
LREC-COLING 2024, pages 15114–15125
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

15114

Sparse Logistic Regression with High-order Features
for Automatic Grammar Rule Extraction from Treebanks

Santiago Herrera1, Caio Corro2, Sylvain Kahane1,3
1Université Paris Nanterre, CNRS, Modyco 2Sorbonne Université, CNRS, ISIR

3Institut Universitaire de France
sherrera@parisnanterre.fr, caio.corro@isir.upmc.fr, sylvain@kahane.fr

Abstract
Descriptive grammars are highly valuable, but writing them is time-consuming and difficult. Furthermore, while
linguists typically use corpora to create them, grammar descriptions often lack quantitative data. As for formal
grammars, they can be challenging to interpret. In this paper, we propose a new method to extract and explore
significant fine-grained grammar patterns and potential syntactic grammar rules from treebanks, in order to create
an easy-to-understand corpus-based grammar. More specifically, we extract descriptions and rules across different
languages for two linguistic phenomena, agreement and word order, using a large search space and paying
special attention to the ranking order of the extracted rules. For that, we use a linear classifier to extract the most
salient features that predict the linguistic phenomena under study. We associate statistical information to each
rule, and we compare the ranking of the model’s results to those of other quantitative and statistical measures.
Our method captures both well-known and less well-known significant grammar rules in Spanish, French, and Wolof.

Keywords: grammar extraction, grammar rules, corpus based grammar, quantitative grammar.

1. Introduction

Speakers are obliged to select, pronounce, use,
mark, and combine linguistic units in precise ways
in order to communicate in a language. A grammar
is this set of constraints that a language imposes
on its speakers, i.e. a set of constraints satisfied by
all well-formed utterances. In this setting, a gram-
mar rule describes a specific linguistic pattern en-
forced in a given context and in a given language,
and can be of various interest (e.g. education, the-
oretical linguistics, linguistic typology). In practice,
these rules are of probabilistic nature (in the fre-
quentist interpretation). For example, in English, a
simple rule would be that the “subject of a verb is
before its governor”. However, this rule is not de-
terministic, a more accurate description would be:
“given a syntactic dependency of type subject, the
dependent is before its governor in approximately
93% of cases”. In practice, it is of interest to un-
derstand when this majority rule is not followed.1
To continue with the same example: “given a syn-
tactic dependency of type subject with an expletive
complement in a pre-verbal position, the subject is
after its governor in 97% of cases”, see Figure 1.
As such, rules are not only probabilistic but also
more or less fine-grained and potentially overlap-
ping.

With the development of large treebank collec-

1The value also depends on the annotation scheme
and on the corpus considered. Here the results are
given for SUD_English-GUM@2.13, converted from UD
in SUD (Gerdes et al., 2018), where the subject depends
on the auxiliary in complex verbal forms.

tions like Universal Dependencies, there has been
a recent interest in automatically extracting gram-
mars from syntactically annotated sentences. Im-
portantly, previous work by Chaudhary et al. (2020,
2022) proposes to rely on machine learning tech-
niques to this end. However, their approach suf-
fers from some limitations, which we overcome in
our work: (1) their syntactic rules do not capture
fine-grained phenomena due to an under-specified
search space and the use of decision trees (e.g.
their model capture the fact that the subject inver-
sion can be due to the presence of ’there’, but not
by the presence of an expletive in general, missing
the example of Figure 1); (2) the use of decision
trees (Quinlan, 1986) requires tuning of several
hyperparameters (entropy choice, depth, splitting
constraint, etc.), which is difficult to do on held-out
data due to the frequentist nature of predictions;
(3) a decision tree does not produce a ranked list
of rules by saliency.

In this paper, we propose a different method
to extract and explore more fine-grained gram-
mar rules from syntactic treebanks in order to au-
tomatically create an easy-to-understand corpus-
based grammar. More specifically, we extract de-
scriptions across languages for two linguistic phe-
nomena, agreement and word order, paying spe-
cial attention to the ranking order of the extracted
rules. To that end, we use a linear classifier trained
with a sparsity inducing regularizer (Bach et al.,
2012). The strength of the regularization, denoted
λ ∈ R+, directly impacts the number of extracted
rules for the linguistic phenomena under study.
In this setting, the regularization path is the se-
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Figure 1: Example from the SUD version of the English GUM treebank. Two clauses with subjects in
different positions. In the main clause, the subject follows the verb and the first position is filled by an
expletive. In the subordinate clause, the subject occupies the dominant pre-verbal position.

quence of solutions to the training problem when
λ varies (Markowitz, 1952; Osborne et al., 2000;
Efron et al., 2004). The earlier a rule appears in
the path when decreasing λ, the salient it is for
the linguistic phenomena under study. Another im-
portant benefit of our approach compared to deci-
sion trees is that it is (almost) hyperparameter free,
which is a crucial feature as hyperparameter se-
lection is non-trivial (and even hopeless), see Sec-
tion 4.3.

