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Abstract
Sharing textual content in the form of public posts on online platforms remains a significant part of the social web.
Research on stylometric profiling suggests that despite users’ discreetness, and even under the guise of anonymity,
the content and style of such posts may still reveal detailed author information. Studying how this might be inferred
and obscured is relevant not only to the domain of cybersecurity, but also to those studying bias of classifiers drawing
features from web corpora. While the collection of gold standard data is expensive, prior work shows that distant
labels (i.e., those gathered via heuristics) offer an effective alternative. Currently, however, pre-existing corpora are
limited in scope (e.g., variety of attributes and size). We present the SOBR corpus: 235M Reddit posts for which we
used subreddits, flairs, and self-reports as distant labels for author attributes (age, gender, nationality, personality,
and political leaning). In addition to detailing the data collection pipeline and sampling strategy, we report corpus
statistics and provide a discussion on the various tasks and research avenues to be pursued using this resource.
Along with the raw corpus, we provide sampled splits of the data, and suggest baselines for stylometric profiling. We
close our work with a detailed set of ethical considerations relevant to the proposed lines of research.

Keywords: corpus, author identification, author profiling, author obfuscation, computational stylometry, bias

1. Introduction

The increasing computational capabilities of lan-
guage models do not bode well for safety in online
public spaces. A large variety of pre-trained Large
Language Models (LLMs) made readily available
through platforms such as the HuggingFace Model
Hub (Wolf et al., 2020) can be used to generate
(Pan et al., 2020; Carlini et al., 2021) and infer (Tes-
fay et al., 2019; Kleinberg et al., 2022), sensitive
information. While these often deal with concrete
mentions of personal information, a handful (so far)
seeks to uncover latent author attributes through
computational stylometry.

Stylometry posits that one’s unique writing style
might encode features about an author’s identity,
which eventually extended to sociodemographic
factors such as gender and age (Schler et al., 2006;
Bamman et al., 2014b), personality (Plank and
Hovy, 2015), education and income (Rao et al.,
2010; Volkova et al., 2014), region of origin (Bam-
man et al., 2014a; Tulkens et al., 2016), political
or religious affiliation (Koppel et al., 2009; Pennac-
chiotti and Popescu, 2011), and mental health is-
sues (Choudhury et al., 2013; Coppersmith et al.,
2015). These attributes can, often with high accu-
racy, be inferred through computational analysis of
publicly shared writing.

Computational stylometry is an example of dual-
use research: despite the merits of profiling tech-
niques in various research fields such as computa-
tional sociolinguistics (Daelemans, 2013), detect-
ing fraud, deception, and identity theft (Badaskar

et al., 2008; Ott et al., 2011; Banerjee et al., 2014;
Fornaciari and Poesio, 2014), it enables malicious
actors to infer potentially sensitive information un-
beknownst to the user. This is particularly harmful
to individuals in a vulnerable position regarding
race, political affiliation, mental health, or any other
personal details made explicitly unavailable.

Historically, collecting high-quality labels for sty-
lometric classification tasks was a costly process
(both in time and resources) requiring trained an-
notators. Collecting the data itself, and fine-tuning
models, would also require expertise and compu-
tational infrastructure. Works such as Beller et al.
(2014) and Emmery et al. (2017), however, showed
that targeting Twitter users that post self-reported
attributes (“I’m a ...”) generates enough distantly
labeled data to train models that match the per-
formance of models trained on gold standard data.
These pipelines run within a day on consumer hard-
ware; implying that the barrier to entry is low, mak-
ing regulation of profiling algorithms significantly
more challenging. Hence, providing vulnerable In-
ternet users with tools to mitigate such harmful in-
ferences is an important contribution to their online
privacy and security.

The current work1 introduces a distantly anno-
tated corpus to grant insight into the workings and

1All code and baseline models for reproduction are
openly available via https://github.com/cmry/SOBR.
The SOBR corpus is made available under fair use data
sharing agreements (see Section 5). Refer to our reposi-
tory for contact details to request access.

https://github.com/cmry/SOBR
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Figure 1: Gender, Personality, and Political Leaning distributions and proportions in the raw corpus.
Personality labels are stacked, denoting the first of the MBTI dimension with 1, and the second with 2 (E
= extrovert, I = introvert; S = sensing, N = intuitive; T = thinking, F = feeling; J = judging, P = perceiving).

effectiveness of stylometric profiling techniques, to
emphasize how even inadvertently revealing per-
sonal information might harm individuals, and to
develop tools aimed towards increasing one’s on-
line privacy. Accordingly, in addition to describing
the collection process and characteristics of the
data, we provide initial profiling baselines, and a
discussion of intended purposes of the corpus.

