
LREC-COLING 2024, pages 15024–15036
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

15024

Soft-Prompting with Graph-of-Thought for Multi-modal
Representation Learning

Juncheng Yang1,3,∗, Zuchao Li1,2,†, Shuai Xie4,∗, Wei Yu1, Shijun Li1,†, Bo Du1,2

1School of Computer Science, Wuhan University, Wuhan, Hubei, China
2National Engineering Research Center for Multimedia Software, Wuhan, Hubei, China

3School of Electronic Information Engineering, Henan Polytechnic Institute, Nanyang, Henan, China
4JD Explore Academy, Beijing, China

{yjuncheng,zcli-charlie,yuwei,shjli,dubo}@whu.edu.cn, xieshuai@jd.com

Abstract
The chain-of-thought technique has been received well in multi-modal tasks. It is a step-by-step linear reasoning
process that adjusts the length of the chain to improve the performance of generated prompts. However, human
thought processes are predominantly non-linear, as they encompass multiple aspects simultaneously and employ
dynamic adjustment and updating mechanisms. Therefore, we propose a novel Aggregation-Graph-of-Thought
(AGoT) mechanism for soft-prompt tuning in multi-modal representation learning. The proposed AGoT models the
human thought process not only as a chain but also models each step as a reasoning aggregation graph to cope
with the overlooked multiple aspects of thinking in single-step reasoning. This turns the entire reasoning process into
prompt aggregation and prompt flow operations. Experiments show that our multi-modal model enhanced with AGoT
soft-prompting achieves good results in several tasks such as text-image retrieval, visual question answering, and
image recognition. In addition, we demonstrate that it has good domain generalization performance due to better
reasoning.
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1. Introduction

Multi-modal representation learning includes the
fusion of different modal data such as visual, text,
and sound which is essential for multi-modal tasks
like text-to-speech synthesis (Ren et al., 2019),
audio-visual-speech recognition (Afouras et al.,
2018), text-image retrieval (Gabeur et al., 2022;
Yu et al., 2022), vision-language recognition (Zhou
et al., 2022a), and visual question answering (Li
et al., 2022; Zheng et al., 2021).

In vision-language models, prompt learning has
been widely adopted as an effective strategy (Zhu
et al., 2023; Ge et al., 2023).The prompt was first
applied in the field of NLP, and its role is to give a
prompt to the pre-trained language model to help
it understand human problems better. The ear-
liest prompts were directly spliced with the origi-
nal text into discrete characters that remained un-
changed during the training process, known as
hard prompts (Schick and Schütze, 2021; Han
et al., 2022). This was later developed into
soft prompts (Gu et al., 2022; Liu et al., 2022),
which can be tuned based on contextual seman-
tics during training. While in multi-modal tasks,
CoOp (Zhou et al., 2022b) first turns a fixed to-
ken prompt in CLIP (Radford et al., 2021) into a
learnable token embedding. CoCoOp (Zhou et al.,
2022a) adds an instance image feature to CoOp,
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(a) Ordinary step-by-step Chain-of-Thought

Input CoT prompts
There are some things on the table.
There are some books on the bookshelf. 
There are some books and a clock on 
the bookshelf.

(b)  Aggregation-Graph-of-Thought

Input
There are two kinds of things on the table.
There are some books and a clock on the 
bookshelf.
There are some different types of books 
and a black clock on the bookshelf.

AGoT prompts

Figure 1: Comparison between (a) ordinary step-
by-step Chain-of-Thought and (b) Aggregation-
Graph-of-Thought.

and KgCoOp (Yao et al., 2023) uses a fixed text
prompt and a learnable prompt as supervised sig-
nals to constrain the training of the CLIP model.
However, these approaches rely on a single lan-
guage cue to guide visual understanding but fail
to be aware of a basic but very important feature
of language, reasoning, which allows multi-modal
models to quickly adapt to new scenarios.

The Chain-of-Thought (CoT) technique simu-
lates the reasoning process of the brain and im-
itates its behavior to improve the generalization
of the model. For complex problems, instead of
providing the answer directly, a string of reason-
ing sentences is used to generate the answer. As
shown in Figure 1 (a), a picture containing some
books and a clock is given by CoT, and then rea-
son about the content of the picture step by step.
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From the initial description of “There are some
things on the table” to “There are some books on
the bookshelf”, we can see that the statement’s
content becomes fuller. Finally, the phrase “There
are some books and a clock on the bookshelf”
completes a relatively complete description of the
image. This step-by-step reasoning improves the
model’s visual understanding performance. CoT-
PT (Ge et al., 2023) was the first to adapt CoT to
the field of vision-language tasks, combining visual
and CoT cues to tune the model and achieve good
results in downstream tasks.