Our contributions can be summarized as fol-
lows:

• we propose a novel formalization of grammat-
ical rules with the aim of automatic extraction
from treebanks;

• compared to previous work, we broaden the
expressiveness of patterns to allow for more
precise rules;

• we investigate the use of sparse logistic re-
gression to extract and rank rules;

• we conduct qualitative evaluation on three lan-
guages (Spanish, French and Wolof).

All in all, we contribute to the development of de-
scriptive grammars that, while time-consuming to
write, are fundamental resources for theoretical lin-
guistic, language-specific or cross-linguistic stud-
ies, and an essential resource for language docu-
mentation. Our goal is to contribute to the brisdg-
ing of the gap between computational linguistics
(CL) and theoretical linguistics (Baroni, 2021), as
well as between CL and field linguistics.

2. Related Works

Formal grammars (FG). There exists a large
amount of works on extracting FGs from treebanks,
including CFG (Charniak, 1996), TAG (Chen et al.,
2006; Bhatt et al., 2012), LFG (Frank et al., 2003;
Burke et al., 2004; Rehbein, 2009) and HPSG
(Cahill et al., 2005; Zhang et al., 2012) grammars.
FGs are rich and complete descriptions of struc-
tures observed in treebanks, usually intended for

parsing. However, they are also redundant and dif-
ficult to interpret as they are not descriptive gram-
mars (Zaefferer et al., 1992) and because of their
very large size.2 Moreover, these FG have lim-
itations when it comes to incorporating quantita-
tive information and highlighting salient features of
corpora as they are based on strong symbolic for-
malisms.

Typologicial features induction. Although lin-
guists still rely on databases like WALS (Dryer
and Haspelmath, 2013) and GramBank (Skirgård
et al., 2023) for typological features, it is becom-
ing increasingly important to infer these features
using corpora, see Ponti et al. (2019) for motiva-
tions. Importantly, there has been a recent inter-
est on gradient and quantitative feature descrip-
tions (Levshina, 2022; Baylor et al., 2024) instead
of the standard categorical setting. For examples,
previous work have considered formal grammars
parametrized by categorical typological features,
parameters which are inferred from various types
of corpora, including interlinear glosses (Bender
et al., 2014; Howell and Bender, 2022). Simi-
larly, Choi et al. (2021a,b) used manually crafted
rules to extract typological statistics from tree-
banks, whereas Alves et al. (2023) also relied on
information from an automatically extracted CFG.
Contrary to these works, our aim is to provide more
fine-grained and quantitative grammar rules while
requiring less manual pattern crafting.

Grammar rule extraction. Closer to our work,
Chaudhary et al. (2020, 2022) demonstrate the
ability to extract human-readable grammar rules
using machine learning techniques. The authors
focus on a few specific linguistic phenomena, in-
cluding agreement and word order, that are cast
as classification tasks. For example, they investi-
gate the subset of features (encoded in governor-
dependent pairs) used by a decision tree to predict
if there is a number agreement between two de-
pendent words. Finally, Blache et al. (2016) inves-
tigate the use of an automatically extracted CFG

2Charniak’s (1996) English grammar contains 15 953
rules.
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Treebank Sentences Tokens

English-GUM 10 k 187 k
French-GSD 16 k 400 k
Spanish-AnCora 17 k 559 k
Wolof-WTB 2 k 44 k

Table 1: Treebank sizes.

with the same goal. Their approach also suffers
from the expressiveness issue due to the locality
of CFG’s rewriting rules.

3. Grammatical Formalism

3.1. Syntactic Dependencies
Although our method for extracting rules does
not depend on a particular formalism, we briefly
present here the data to which the method has
been applied, that is, the Universal Dependencies
project (UD, De Marneffe et al., 2021). It is an
open project on cross-linguistic syntactic annota-
tion, which has 259 treebanks for 148 different lan-
guages in its last available release (UD 2.13). It is
based on a consistent framework for multilingual
annotation of parts of speech, lemmas, morpho-
logical features and syntactic dependencies, as
well as guidelines for lemmatization, tokenization,
and other tasks.

UD defines content words as syntactic heads
in order to make annotations more seamless be-
tween different languages. While this favors com-
parability between treebanks, some morphosyn-
tactic properties remain “less accessible” and syn-
tactic differences less evident. Given that ex-
tracted rules depends on the annotation scheme,
we instead use the Surface-Syntactic UD (SUD)
framework (Gerdes et al., 2018, 2022), which de-
fines syntactic heads by distributional criteria. This
is more suitable to extract word order and agree-
ment rules, amongst others. For example, in SUD,
contrary to UD, auxiliaries are analyzed as the
head of the clause and the subject depends on it.
In English (and more generally in Indo-European
languages), the subject is positioned towards the
auxiliary, with which it agrees, rather than the verb.
Moreover, this allows as to compare our work to
previous work (Chaudhary et al., 2020, 2022) that
also use SUD.

