts by taking
the given contribution maps and converts them
into word-to-word equivalents. To achieve this, the
alignment dataset is utilized to account for vary-
ing word durations. Following this conversion, we
derive the hard alignments. The outcome is a defini-
tive set of hypothesis alignments, that are used to
compute both SAER and TW-SAER scores.

To enhance the comprehension of the process,
we include a notebook for visualization of the align-
ments and contributions maps. This tool can be
used to visualize token-to-token and the extracted
word-to-word representations, and also the ob-
tained hard alignments. By publishing this frame-
work, we aim to facilitate the use of our dataset by
other researchers.

Finally, using SpeechAlign, we benchmark some
S2TT models. For simplicity, we decide to ana-
lyze alignments based on models’ cross-attention
weights. We decide not benchmark the S2ST task
due to the current lack of open-source models, be-
ing the recently published SeamlessM4T (Seam-
lessCommunication et al., 2023) the only one avail-
able as of now. This model comprises two consecu-
tive Transformers, each containing its own decoder.
Consequently, it presents significant challenges
in terms of obtaining a contributions map based
on attention weights, and developing further inter-
pretability methods lies beyond scope of this paper.

Models Benchmarking Table 3 presents an eval-
uation of various sizes of the Whisper model (Rad-
ford et al., 2022) on De-En S2TT. Each model’s
performance is assessed through the BLEU score
on our test set, and the SAER and TW-SAER. The
latter are computed on the attention weights of each
decoder layer, and in Table 3 we report the best
obtained score. This analysis uncovers a corre-
lation between the performance metrics and the
alignment score. This correlation is also observed
to align with the model’s size.

6. Conclusion

In conclusion, this paper introduces SpeechAlign, a
framework to evaluate alignment in speech models.
SpeechAlign has two main components. Firstly,
we've created the Speech Gold Alignment dataset,
being the first of its kind and created to address the
lack of suitable evaluation data for the task. Sec-
ondly, we have presented the two first evaluation
metrics for speech alignment, Speech Alignment
Error Rate (SAER) and Time-weighted Speech
Alignment Error Rate (TW-SAER), to assess how
well speech models perform on the alignment task.
SpeechAlign provides an accessible way to evalu-
ate speech models, and we have used it to bench-
mark various open-source models.
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