Although the CoT technique considers the pro-
gressively deeper understanding process during
reasoning, it fails to fully leverage the benefits of
reasoning for multi-modal comprehension due to
its disregard of the fact that comprehension can
occur from multiple perspectives. In response to
this characteristic, we propose a new CoT reason-
ing method called Aggregation-Graph-of-Thought
(AGoT). As shown in Figure 1 (b), when inputting
a picture, each step in AGoT, from “There are two
kinds of things on the table” to “There are some
books and a clock on the bookshelf” to “There are
some different types of books and a black clock
on the bookshelf”, each step of the reasoning pro-
cess is more reasonable than Figure 1 (a) due to
understanding aggregation of multiple aspects. It’s
apparent that at each reasoning node, AGoT ag-
gregates multiple levels of aspects, whereas CoT
prompts consider only one level. From the simu-
lated results on the far right, it can be observed that
AGoT prompts, after aggregating multi-level as-
pects, provide a more comprehensive understand-
ing of the problem. Specifically, the AGoT models
each step of reasoning in the CoT as a reasoning
aggregation graph to cope with the multiple-view
thinking problem that is overlooked in single-step
reasoning. Each aggregation node in the graph
also serves as a node within the CoT. Multiple
nodes are interconnected to form a chain, with
each node’s representation aggregated from the
previous node, multiple subnodes, and vision fea-
tures. The resultant node representation is then
passed to the next one. We design a flow controller
to control the degree of information flow between
the previous node and the current one.

We used the strong baseline model CLIP as our
base model and conducted experiments in vision-
language understanding tasks, text-image retrieval
(Flickr30k (Plummer et al., 2015), MSCOCO (Chen
et al., 2015)), and visual question answering
(VQAv2 (Shen et al., 2022)). Our AGoT method
achieved better results compared to CLIP +5.70%,
+5.40%, +19.91% in each of these tasks, and also
showed improvement compared to CLIP + CoT,
+1.70%, +0.80%, +0.88% respectively. Additionally,
since our AGoT can be used as a soft-prompting

method, it can improve the generalization ability
of visual classification tasks. We evaluated it on
various visual classification tasks and found that
AGoT achieved better domain generalization ability
than the previous state-of-the-art method, demon-
strating the effectiveness of the AGoT method.

In summary, our contributions are three-fold:

• we propose a novel Aggregation-Graph-of-
Thought mechanism for soft-prompt tuning in
multi-modal representation learning.

• To cope with the overlooked multiple aspects
of thinking in single-step reasoning, we model
the reasoning step as an aggregation graph,
and turn the whole process into a prompt ag-
gregation and prompt flow operation.

• AGoT exhibits strong multi-modal representa-
tion learning ability and achieves good results
on 18 datasets such as text-image retrieval,
VQA, and image classification and has good
domain generalization ability.

2. Related Work

Multi-modal Representation Learning Multi-
modal representation learning has a significant
number of models based on the structure of vision-
language encoding. CLIP is a text encoder that
uses Transformer (Vaswani et al., 2017), while the
image encoder is either ResNet (He et al., 2016) or
Vision Transformer (Dosovitskiy et al., 2021). The
model is trained on 400 million image-text pairs and
performs well on 30 datasets. ALIGN (Jia et al.,
2021) is another typical vision-language model that
uses contrast learning to train more than one bil-
lion noisy image-text pairs. It achieves state-of-the-
art performance on the MSCOCO and Flickr30k
datasets.

These multi-modal foundational models are
widely used for downstream tasks, such as image
classification, video-text retrieval, tracking, image
captioning, and point cloud understanding. CoOp
enhances the generalization performance of the
model by converting the fixed text description of
“a photo of a” in CLIP into a learnable token em-
bedding. To address the challenge of poor per-
formance on unseen data, CoCoOp incorporates
instance features into the text description, result-
ing in further improvements in the model’s per-
formance. KgCoOp enhances the model’s gen-
eralization by minimizing the disparity between
learnable prompts and hand-crafted prompts. Du-
alCoOp (Sun et al., 2022) proposes using dual con-
text optimization as a unified framework to address
the multi-label recognition tasks. ProGrad (Zhu
et al., 2023) updates the prompt in a way that
aligns its gradient with general knowledge, while
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Figure 2: Illustration of the proposed AGoT. It learns a high-quality soft prompt with prompt aggregation
(blue) and prompt flow operation (gray) for multi-view thinking and adaptation to complex multi-modal
tasks.

ProDA (Lu et al., 2022) focuses on learning prompt
prior distributions. These methods utilize language
cues to assist in visual tasks. However, they fall
short in replicating the innate reasoning process
employed by humans, thereby missing out on the
advantages of deep visual understanding acquired
through vision-language reasoning.

Chain-of-Thought CoT technology excels in
Large Language Model (LLM) few-shot reason-
ing and fine-tuning. Wei et al. (Wei et al., 2022)
was the first to use CoT as a discrete cue learn-
ing in LLM, with good results. Self-Consistency-
CoT (Wang et al., 2023) improves the performance
of the CoT approach significantly by using ma-
jority voting on answers. STaR (Zelikman et al.,
2022) proposes a boosting approach that allows
even small and medium-sized models to use CoT.
AutoCoT (Zhang et al., 2023a) samples diverse
problems and automatically generates reasoning
chains. Shi et al. (Shi et al., 2023) evaluate the
strong multilingual reasoning power of CoT in
solving multilingual grade school math problems.
ToT (Yao et al., 2024) allows LLM to choose a
course of action by considering many different
paths of reasoning and self-assessment. CoT also
has a wide range of applications in multi-modal
tasks. Multimodal-CoT (Zhang et al., 2023b) inte-
grates language and visual modalities into a two-
stage framework, using multi-modal information to
infer answers better. He et al. (He et al., 2023)
propose generating effective image features con-
sistent with language thoughts through the poten-
tial space diffusion process. CoT-PT (Ge et al.,
2023) uses CoT prompt tuning for vision-language
models. VCoT (Rose et al., 2023) incorporates
visual augmentation into reasoning tasks, using

CoT cues and visuals to bridge logical gaps in se-
quential data recursively. However, this method is
geared towards generative tasks, while our method
addresses downstream discriminative tasks.