In order to demonstrate how our method works,
we have chosen to analyze the results on lan-
guages in which we are experts. This allows us
to conduct precise qualitative analysis of results,
which is in our opinion more important that large
scale evaluation via crowdsourcing native speak-
ers.3 In section 5, we present rules extracted

3There are evidences that crowd workers automatize

GRANDPARENT GOV SIBLINGS DEP GRANDCHILDREN

Figure 2: The search space is defined around
a governor node (GOV) and a dependent node
(DEP), including the grandparent’s governor
(GRANPARENT) and the governor’s other depen-
dents (SIBLINGS), as well as the dependent’s
children (GRANDCHILDREN).

from SUD_Spanish-AnCora (Taulé et al., 2008),
SUD_French-GSD (Guillaume et al., 2019), and
SUD_Wolof-WTB (Dione, 2019) treebanks. The
English GUM treebank (Zeldes, 2017) was also
used to extract examples to illustrate our approach.
Statistics are reported in Table 1.

3.2. Grammatical Rules
As stated, a grammar rule is a regular constraint in
a language system occurring in a particular context
and involving particular subsets of patterns. Im-
portantly, these rules are probabilistic. In order to
build a system capable to extract such rules, we
need first to formalize what is a grammatical rule.

In practice, the interpretation of a rule ultimately
depends on the theoretical framework adopted. A
framework, in a broad sense, includes the gram-
matical formalism (e.g. dependency grammar in
our case) and the annotation scheme (e.g. UD,
SUD, etc.) How the linguistic hypothesis and ques-
tion are formulated, and which grammatical fea-
tures are used to answer to the linguistic question
also depend on this. Our proposed rule extraction
formalization is easy to generalise to any theoret-
ical framework, independent of the rule extraction
method as well as it is agnostic to the language
treebank used.

We first give an intuitive definition of what we call
a syntactic grammar rule in this work, based on the
example of the subject position in Figure 1:

1. Firstly, we need to define what we are looking
at, e.g. all dependency relations or a specific
subset of them? The scope S of the rule is a
given pattern and we consider all dependen-
cies satisfying S. In the example, this is all re-
lations of type subject.

2. Secondly, we need to define what the linguis-
tic phenomenon of interest is. In other words,
we seek to identify what triggers satisfaction
of response pattern Q amongst all relations
that satisfies S. In the example, we are inter-
ested in subject inversion (subjects that are
after their governor in English).

their tasks using large language models (Veselovsky
et al., 2023), which make these evaluations less reliable.
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3. Third and finally, the last element of a rule is
the pattern P that acts as a trigger of Q in
the scope S. In the example, P would be the
fact that the subject has an expletive codepen-
dent.

Definition 1 (Syntactic grammar rule).
Within all dependencies that match a pattern
S (the scope), a grammar rule with frequency
α identifies a predictor P that triggers linguis-
tic phenomena Q in α% of cases. We denote
such a rule by:

S =⇒ (P α%
=⇒ Q) .

Our formalization is inspired by correspondence
rules in Meaning-text Theory (Mel’čuk, 1988).4

4. Rule Extraction Method

In order to extract rules governing grammatical
structures, we first need to define what are the
pieces of information that can fill the patterns in
these rules. In practice, patterns S and Q are man-
ually defined, as they define the linguistic phenom-
ena of interest in a given scope. They can there-
fore rely on any information available in treebanks,
without any kind of restriction.

However, potential patterns P are the ones that
the machine learning (ML) model must fill. There-
fore, we need to define which are the potential
pieces than compose them. We then explain how
we use sparse logistic regression to select and
rank them.

4.1. Features
Treebanks contain attributes that are used to build
features, the input of the ML model. Remember
that what we aim to predict is also an attribute
related to a dependency relation satisfying S (Is
there a number agreement between the governor
and its dependent? Is the dependent after the gov-
ernor?).

The bigger the search space, the more expres-
sive the pattern P can be. We include high-order
features, that is, our search space includes all lin-
guistic information related to the grandparent (gov-
ernor of the governor), the codependents of the
governor and the grandchildren (dependent’s chil-
dren). Figure 2 illustrates this search space.

Our features are based on all attributes appear-
ing in the search space, with some additions:

4In the notation of Mel’čuk (1988), the rule would be
written “S =⇒ Q | P” and read “S can correspond to Q in
the context P” (the subject is positioned after the verb in
presence of an expletive codependent before the verb).

• We add relative position attributes for the gov-
ernor and the grandparent, i.e. one attribute
indicating if the governor is before or after the
dependent, and one attribute indicating if the
grandparent (when existing) is before or after
the governor;

• The form attribute is never used, and we use
the lemma attribute only for words from a pre-
defined set of POS tags — the main moti-
vation is that the large number of values for
these attributes introduces noise into the deci-
sion process, but that lemma information can
be important for closed classes (e.g. AUX or
ADP);

• Although the UD part of speech (upos) tagset
is considered “coarse”, there are distinctions
that may not be meaningful for our purpose
— therefore we add additional attributes indi-
cating if the upos of a word belongs to one
of several predefined lists of tags (e.g. an at-
tribute indicating that upos of the governor is
either DET or NUM).