2. Data

Reddit2 is a content discussion website with over
52M users. Users post hyperlinks, text, images,
or videos, after which the core social dynamic of
the website consists of up and downvoting and
commenting on said posts. The website is topi-
cally divided into so-called subreddits, often cov-
ering a particular theme, or niche interest. Users
can join these subreddits to receive a content time-
line, or follow specific users. Posts are either com-
municated via a user profile, or under a subreddit
(cross-posting is possible). When posting under a
particular subreddit, or commenting under a post,
users can opt to show something close to a ‘status
message’ next to their name, called a flair. Flairs
typically play into the theme of the subreddit, and
might be funny or informative (e.g., a user’s (home)
country in the r/Europe subreddit). Users gather
karma through net upvotes, and posts can be mod-
erated if they do not abide by the rules of a particular
subreddit. Depending on their size, these subred-
dits function as topical communities with their own
norms and memes. We employ these features of
Reddit to build a corpus that connects textual data
(i.e., the posts) to publicly available and openly
shared author attributes.

2.1. Label Collection
We considered five attributes: age, gender, nation-
ality, personality and political leaning. Authors were

2https:/www.reddit.com

labeled through related subreddits, from which we
predominantly used flairs (age and gender were
extracted from post-level self-reporting). Further
details per attribute are noted below. Their distribu-
tions can be found in Figures 1 and 2.

Age and Gender Age and gender were obtained
via posts self-reporting age and gender informa-
tion. When sharing personal stories, users often
follow the common practice of posting their age and
gender in the format (GAA)3 (e.g., “When I (F34)
went...” indicating a female aged 34). We extracted
these patterns using regular expressions; authors
reporting gender F or f were labeled as female,
while users reporting M or m were considered male.
To avoid contradicting age labels across years, this
attribute was stored as inferred year of birth (i.e.,
the post’s year minus the self-reported age).

Nationality Nationality labels were extracted
through user flairs from a set of subreddits pre-
viously used in the work of Rabinovich et al.
(2018); specifically, r/Europe, r/AskEurope, r/
Eurosceptics, r/EuropeanCulture, and r/Euro
peanFederalists. We mapped flairs to country
labels by hand, based on flairs that were used more
than ten times in a sample month (July 2021). Note
that there is no guarantee that these reports exactly
map to nationality (rather than place of residency);
however, similar to other labels, we assume this
holds for the majority of authors. The choice for fo-
cusing on nationality labels over residency is multi-
facetted: residency is overall less reported on, and
users may change country of residency between
time of posting and time of collection. Furthermore,
stylometric analysis would typically focus on traits
that show through non-native English writing to pre-
dict nationality. Our assumption is residency might
be picked up through content words (e.g., mention-
ing cities, local food, etc.), but has less effect on
writing style in comparison.

3Other less frequently used variants we observed
included (AAG), AAG and GAA.

https:/www.reddit.com
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Figure 2: Age (top) and Nationality (bottom, log-scale) distributions. Not all labels are shown for readability.

Att. Raw Rand. Strat. Bal.

Age 13,441K 83,748 - 7,796
Gen. 13,441K 89,272 103,047 85,293
Nat. 65,544K 165,234 - 361
Per. 12,614K 326,520 289,860 180,800
Pol. 158,494K 114,463 120,363 97,012

Table 1: Amount instances per set per attribute
(Att., Gen. = Gender, Nat. = Nationality, Per. =
Personality, Pol. = Political Leaning). For the Raw
part, the quantities are on post-level, for both the
random sampled (Rand.), stratified (Strat.), and
undersampled (Bal.) datasets, quantities are on
slice-level (one instance is up to 1500 words).

Personality Personality labels were assigned
through flairs for Myers-Briggs Type Indicators
(MBTI) on MBTI-related subreddits: r/entj,
r/enfp, r/enfj, r/intp, r/esfj, /esfp, r/infp,
r/intj, r/infj, r/isfj, r/entp, r/estp,
r/estj, r/istj, r/isfp, r/istp. These are
split into four dimensions: extrovert/introvert,
sensing/intuitive, thinking/feeling, and judg-
ing/perceiving, and broken down into four labels;
e.g., for entj, an author would be labeled as
extrovert, intuitive, thinking, and judging.4

Political Leaning For political leaning labels,
rather than extracting users by association
from political subreddits (e.g., r/Liberal,
r/conservatives, etc.)—as has been shown in
De Francisci Morales et al. (2021) to be more
politically diverse than one would expect—we
use self-reports from the Political Compass5 in

4We discuss the psychometric limitations of this mea-
sure (Stein and Swan, 2019) in Section 4.3.