3. Methodology

3.1. Contrastive Learning

To perform multi-modal representation learning,
this work follows contrastive learning in paired text
and image. Consistent with CLIP, let x be the in-
put image, and t be the text sequence formed by
the prompt and corresponding class. The model
computes the probability of each class ck:

p(ck|x) =
ecos(G(tk),H(x))/τ∑K
i=1 e

cos(G(ti),H(x))/τ
, (1)

where cos(·, ·) denotes the cosine similarity, H(x)
stands for the image representation from the image
encoder, G(tk) stands for the text representation
from the text encoder of concatenated prompt and
class description sentences tk, K is the total num-
ber of classes, and τ is the temperature parame-
ter. The goal of contrastive learning is to learn a
generalized image encoder H(·) and text encoder
G(·) using limited pairs of data, so that the model
has a cross-modal semantic space and can better
transfer to downstream tasks such as text-image
retrieval, VQA, and fine-grained classification.

3.2. Prompt Learning and CoT

CoOp is the first to turn the fixed prompt, such as “a
photo of a”, in the CLIP model into a learnable em-
bedding hp, thus soft-prompting. This overcomes
the need for skill and engineering experience in
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manually creating prompts and surpasses CLIP in
overall performance across 14 datasets for image
recognition, fine-grained classification, and more.
The probability for each class can be expressed
as:

p(ck|x) =
ecos(G([h

p
k,tk]),H(x))/τ∑K

i=1 e
cos(G([hp

i ,ti]),H(x))/τ
, (2)

where [hp
k, tk] denotes the concatenation of learn-

able prompt embedding and text embedding.
To solve the problem that CoOp performs poorly

on unseen classes, CoCoOp further uses a simple
MetaNet network to generate conditional tokens
for each image and then combines this image-side
tokens with the text prompt, which dynamically
adapts to the changes of each image instance,
overcoming the problem of class shift. The predic-
tion probability is computed as follows:

p(ck|x) =
ecos(G([h

p
k,M(x),tk]),H(x))/τ∑K

i=1 e
cos(G([hp

i ,M(x),ti]),H(x))/τ
, (3)

where M(x) is the representation of conditional
tokens from MetaNet.

CoT-PT introduces CoT for prompt learning in
vision-language tasks. It utilizes image features for
soft prompt learning, and the prediction probability
is computed as follows:

p(ck|x) =
ecos(G([cot(h

p
k),M(x),tk]),H(x))/τ∑K

i=1 e
cos(G([cot(hp

i ),M(x),ti]),H(x))/τ
, (4)

where cot is a CoT module for prompt learning.

3.3. Aggregation-Graph-of-Thought

The CoT achieves good results in various tasks
due to its superior reasoning abilities. However, it
cannot gather information from different instances
in multiple views under a single reasoning step.
This limitation restricts further assistance of rea-
soning in multi-modal understanding. To address
this problem, we leverage the aggregation mech-
anism in the graph neural network and employ
a chain of subgraphs G = {G1, . . . , GZ} to con-
struct the AGoT. Each subgraph Gi = (Ni, Ei)
is a directed weighted graph built on a group of
subnodes ns

i = {ns
i1, ..., n

s
iR}, which learns meta-

prompts from R different views and aggregates to
the central node Ni with the learned weights Ei as
edges, as shown in Figure 2. Further, the aggre-
gated prompt representation is combined with the
visual information extracted by the MetaNet and
then flows to the next subgraph with the flow con-
troller. After Z reasoning steps, the final AGoT
prompt representation E(GZ) is generated and
combined with the class label [CLASS] to build the
final input prompt for the text encoder. Finally, a

CLIP-like multi-modal contrastive learning network
is adopted to make the classification or description
of the image with the highest similarity.

Prompt Aggregation To better explore the
prompt information from different perspectives,
we propose a prompt aggregation approach for
each reasoning step of the AGoT to generate
high-quality prompt representation. Detailly, in
each subgraph Gi, R Gaussian-initialized meta-
prompt learners act as subnodes ns

i , and Weight-
Net learns the aggregation edge weights Ei from
the image representation H(x). The central node
prompt representation E(Ni) can be expressed as:

E(Ni) =

R∑
r=1

E(ns
ir) ∗ Eir

where Eir = WeightNetir(H(x))

subject to

R∑
r=1

Eir = 1,

(5)

where WeightNetir(·) is implemented as 3-layer
MLP network with ReLU as activation function for
subgraph Gi.