We also apply filters on these attributes, especially
to prevent information leaks. For example, when
we are interested in rules governing number agree-
ment, we remove the Number attribute.

A feature is an indicator of the value of one or
several specific attributes. For example, the fea-
ture DEP.upos=VERB is equal to 1 if the upos
of the dependent (DEP) is VERB, and 0 other-
wise. Features can focus on one attribute (e.g.
DEP.upos) or two attributes (e.g. DEP.upos and
the relative position of its governor). To limit noise
(annotation errors or attributes that are poorly rep-
resented in the corpus), we only add features that
appear at least 5 times in the scope of the rule.

4.2. Sparse Logistic Regression
We will now describe the method used to select the
features that we will use to define the P patterns of
the rules. We formalize the extraction process as
selecting features that allow to identify when a lin-
guistic phenomenon Q is triggered. For example,
for number agreement between a dependent and
its governor, the majority case is defined as “no
agreement or agreement by chance” and we wish
to select features that identify dependencies where
number agreement is expected (or forced). To that
end, we rely on a sparse logistic regression.5

We denote F the set of features. Given an input
x ∈ {0, 1}F represented by the boolean feature in-

5We refer the reader to (Shalev-Shwartz and Ben-
David, 2014, Sec. 9 & 25) for a more in-depth introduc-
tion to sparse logistic regression.
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dicator vector, the decision of a binary linear clas-
sifier is defined as follows:

fa,b(x) =

{
1 if a⊤x+ b > 0 ,

0 otherwise,

where a ∈ RF (feature weights) and b ∈ R (in-
tercept term) are the parameters. However, this
decision is “hard” and therefore inappropriate for
our purpose. Continuing with our example, num-
ber agreement can be observed by chance: what
we want to learn is the probability to observe an
agreement. To this end, we can instead interpret
the predictor as giving the probability that there is
a number agreement between the modifier and its
governor for input x:

P(“number agreement”|x) = σ
(
a⊤x+ b

)
, (1)

where σ(w) = exp(w)
1+exp(w) is the sigmoid function that

maps a real value to a value in [0, 1]. As such,
we seek to identify features that drive this probabil-
ity closer to one (forced agreement) compared to
the majority case (where an agreement may hap-
pened by chance in roughly 50% of observations).

By definition of dot product a⊤x =
∑

f∈F afxf ,
a feature f ∈ F contributes to the probability in
Equation 1 if and only if its associated weight af
is not equal to 0. Intuitively, as the sigmoid func-
tion is strictly increasing, a positive af (resp. neg-
ative af ) means that the presence of this feature
will increase the probability of observing a number
agreement (resp. a disagreement).6

To learn parameters a and b of the model, we
rely on the following standard training objective :

min
a∈RF

1

|D|
∑

(x,y)∈D

ℓ
(
a⊤x+ b, y

)
+ λr(a) , (2)

where D is the training dataset (the scope of the
rule), ℓ is a loss function, r is a regularization term
and λ ≥ 0 is the regularization strength. In partic-
ular, we choose:

• ℓ(w, y) = −yw + log(1 + expw), the nega-
tive log-likelihood, which is well-calibrated for
probability estimation (Reid and Williamson,
2010);

• r(a) = ‖a‖1 =
∑

f∈F |af |, the L1-norm which
induces parameter sparsity, i.e. depending on
the value of λ, more or less values in a will be
exactly equal to 0 (Bach et al., 2012).

Importantly, the intercept term b is not regularized.
Applying regularization to b is equivalent to assum-
ing a Laplacean prior with mean 0 (Murphy, 2012,

6Note that there are limitations to this interpretation
that will be discussed in Section 4.4.

Sec. 13.3), which may be unsuitable.7 For unreg-
ularized b, when λ → ∞, all feature weights will be
null, i.e. a = 0, and the intercept b will capture the
mean probability of phenomena Q in the scope:

σ(b) =
1

|D|
∑

(x,y)∈D

y .

Practical consideration. The optimization
problem in Equation 2 is challenging as there is
a large number of parameters and the regulariza-
tion term is non-smooth. The SCIKITLEARN library
relies on LIBLINEAR for this problem, but does not
support unreguralized intercept term. In this work,
we therefore use SKGLM (Bertrand et al., 2022).

4.3. Ranking via Regularization Path
The term regularization path refers to the function
λ 7→ â(λ) that maps the regularization parameter λ
to the model parameters a minimizing the training
problem (Eq. 2), denoted â(λ). We say that feature
f ∈ F is in (resp. out) the regularization path at λ
if â(λ)f 6= 0 (resp. = 0). Importantly, when λ →
∞, â(λ)f = 0, i.e. no feature is selected by the
classifier.

To select and rank features that form pattern P,
we proceed as follows:

1. We fix λ(0) to a reasonable value where
â(λ(0)) = 0;

2. As we cannot explore all possible λ values, we
fix a number k of additional values we will in-
spect;

3. We fix λ(k) to a reasonable minimum value for
the regularization strength.

Then we train the model for k + 1 regularization
strengths λ(i), 0 ≤ i ≤ k, evenly distributed be-
tween λ(0) and λ(k). In practice, we fix k = 100,
λ(0) = 0.1 and λ(k) = 0.001.

We say the feature f ∈ F enters the regulariza-
tion path at step i if and only if ∀j ∈ {0, ..., i − 1} :
â(λ(j)) = 0 and â(λ(i)) 6= 0. In other words, f ∈ F
enters the regularization path at step i if it is the first
step where its associated weight in the parameter
vector a is non-null. The features are ranked by en-
tering order in the regularization path: if features f
and f ′ enter the path at steps i and j, respectively,
such that i < j, we consider that feature f is more
salient than feature f ′ as f is more important to
predict the frequency of pattern Q in the scope de-
fined by S.

7For example, in the case of number agreement, reg-
ularizing b is equivalent to postulating that there is a 50%
chance of observing an agreement. Without regulariza-
tion, we leave full flexibility to the model to estimate this
prior to agreement.
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On hyperparameters. Importantly, note that
the set of considered regularization strengths is
the only hyperparameter of our model.8 This is a
very important feature as it is difficult to tune hyper-
parameters. Indeed, the standard ML methodol-
ogy consists of tuning them on a development set.
However, predictions of the classifier are frequen-
cies: they should be interpreted, given a set of ob-
served features, as the frequency of the targeted
phenomenon. If the model predicts 45% of agree-
ments, this mostly means agreements by chance,
and it does not make sense to consider that the
model makes an error if for a given data point x,
the output label is 1. As product of features can be
rare, especially for not-so-frequent linguistic phe-
nomena, the accuracy variance will be high on a
small development set, making the hyperparame-
ter tuning procedure meaningless. Our approach
does not suffer from such limitation.

4.4. Rule Analysis
It is important to note that, contrary to popular
belief, the parameters of a linear model are not
directly interpretable as explanatory factors. As
explained in previous section, the regularization
path only gives us ranking of features (by their
saliency), but the particular non-null values in a
must be ignored due to potential non-linear corre-
lations (Achen, 2005). Therefore, for each consid-
ered feature for pattern P, we must: (1) check if it
is a trigger of Q or ¬Q and (2) compute other sta-
tistical measures to provide more insight.

In the following, we denote #(P ) the number of
dependencies matching a given pattern P .

Statistical test. We denote µ the Bernoulli pa-
rameter of the expected distribution, that is, the ra-
tio of pattern Q in the scope:

µ =
#(S ∧ Q)

#(S) .

Consider a potential rule S ⇒ (P α %⇒ Q) where:

α =
#(S ∧ P ∧ Q)

#(S ∧ P) .

This grammatical rule is of statistical interest if α is
“different enough” from µ. However, given that we
approximate α using a limited number of samples
n, we need to test if this divergence is statistically
significant. The G-test statistic is defined as fol-
lows:

G = 2× n×
(
α · ln α

µ
+ (1− α) · ln 1− α

1− µ

)
. (3)

8More precisely, the model also have hyperparame-
ters related to the optimization algorithm. However, they
can be safely be ignored and set to default values.

Note that this is simply a KL-divergence be-
tween Bernoullis parameterized by µ and α but
reweighted by the number of samples used to es-
timate α. The p-value of a G-test is calculated
by looking at the tail probability of the χ2 distribu-
tion with the right degrees of freedom (i.e. 1 in our
case). We consider a grammar rule to be statisti-
cally significant if p < 0.01, e.g. agreement is not
by chance if it is statistically significant (see Chaud-
hary et al. (2020)). Note that the G-test statistic
can be adapted for rules triggering ¬Q. Moreover,
it can also be used to rank rules: as it is (mostly)
a KL-divergence, rules that deviate more from the
base distribution µ will have a higher value.

Association measures. We compute the
Cramer’s phi ϕc effect size using the G-test statis-
tic. Unlike Chaudhary et al. (2020), we do not use
it to filter rules because the threshold considered
for doing so vary depending on the data and do-
mains. However, we use effect size as another
interpretable measure to rank rules.

Coverage and precision. We hypothesize
that reliable grammar rules are those that covers
largely the linguistic phenomenon of interest and
those that are precise. Coverage/recall and preci-
sion of the pattern P are defined as follows:

Rule Coverage Precision

S =⇒ (P α %
=⇒ Q) #(S∧P∧Q)

#(S∧Q)
#(S∧P∧Q)

#(S∧P)
S =⇒ (P α %

=⇒ ¬Q) #(S∧P∧¬Q)
#(S∧¬Q)

#(S∧P∧¬Q)
#(S∧P)

Note that these measures must be used with
cautions. For example, a number agreement be-
tween a dependent and its governor can happen
by chance. As such, a rule that trigger forced num-
ber agreement will never achieve a 100% cover
(and will probably be way lower).