As discussed in CoCoOp, it adds a MetaNet net-
work to encode the visual features generated by
the image encoder and adds to the text prompt as
a deviation term. We follow this design and intro-
duce a MetaNet network to aggregate the visual
information into the central node representation.
This aggregation process can be expressed as:

E(Gi) = E(Ni) + MetaNeti(H(x)). (6)

Prompt Flow In AGoT, we decompose problem-
solving into a step-by-step reasoning process,
where each step relays the information from the
previous steps to gradually deepen understanding.
Intuitively, as the complexity of the task increases,
a more intricate chain of reasoning graph becomes
necessary. To cope with this issue, we introduce a
dynamic prompt information flow controller. Specif-
ically, given an input image, the encoded image
features are fed to the flow controller, which is also
a 3-layer MLP network with ReLU activation that
generates an α to control the prompt fusion ratio
between steps. The prompt flow control operation
can be represented as:

αi = FlowControli(H(x)),

E(Gi) = (1− αi) ∗ E(Gi−1) + αi ∗ E(Gi).
(7)

After the Z reasoning steps, the final AGoT
prompt representation is defined as the last sub-
graph representation E(GZ), which is combined
with the image class label “[CLASS]” to build the
input prompt for the text encoder. Finally, we con-
duct a standard CLIP-like multi-modal contrastive
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learning to train the AGoT network. To provide
a more detailed description of the entire model’s
process, we use pseudocode to describe AGoT as
shown in Algorithm 1.

Algorithm 1: Aggregation-Graph-of-
Thought Algorithm
Input: G = {G1, . . . , GZ}: a chain of Z

subgraphs with initialized parameter Θ
ns
i = {ns

i1, ..., n
s
iR}: a group of R meta-prompt

learners as subnodes for each Gi

WeightNet : the network that controls the
aggregation weights of meta-prompts in Gi

FlowControl : the network that controls the
fusion ratio between steps in flow operation
MetaNet : the network that encodes the visual
information as a deviation term
D: the training dataset
T : the training iterations

Output: Optimized Θ
1: for t = 1, 2, ..., T do
2: Sample a batch of images x from D
3: Extract the image features H(x) with CLIP

image encoder
4: Compute the soft-prompt representation

with AGoT
5: for each subgraph Gi do
6: Compute the central node representation

E(Ni) with Eq. 5
7: Combine the visual information with Eq. 6
8: Combine the prompts from the last step

with Eq. 7
9: end for

10: Get the final AGoT representation E(GZ)
11: Build the final input prompt to CLIP text

encoder with E(GZ) and [CLASS]
12: Update Θ with CLIP-like multi-modal

contrastive learning
13: end for
14: return Optimized Θ

4. Experiments

We followed the exact experimental setup of pre-
vious works (Zhou et al., 2022b,a) and validated
the multi-modal reasoning performance of AGoT
against recent state-of-the-art prompt learning
models on widely-used benchmarks under vari-
ous settings. Our approach was mainly evaluated
in the following five primary tasks including text-
image retrieval, VQA, cross label generalization,
cross dataset generalization and domain gener-
alization. Extensive experiments on a total of 18
datasets validate the effectiveness of our architec-
ture. Meanwhile, we devised four ablation exper-
iments and investigated the best practice of our

method on various datasets.

4.1. Setup

Datasets For the text-image retrieval task, we
use Flickr30k, which contains 29K/1K/1K for
train/validation/test, and MSCOCO, which contains
113K/5K/5K for train/validation/test. For the VQA
task, we use the VQAv2 dataset, which contains
1080K/210K/104K images paired with questions
and answers for training/validation/test.

For the cross-label generalization ability of
our proposed AGoT, we adopt 11 classification
datasets, encompassing 2 object classification
datasets (ImageNet (Deng et al., 2009), Cal-
tech101 (Fei-Fei et al., 2004)), 5 fine-grained
image recognition datasets (OxfordPets (Parkhi
et al., 2012), StanfordCars (Krause et al., 2013),
Flowers102 (Nilsback and Zisserman, 2008),
Food101 (Bossard et al., 2014), FGVCAircraft (Maji
et al., 2013)), 1 scene recognition datasets
(SUN397 (Xiao et al., 2010)), 1 texture classi-
fication datasets (DTD (Cimpoi et al., 2014)),
1 satellite image classification datasets (Eu-
roSAT (Helber et al., 2019)), and an action
classification (UCF101 (Soomro et al., 2012)).
For the cross-dataset generalization setting, all
models are trained on ImageNet(Ima) in the
source domain, and then the trained models are
tested on Caltech101(Cal), OxfordPets(Oxf), Stan-
fordCars(Sta), Flowers102(Flo), Food101(Foo),
FGVCAircraft(FGV), SUN397(SUN), DTD, Eu-
roSAT(Eur), and UCF101(UCF) in the target do-
main.

For the domain generalization setting, we use Im-
ageNet as the source domain dataset and evaluate
performance on ImageNetV2 (Recht et al., 2019),
ImageNet-Sketch (Wang et al., 2019), ImageNet-
A (Hendrycks et al., 2021b), and ImageNet-
R (Hendrycks et al., 2021a). Text and image clas-
sification were used for cross-dataset transfer eval-
uation and domain generalization evaluation.