5. Experimental Results

The extracted rules for word order are based on
the relative position of a governor and its depen-
dent. We look at particular cases, such as the SUBJ
relation and the relative position of the subject re-
garding its verb/auxiliary governor. For example,
we obtained patterns that favor placing the subject
before or after the verb, compared to the general
positioning of the subject. We partly follow Chaud-
hary et al. (2022), which in turn based their work
on WALS word order rules (Dryer and Haspelmath,
2013). We extract word order rules for the non-
dominant position for pairs subject-verb/auxiliary,
object-verb and adjective-noun. As for the agree-
ment rules, we explore agreement in number, per-
son and gender between a governor and a depen-
dent having these features, as well as agreement
for particular relations, such as SUBJ or COMP:OBJ.
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P PATTERN position λ coverage precision

1 dep.NumType=Ord,dep.rel_synt=mod before 0.042 21.3 98.2
2 dep.rel_synt=mod,siblings.upos=ADP before 0.033 40.9 39.9
3 grandchildren.upos=ADP after 0.022 12.8 98.9
4 gov.upos=NOUN|PROPN|PRON,grandchildren.upos=ADP after 0.021 12.8 98.9
5 dep.rel_synt=mod,siblings.lemmas=de before 0.012 31.8 41.6
6 grandparent.position=before_gov,grandparent.upos=ADP after 0.011 49.9 75.1
7 dep.Degree=Cmp,dep.rel_synt=mod before 0.011 5.9 90
8 grandparent.lemma=de after 0.01 23.8 79.7
9 gov.upos=NOUN|PROPN|PRON,grandparent.lemma=de after 0.01 23.8 79.7
10 gov.rel_synt=comp:obj,siblings.Definite=Def after 0.01 35.1 74

Table 2: The ten most salient noun-adjective word order rules, extracted from the SUD_Spanish-AnCora
treebank and ranked based on the order given by the linear classifier. P is the pattern that favors the
adjective position indicated in the second column. See Section 4.3 for the interpretation of λ. Coverage
and precision are expressed as percentages.

The code to reproduce the experiments is freely
available,9 together with a tool accessible online
to visualize results on different treebanks.10

In the following, we analyze in detail, as an ex-
ploratory example, the ten most salient word-order
rules between a noun and its dependent adjec-
tive in Spanish (Table 2). We will then provide a
study on word order involving the object in Wolof
(Table 3). Finally, we comment on the extracted
agreement rules. As far as we know, the rules
analysed have not been found in comparable pre-
vious works, unless otherwise stated. The follow-
ing qualitative analysis covers only a small portion
of the rules that were extracted, but it is intended
to be representative of the rules extracted by our
method. No filters or pruning techniques were ap-
plied. Interesting and precise grammar rules and
patterns are found for all the languages studied.

5.1. Noun-adjective order in Spanish
In Spanish, the dominant order is for the ad-
jective to follow its governing noun. In the
SUD_Spanish-AnCora treebank, about 28% of
dependent adjectives precede their noun. We
search for rules that, for all noun-adjective in a
dependency relation with a governing noun (S
GOV.UPOS=NOUN,DEP.UPOS=ADJ), trigger the adjec-
tive anteposition (GOV.POSITION=AFTER_DEP) and
more exactly a shift in distribution.

Adjective position is primarily determined lexi-
cally and our most salient rule (rule 1 in Table 2)
indicates that ordinal adjectives (1) in a modifier
dependency relation precede almost always (pre-
cison 98%) their noun, while adjectives in gen-
eral precede their noun only 28% of cases. It’s
worth noting that rule 1 covers about 21% of the

9https://github.com/FilippoC/
grex-lrec-coling-2024

10https://autogramm.github.io/
grex-lrec-coling-2024

adjectives that precede the noun in the treebank.
This is not the only rule that includes a lexical
feature: rule 7 shows that comparative adjectives
(DEP.DEGREE=CMP) are also much more likely to be
before their noun.

(1) Desde
from

un
a

sexto
sixth.ORD

piso
floor.NOUN

‘From a sixth floor’

However, contrary to previous works (notably
Chaudhary et al. (2022)), we also capture pure
syntactic rules (i.e. not involving lexical attributes).
In the ten most salient rules, the majority of them
involve the presence of prepositional phrases (PP)
in some way (cf. ADP for adposition). Rule 2, for
example, indicate that nouns having a PP tend
to have more preceding adjectives (2). Rule 5 is
a finer-grained version of this rule indicating that
nouns governing a preposition de (’of’, ’from’) have
also more preceding adjectives than the expected.
The syntactic interpretation of rules such as these
must be done with caution. The anteposition may
be explained by the fact that the postnominal posi-
tion is already occupied by the PP, but also by the
fact that the noun with a PP prefers adjectives that
are usually placed before it, like ordinals. These
two rules can be considered as syntactic tenden-
cies due to their low/medium precision. They ap-
pear in the top rules due to their significant cover-
age.

(2) Rara
Rare

y
and

triste
sad

evidencia
evidence

de madurez
of.ADP maturity

‘Rare and sad evidence of maturity.’

Rule 6 (and its finer-grained versions, rules 8 and
9) shows that adjectives follow their noun in almost
75% of cases when the latter is governed by a
preposition (GRANDPARENT.UPOS=ADP) that is, i.e.
when they are in a PP. Again, nouns may prefer
adjectives in a post-nominal position than preced-

https://github.com/FilippoC/grex-lrec-coling-2024
https://github.com/FilippoC/grex-lrec-coling-2024
https://autogramm.github.io/grex-lrec-coling-2024
https://autogramm.github.io/grex-lrec-coling-2024
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ing them.
Finally, we capture also really precise rules

for the post-position of the adjective. De-
pendent adjectives governing a preposition
(GRANDCHILDREN.UPOS=ADP), that is, which have
a PP, are more likely to be postponed (rules 3,
4). We find the same rule in English, where the
dominant order is adjective-noun. In these cases,
the postposition of an adjective is explained by the
weight or heaviness of the syntactic group they
govern, see Thuilier (2012) for French.

Our method can capture these rules due to the
a large search space and sensitivity to distribution
shifts. In addition, even though we proposed a
more expressive system than previous works, our
rules remain easy to interpret. However, the inter-
pretation of the rules must be lexico-syntactic and
must take into account the probabilistic and over-
lapping nature of the extracted rules.

5.2. Object order in Wolof
Chaudhary et al. (2022) extract three word order
rules for the object in Wolof, which are our rules 5,
12, and 54 of Table 3: the object tends to be placed
before the verb when it is an accusative pronoun
governed by a verb depending on an auxiliary (rule
12), or a pronoun governed by a verb being in a rel-
ative clause (rule 5), or bearing the perfective as-
pect marker (rule 54).11 They do not capture more
general tendencies, neither more specific rules.

Our set of rules can be interpreted as a hierarchy
of rules, where the three previous rules are partic-
ular nodes. Rule 2,3 indicate that pronouns tends
to be placed before the verb (contrary to nouns).
Rules 1 and 4 shows that this tendency increases if
the governor is a finite verb or if it is a verb in the in-
dicative mood. Rule 6 indicates that the tendency
also increases if the verb depends on an auxiliary
(precision 72%). It increases even more if the auxil-
iary is di (rule 11, precision 85%) or if the pronoun
is marked by the accusative case (rule 12, preci-
sion 78%). Even if rule 12 is descriptive by itself,
we find more interesting to have it in relation with
rules 6 and 11, which are more covering for the first
and more precise for the second. Similarly, rule
54 for verbs with a perfective aspect is interesting,
but rule 27 adding the constraint for the pronoun to
be accusative is more precise (92% vs 85%). It is
not clear why Chaudhary et al.’s tool add this ad-
ditional condition for object pronouns depending
on a verb and on an auxiliary (and choose rule
12 rather than rule 6), and not for pronouns de-
pending on a verb with a perfective aspect (rule
54 rather than rule 27).

11Our rule 12 does not indicate that the dependent is
a pronoun, but only pronouns have a Case feature in the
Wolof-WTB treebank.

Having this rich hierarchy of rules (and tenden-
cies) is invaluable, but it also raises the question
of the selection of particular rules. We are not sure
that a unique and simple solution can be provided
and the answer probably depends on the objective.
We can be more interested by results with a high
precision (they are the cases where we can really
talk about “rules”) or prefer a compromise between
precision and coverage, which is what our method
seems to do (see Section 5.4). If we do not keep
the whole hierarchy of results, it is also important to
select a set of rules/tendencies that covers most of
the data and are not too redundant, which is what
Chaudhary et al.’s method based on decision trees
does well.

5.3. Agreement
Agreement is a phenomenon that is more re-
strictive than word order, really stable in Indo-
European language such as English, French and
Spanish. This is the reason why the rules ex-
tracted are less diverse and more expected. For
number agreement, we capture usual rules like
agreement between a noun and a determiner (e.g.
rule 17 in Spanish) or the assessments that de-
pendent adjectives agree with their governor and
that verbs agree with their subjects (e.g. rule 4
and 41 in French). As regards negative rules,
we exclude, for example, agreement between ob-
jects and their verbs in French, a crucial test for
our method, which represent 3% of mismatch be-
tween heads and dependents having the number
feature.

The extraction of gender agreement rules suf-
fers from different annotation strategies. Being an
inherent property of the noun or the referred entity,
it may not always be expressed by morphosyntac-
tic flexion. In any case, principal agreement rules
were found in French and Spanish, as the agree-
ment between the noun and its adjectives and de-
terminers.