Evaluation Metrics For all tasks, we report the
average result over three different random seeds.
For the text-image retrieval and VQA tasks, we
evaluate using recall at 1 (R@1) as a metric. In the
base-to-new text-and-image classification setting,
we report the harmonic mean H = 2 × (base ×
new)/(base + new), which measures the general-
ization trade-off between the base and new sets.
Finally, for the cross-dataset transfer and domain
generalization setting, we use accuracy as the eval-
uation metric.

Note that we follow (Ge et al., 2023) and consider
VQA as a classification problem where the model selects
the answer from a set of candidate answers based on
the given question.
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Training data Method Flickr30k MSCOCO

0% CLIP 83.00 53.30

0.5%
CoCoOp 82.80 53.50
CoT-PT 83.50 55.80
AGoT 84.30 57.10

1.0%
CoCoOp 84.50 56.40
CoT-PT 85.10 56.70
AGoT 87.60 57.60

2.0%
CoCoOp 85.00 57.00
CoT-PT 86.00 57.90
AGoT 88.70 58.70

Table 1: Comparison between CLIP, CoCoOp, CoT-
PT, and our AGoT methods on the Flickr30k and
MSCOCO datasets.

Training data Method VQAv2

0% CLIP 11.83

0.25%
CoCoOp 27.23
CoT-PT 29.13
AGoT 29.64

0.5%
CoCoOp 29.51
CoT-PT 30.72
AGoT 31.31

0.75%
CoCoOp 30.76
CoT-PT 30.86
AGoT 31.74

Table 2: Comparison between CLIP, CoCoOp, CoT-
PT, and our AGoT on the VQAv2 dataset.

Training Details Consistent with CoCoOp, we
chose CLIP with the vision backbone ViT-B/16 and
loaded the pre-trained weights of CLIP, keeping
them frozen during training. In the image-text re-
trieval and VQA tasks, for training the model, we
employed image captions as class labels, set the
learning rate to 0.02. The code can be obtained
from https://github.com/shishicode/AGoT. For
the three experiments on image classification, We
utilized a chain length of 5 and initialized each of
them with the phrase “a photo of a” {class} using a
pre-trained CLIP text encoder. We used the class
label as the class description and a learning rate
of 0.002 to train the model and sample 16 shots
from the base classes.

Baselines We compare our proposed approach
with the following state-of-the-art models: zero-
shot CLIP with the fixed handcrafted prompt “a
photo of a” {class}, CoOp, CoCoOp, ProGrad, Kg-
CoOp, and CoT-PT.

4.2. Results and Analysis

Text-Image Retrieval In this experiment, we eval-
uated our model on two image captioning datasets:
Flickr30k and MSCOCO. We trained and tested our
model using settings with 0.5%, 1.0%, and 2.0%
of the training data and evaluated it on the test
set. As can be observed from Table 1, our method
outperformed the CLIP, CoCoOp, and CoT-PT in
all tests. On both the Flickr30k and MSCOCO
datasets, when the training data consisted of only
0.5% of the total data, AGoT performed 0.80% and
1.30% better than the current SOTA method CoT-
PT; when the training data was 1.0% of the total
data, AGoT performed 2.5% and 0.9% better than
CoT-PT; and when the training data was 2.0% of
the total data, AGoT performed 1.7% and 0.8% bet-
ter than CoT-PT, respectively. These improvements
demonstrate that our proposed AGoT is more ef-
fective for multi-modal representation learning than
CoT, which was the previous state-of-the-art. Addi-
tionally, our proposed novel soft-prompting is help-
ful for cross-modal representation learning without
tuning the pre-training parameters of CLIP.

VQA In VQA, we also sample 0.25%, 0.5%, and
0.75% from the training set following (Ge et al.,
2023). The results are shown in Table 2. Similar
to image-to-text retrieval, our method outperforms
CLIP, CoCoOp, and CoT-PT in all settings. AGoT
obtains 0.51%, 0.59%, and 0.88% gains over CoT-
PT, respectively. Experiments show that our AGoT
approach can also benefit relatively more complex
VQA tasks due to better reasoning and multi-modal
representation learning.

Cross Label Generalization In addition to be-
ing evaluated on multi-modal understanding tasks,
based on the conclusion of previous work (Zhou
et al., 2022a), better prompting methods can lead
to better domain generalization abilities. There-
fore, we first conducted experiments on the cross-
label generalization setting. Specifically, we con-
ducted experiments using AGoT on 11 datasets,
where each dataset was divided into base and
new classes to represent the source and target do-
mains. To train the model, we considered 16 sam-
ples per class and set the reasoning step Z = 5.
The results, summarized in Table 3, revealed that
AGoT outperformed other models such as CLIP,
CoOp, CoCoOp, ProGrad, KgCoOp, and CoT-PT.
Specifically, AGoT achieved accuracy improve-
ments of 5.98%, 3.08%, 1.85%, 1.52%, 0.68%,
and 0.58% over these strong baselines, respec-
tively. These experiments demonstrate that AGoT
exhibits strong generalization performance when
encountering new data, which results from multiple
aspects of thought reasoning.

https://github.com/shishicode/AGoT
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(a) Average over 11 datasets

Base New H

CLIP 69.34 74.22 71.70
CoOp 82.63 67.99 74.60
CoCoOp 80.47 71.69 75.83
ProGrad 82.48 70.75 76.16
KgCoOp 80.73 73.60 77.00
CoT-PT 80.23 74.20 77.10