The most informative way to extract agreement
patterns is by checking for agreement between any
head and dependent, as its done in Chaudhary
et al. (2020). This provides a general overview of
the agreement system for a given language. How-
ever, due to its under specification, some rules are
more general. For example, we extract rules ex-
pressing the fact that number and gender agree-
ment co-occur both in French and Spanish (see
French rules 28 and 29 for number agreement).
Our findings also indicate that in French and Span-
ish, number agreement generally occurs when the
governor follows the dependent. This is particu-
larly evident in the agreement between determin-
ers and nouns, which is the largest set of agreed
pairs in both languages. On the contrary, about
85% of dependents located after their head, if they
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P PATTERN position λ coverage precision

1 dep.upos=PRON,gov.VerbForm=Fin before 0.1 92.6 63.2
2 dep.upos=NOUN|PROPN|PRON,dep.upos=PRON before 0.077 94.7 58.9
3 dep.upos=PRON before 0.067 94.7 58.9
4 dep.upos=PRON,gov.Mood=Ind before 0.064 91.7 63.4
5 dep.upos=PRON,gov.rel_deep=mod@relcl before 0.041 36.7 96.7
6 dep.upos=PRON,gov.rel_synt=comp:aux before 0.033 47 72.1
11 dep.upos=PRON,grandparent.lemma=di before 0.025 30.3 85
12 dep.Case=Acc,gov.rel_synt=comp:aux before 0.023 35.1 78.8
27 dep.Case=Acc,gov.Aspect=Perf before 0.009 8.2 92.5
54 dep.upos=PRON,gov.Aspect=Perf before 0.003 9.1 85.7

Table 3: Word order rules for the pre-verbal position of the object mentioned in 5.2 and extracted from the
SUD_Wolof-WTB treebank. The order is given by the linear classifier, the last rule of the table coming at
position 54. See Section 4.3 for the interpretation of λ. P is the pattern that favors the object anteposition.
Coverage and precision are expressed as percentages.

have a number feature, do not agree in French
(see rule 19). Global analysis like the precedent
one are useful in quantitative typology (Gerdes
et al., 2021).

5.4. Ranks
By expanding the search space and due to the na-
ture of our rules, we extract a greater number of
rules compared to previous works. It is why or-
der and ranking the rules is crucial to achieving
better interpretability. Beyond the order given by
the linear classifier (section 4.3), it is possible to
rank the rules using the other statistical measures
described (section 4.4), as is done in Corpus Lin-
guistics (e.g. Pecina and Schlesinger, 2006), prior-
itizing differences of aspects of the same rule, like
the precision or coverage of the rule. In addition,
these measures could be used to prune subsets
in different ways and reducing the final number of
rules.

We compared the orders of the rules given by
the model and by using the G-test statistic. We
computed a Spearman’s rank order correlation for
word order experiments, and we obtained signif-
icant results, going from weak-moderate to high
positive correlation (r > 0.40, p value < 0.01) with
some exceptions (e.g adjective-noun word order).
This could mean that while they are in most cases
order is correlated, they do not highlight exactly the
same type of information. It is worth noting that the
order given by the classifier is partial and less gran-
ular, with several rules occupying the same place.

6. Conclusion

We proposed a novel method for grammatical rule
extraction from treebanks. Our approach is based
on (1) a formal definition of what is a syntactic
grammatical rule and (2) the regularization path of
a sparse logistic classification model. Moreover,

we showed in our result analysis that it is impor-
tant to capture less pronounced shift distributions
to include a greater variety of rule patterns. This
allows to increase the expressiveness of rules and
to capture linguistic phenomena that are out of the
scope of previous work (Chaudhary et al., 2020,
2022; Blache et al., 2016).

Alongside our main contribution, we hope that
our clear formal description of each component will
help to develop future work on the topic.

7. Limitations

The extracted grammatical rules rely on the an-
notation scheme. Therefore, some patterns ex-
tracted may reflect corpus properties and theoreti-
cal decisions more than actual grammar rules. Our
search for agreement rules, which is consistent
with previous researches, is limited to syntactic
agreement. As a result, one of the most salient
(negative) rule for the subject agreement is to ex-
clude subjects having coordination, which is due
to the fact that the verb is linked to the first con-
junct, not reflecting the features of the coordinated
phrase. While our extraction system does not cap-
ture this kind of semantic agreement, its behavior
remains consistent and contributes to understand-
ability.

Grammar rules also reflect annotation errors or
lack/excess of annotation. The most precise nega-
tive rule for number agreement in French captures
full dates (6 janvier 1902 ‘January 6, 1902’) be-
cause the year is labeled as plural while its head,
the month, as a singular noun.12

Extracted rules for marginally existing linguistic
phenomena are much more loose and less signif-
icant. This is the case of agreement between ob-

12Note that 1902 when used as a proper name as here
should be singular, since it triggers a singular agree-
ment: 1902 is …
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jects and verbs in the languages studied. The ob-
served results show preferences for language use,
not grammar rules, such as the fact that singular
objects are significantly paired with singular sub-
jects (likewise for plurals), resulting in a tendency
for the verb to agree with its object. Conversely,
the agreement rule of a past participle with its ob-
ject when the object precedes it existing in French
was not found, probably because the relative pro-
noun que (‘that’) does not bear any agreement fea-
ture.
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