AGoT 80.50 75.05 77.68

(b) ImageNet

Base New H

CLIP 72.43 68.14 70.22
CoOp 76.46 66.31 71.02
CoCoOp 75.98 70.43 73.10
ProGrad 77.02 66.66 71.46
KgCoOp 75.83 69.96 72.78
CoT-PT 76.00 70.68 73.24

AGoT 76.02 70.80 73.32

(c) Caltech101

Base New H

CLIP 96.84 94.00 95.40
CoOp 98.11 93.52 95.76
CoCoOp 97.96 93.81 95.84
ProGrad 98.02 93.89 95.91
KgCoOp 97.72 94.39 96.03
CoT-PT 97.91 94.03 95.93

AGoT 98.06 94.92 96.46

(d) OxfordPets

Base New H

CLIP 91.17 97.26 94.12
CoOp 94.24 96.66 95.43
CoCoOp 95.20 97.69 96.43
ProGrad 95.07 97.63 96.33
KgCoOp 94.65 97.76 96.18
CoT-PT 95.43 97.78 96.59

AGoT 94.94 98.19 96.54

(e) StanfordCars

Base New H

CLIP 63.37 74.89 68.65
CoOp 76.20 69.14 72.49
CoCoOp 70.49 73.59 72.01
ProGrad 77.68 68.63 72.88
KgCoOp 71.76 75.04 73.36
CoT-PT 70.59 73.82 72.17

AGoT 72.23 74.77 73.47

(f) Flowers102

Base New H

CLIP 72.08 77.80 74.83
CoOp 97.63 69.55 81.23
CoCoOp 94.87 71.75 81.71
ProGrad 95.54 71.87 82.03
KgCoOp 95.00 74.73 83.65
CoT-PT 94.46 72.46 82.01

AGoT 94.01 74.18 82.93

(g) Food101

Base New H

CLIP 90.10 91.22 90.66
CoOp 89.44 87.50 88.46
CoCoOp 90.70 91.29 90.99
ProGrad 90.37 89.59 89.98
KgCoOp 90.50 91.70 91.09
CoT-PT 90.74 91.77 91.25

AGoT 90.88 92.81 91.83

(h) FGVCAircraft

Base New H

CLIP 27.19 36.29 31.09
CoOp 39.24 30.49 34.30
CoCoOp 33.41 23.71 27.74
ProGrad 40.54 27.57 32.82
KgCoOp 36.21 33.55 34.83
CoT-PT 35.13 32.21 33.61

AGoT 35.23 34.14 34.68

(i) SUN397

Base New H

CLIP 69.36 75.35 72.23
CoOp 80.85 68.34 74.07
CoCoOp 79.74 76.86 78.27
ProGrad 81.26 74.17 77.55
KgCoOp 80.29 76.53 78.36
CoT-PT 79.44 77.20 78.30

AGoT 79.59 77.60 78.58

(j) DTD

Base New H

CLIP 53.24 59.90 56.37
CoOp 80.17 47.54 59.68
CoCoOp 77.01 56.00 64.85
ProGrad 77.35 52.35 62.45
KgCoOp 77.55 54.99 64.35
CoT-PT 76.27 58.34 66.11

AGoT 76.73 57.88 65.99

(k) EuroSAT

Base New H

CLIP 56.48 64.05 60.03
CoOp 91.54 54.44 68.27
CoCoOp 87.49 60.04 71.21
ProGrad 90.11 60.89 72.67
KgCoOp 85.64 64.34 73.48
CoT-PT 84.11 72.81 78.06

AGoT 86.11 71.67 78.23

(l) UCF101

Base New H

CLIP 70.53 77.50 73.85
CoOp 85.14 64.47 73.37
CoCoOp 82.33 73.45 77.64
ProGrad 84.33 74.94 79.35
KgCoOp 82.89 76.67 79.65
CoT-PT 82.47 75.09 78.61

AGoT 81.90 78.68 80.25

Table 3: Comparison with existing methods (CLIP, CoOp, CoCoOp, ProGrad, KgCoOp, CoT-PT) in the
cross-label generalization setting with ViT-B/16 as the backbone.

Cross Dataset Generalization In addition to
cross-label generalization, we also explore the
cross-dataset generalization setting. As shown
in Table 4, AGoT outperforms the CoOp by 0.61%
on ImageNet (source). Furthermore, when apply-
ing the model to the target domain of 10 datasets,
our results demonstrate a 0.96% improvement over
previous state-of-the-art KgCoOp. These exper-
imental findings also provide solid evidence of
AGoT’s robust transferability compared to ordinary
CoT.

Domain Generalization Table 5 shows the re-
sults of domain generalization. Our model trained

on ImageNet was tested on four other ImageNet
datasets of different types, and our method out-
performs CLIP, UPT, CoCoOp, CoOp, ProGrad,
KgCoOp. This confirms that CoT does have a
good effect on domain generalization, and AGoT is
an effective improvement of CoT, bringing stronger
reasoning generalization ability.

4.3. Ablation Study

Reasoning Steps To demonstrate the impact of
reasoning steps in AGoT, we conducted experi-
ments on the image-text retrieval task using the
Flickr30K dataset with a training ratio of 2.0%.
Specifically, we varied the reasoning steps from
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Source Target

Ima Cal Oxf Sta Flo Foo FGV SUN DTD Eur UCF Avg

CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
ProGrad 70.21 94.43 93.21 71.75 89.98 85.77 32.93 71.17 57.72 70.84 77.82 74.21
KgCoOp 70.19 94.65 93.20 71.98 90.69 86.59 32.47 71.79 58.31 71.06 78.40 74.48

AGoT 72.12 95.92 98.25 75.11 75.73 91.20 32.01 76.53 58.75 71.46 79.48 75.44

Table 4: Comparison of CoOp, CoCoOp, ProGrad, KgCoOp and our AGoT methods in the cross dataset
generalization setting.

Prompts Source Target
ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R Avg.

CLIP hand-crafted 66.73 60.83 46.15 47.77 73.96 57.17
UPT vp+tp 72.63 64.35 48.66 50.66 76.24 59.98
CoCoOp vp+tp 71.02 64.07 48.75 50.63 76.18 59.90
CoOp tp 71.51 64.20 47.99 49.71 75.21 59.28
ProGrad tp 72.24 64.73 47.61 49.39 74.58 59.07
KgCoOp tp 71.20 64.10 48.97 50.69 76.70 60.11

AGoT vp+tp 72.12 64.54 49.76 50.26 76.92 60.37

Table 5: Comparison of CLIP, UPT, CoCoOp, CoOp, ProGrad, KgCoOp and AGoT in the domain
generalization setting. Where “vp” and “tp” denote the visual prompting and textual prompting, respectively.

Sample ratio 0.2% 0.5% 1.0% 2.0% 5.0% 8.0%

steps=3 83.30 84.30 87.60 88.70 89.50 90.10

steps=5 83.20 84.50 87.10 88.40 89.60 90.30

Table 6: Relationship between sample ratio and
reasoning steps on the Flickr30k dataset.

Number 2 3 4 5 6

Recall 86.90 88.20 87.90 88.70 88.20

Table 7: Comparison the effect of the number of
aggregation subnodes on the Flickr30k dataset.

α 0.1 0.3 0.5 0.7 Dynamic

Recall 57.80 58.00 58.10 57.90 58.70

Table 8: Comparison of the effect of flow controller
with the fixed and dynamic prompt fusion ratios on
the MSCOCO dataset.

0 20 40 60 80 100
Epochs

60

65

70

75

80

85

90

Re
ca

ll 
(%

)

Reasoning Steps Analysis

steps=2
steps=3
steps=5
steps=7
steps=9

Figure 3: Comparison of different reasoning steps
on the Flickr30k dataset.

2 to 9. The results, as shown in Figure 3, indicate
that AGoT achieves its best performance when the
epoch is set to 80 and the reasoning steps are set
to 3. This can be attributed to the fact that when
the data size is small, longer reasoning steps in
AGoT may be unstable and susceptible to overfit-
ting. Thus, increasing the reasoning steps does
not always lead to improved performance.

As shown in Table 6, continuing to increase the
proportion of training samples, when the training
sample proportion reaches 5.0%, the performance
of inference step 5 surpasses that of inference step
3, achieving optimal performance. Similarly, the
same conclusion is drawn when the sample propor-
tion increases to 8.0%. This indicates that as the
dataset grows relatively larger and tasks become
more complex, AGoT with longer inference steps
can explore and embed more valuable features.

Number of Aggregation Subnodes To demon-
strate the impact of the number of subnodes
(i.e., prompts) aggregated by AGoT on reason-
ing performance, we conducted experiments on
the Flickr30K dataset using a train data ratio of
2.0%. Specifically, we varied the number of subn-
odes from 2 to 6. As shown in Table 7, we found
that the best result was achieved when the num-
ber of aggregations was set to 5. This suggests
that having more aspect prompts tends to improve
performance, but optimal performance depends on
task complexity.

Role of Flow Controller In the AGoT model, we
use a flow controller to dynamically regulate the
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Subnodes 1 2 ∆ 3 ∆ 4 ∆ 5 ∆ 6 ∆

Recall 86.00 86.90 +0.90 88.20 +2.20 87.90 +1.90 88.70 +2.70 88.20 +2.20

Parameters(M) 149.74 149.76 +0.02 149.78 +0.04 149.81 +0.07 149.83 +0.09 149.85 +0.11

Reasoning Time(s) 180 182 +2 187 +7 190 +10 191 +11 193 +13

Training Time(s) 208.11 216.42 +8.31 222.57 +14.46 227.34 +19.23 231.24 +23.13 235.63 +27.52

Table 9: Evaluation of the impact on Recall, Parameters, Reasoning time, and Training time with increasing
aggregation subnodes on the Flickr30k dataset.

degree of message passing between central nodes.
To evaluate the effectiveness of this flow controller,
we contrasted it with the fixed prompt fusion ratios
α of 0.1, 0.3, 0.5, and 0.7 on the MSCOCO dataset
using 2.0% sampled data. And the reasoing steps
and subnodes are fixed to 3 and 4, respectively.
The results, presented in Table 8, demonstrate
that the dynamic flow controller outperforms the
fixed ratios. This improvement can be attributed to
the varying features of different images and their
requirement for distinct reasoning processes. By
employing input-based dynamic control, the model
achieves better reasoning and enhances its overall
performance.

Role of Multi-View Thinking To provide a more
comprehensive analysis of the impact of the num-
ber of aggregation subnodes on the computational
and model complexity of AGoT, we conduct ex-
periments on the Flickr30k dataset with a sample
proportion of 2.0%. In these experiments, the num-
ber of subnodes is systematically varied from 1 to
6, we find that the best Recall is achieved when the
number of aggregations is set to 5. Notably, our
method degenerates to COT-PT when the number
of subnodes is 1. The outcomes of these experi-
ments are detailed in Table 9.

When increasing aggregation subnodes from 1
to 2, Recall improved by +0.90%, parameters in-
creased by +0.02M, reasoning time increased by
+2s, and training time increased by +8.31s. Simi-
larly, when increasing aggregation subnodes from
1 to 5, Recall improved by +2.70%, parameters
increased by +0.09M, reasoning time increased
by +11s, and training time increased by +23.13s.
Hence, it is evident that with the increasing number
of aggregation subnodes, the model’s parameters,
reasoning time and training time exhibit minimal
changes to achieve a favorable trade-off. Please
refer to Supplementary Material Section A for the
impact of different key values, different backbone
architectures, and flow controllers on the model
across other datasets.

5. Conclusion

In this paper, we introduce a novel AGoT mech-
anism for soft-prompt tuning in multi-modal rep-

resentation learning. The mechanism consists of
a novel prompt aggregation and prompt flow pro-
cess designed to improve multi-modal reasoning.
We demonstrate the effectiveness of this method
through experiments conducted on 2 text-image
retrieval tasks, 1 VQA task, and 15 image and text
classification tasks. In future work, we plan to in-
troduce a reasoning early exiting mechanism to
address the varying complexity of inputs, which
may require different reasoning strategies.
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Appendix

A. Ablation Study

Different Key Value To investigate the influence
of different sample quantities on model perfor-
mance, we selected three values for single cat-
egory quantity: 4, 8, and 16, across 11 classifi-
cation task datasets. We compared the model’s
training on the Base domain and testing on the
New domain. The results were contrasted with
those of AGoT model against CoOp, CoCoOp, Pro-
Grad, and KgCoOp, as detailed in Table 10. When
K is 4, AGoT achieved a value of 76.87%, sur-
passing CoOp by +4.43% and KgCoOp by +0.97%.
When K is 8, AGoT reached a value of 76.74%,
outperforming CoOp by +3.24% and KgCoOp by
+0.68%. When K is 16, AGoT achieved a value
of 77.68%, surpassing CoOp by +3.08% and Kg-
CoOp by +0.68%.

Different Backbone To assess the impact of dif-
ferent backbone networks on model performance,
we conducted tests on four networks: ViT-B/16,
ViT-B/32, ResNet-50, and ResNet-101. The ex-
perimental results are shown in Table 11. From
Table 11, it can be observed that the model per-
forms best when ViT-B/16 is used as the backbone.
Therefore, the choice of different backbones has a
significant impact on the model’s performance.

Flow controller on other datasets To further
validate the impact of dynamic and fixed values of
the flow controller on the nine datasets, As shown
in Table 12, it is evident that dynamic values are
beneficial for improving the model’s performance.
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https://openreview.net/pdf?id=5NTt8GFjUHkr
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Backbone Methods K=4 K=8 K=16
Base New H Base New H Base New H

ViT-B/16

CoOp 78.43 68.03 72.44 80.73 68.39 73.50 82.63 67.99 74.60
CoCoOp 76.72 73.34 74.85 78.56 72.00 74.90 80.47 71.69 75.83
ProGrad 79.18 71.14 74.62 80.62 71.02 75.20 82.48 70.75 76.16
KgCoOp 79.92 73.11 75.90 78.36 73.89 76.06 80.73 73.60 77.00

AGoT 79.34 74.56 76.87 78.19 75.34 76.74 80.50 75.05 77.68

Table 10: Comparing the effects of different K values on model performance

Backbones Cal Oxf Stan Flo Foo FGV DTD Eur UCF Ave

ViT-B/16 96.46 96.54 73.47 82.93 91.83 34.68 65.99 78.23 80.25 77.82

ViT-B/32 95.32 94.93 67.42 74.37 87.46 26.93 61.43 71.46 76.58 72.88

ResNet-50 93.61 94.37 64.39 76.18 85.19 24.64 58.36 49.28 72.39 68.71

ResNet-101 94.57 94.16 68.54 76.34 87.42 8.67 61.87 54.54 76.86 69.22

Table 11: Comparative analysis of the impact of different backbones on model performance.

Backbones Cal Oxf Stan Flo Foo FGV DTD Eur UCF Ave

ViT-B/16(dynamic) 96.46 96.54 73.47 82.93 91.83 34.68 65.99 78.23 80.25 77.82

ViT-B/16(fix=0.5) 95.72 95.81 72.36 81.37 90.64 33.93 64.61 77.45 79.48 76.79

Table 12: Impact of fixed and dynamic flow controller on model performance
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