5https://www.politicalcompass.org
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Figure 3: Raw post frequency per month.

flairs on the subreddit r/PoliticalCompass. Test
results are often reported in the form of: [social
scale result (authoritarian, libertarian)]-[economic
scale result (left, right or center)]; for example,
auth-left. For our corpus, we only considered
the economic scale, as a significant amount of
users did not report the social scale result.

2.2. Datasets
For the current version of the corpus, we ex-
tracted attributes and posts from two years worth
of Reddit snapshots from Pushshift.io,6 totaling
235,630,014 labeled posts (see Figure 3), or 174G
of JSON data. These individual posts were col-
lected and labeled as follows:

• In addition to labels, the techniques described
above provided us with a list of author IDs (or
handles) and the subreddits and posts they
were extracted from (see Listing 1).

• We retrieved all posts from labeled authors
across the entire two years of Reddit snap-
shots, and individually labeled those posts with
the labels of their author (see Listing 2).

6https://pushshift.io

https://www.politicalcompass.org
https://pushshift.io
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1 ...
2 author_id: 't2_xxxxxx',
3 labels: {
4 personality: {
5 introvert: [{
6 post_id: "xxxxxxxx",
7 flair: "INFP",
8 subreddit: "r/infp",
9 database_month: "2021-07"
10 }]
11 },
12 gender: {
13 male: [{
14 post_id: "xxxxxxxx",
15 regex_match: "Me (32M)",
16 match_index: [5, 13],
17 subreddit: "r/AmItheAsshole",
18 database_month: "2021-07"
19 }]
20 }
21 }

Listing 1: Author database example. Attributes re-
trieved with flairs (here: personality) are structured
differently than text reports (here: gender).

• Additionally, posts were labeled according to if
they were either from a subreddit for which we
used its flairs for labeling, or if the post itself
was used for labeling.

A full breakdown of how many posts were labeled
under which attributes can be found in Table 1.

After the raw post corpus was collected, we ag-
gregated posts by author, and split the data into
three types of datasets to be used for training: one
random sample, one balanced sample (undersam-
pled based on minority class), and a stratified sam-
ple according to the corpus’ label distributions7. For
the current version of SOBR, we sampled 10,000
authors. Their full post history was—similar to Ra-
binovich et al. (2018)—sliced per 1500 ‘words’ (de-
limited by whitespace) to produce instances. Any
authors posting less than 1500 words, and excess
words not fitting a slice, were removed.

2.3. Considerations & Recommendations
Now that we have established the SOBR corpus
and the sampled datasets for training models, we
will provide some background regarding our con-
siderations in collection and recommendations for
use beyond the splits we provide.

Data Statement Our corpus includes real sub-
jects (Reddit users). As per the Reddit User Agree-

7Age and Nationality are excluded in this version.
Users whose labels exhibited inconsistency or ambigu-
ity (e.g., a user reported both male and female) were
excluded from the initial dataset.

1 {
2 post_id: 'xxxxxxx',
3 author_id: 't2_xxxxxxxx',
4 subreddit: 'r/PoliticalCompass',
5 created_on: '2022-12-01 15:43:24',
6 male: null,
7 female: null,
8 gender_source_post: null,
9 birth_year: null,

10 age_source_post: null,
11 nationality: null,
12 nationality_in_domain: null,
13 political_leaning: 'right',
14 political_leaning_in_domain: 1,
15 personality_extrovert: null,
16 personality_introvert: null,
17 personality_sensing: null,
18 personality_intuitive: null,
19 personality_thinking: null,
20 personality_feeling: null,
21 personality_judging: null,
22 personality_perceiving: null,
23 personality_in_domain: null,
24 post: 'Are they that dumb ...'
25 }

Listing 2: Post database example. Indicators if
posts originate from the same subreddit as a partic-
ular label is indicated with “in_domain”, and posts
a label was retrieved from with "source_post".

ment, users agree not to disclose sensitive in-
formation, and consent that their comments are
publicly available and accessible through an API.
They retain the right to have their posts removed
through a (verified) deletion request. We store post
IDs, usernames, and user IDs for compliance, but
anonymize these when disseminating the corpus.
The data will only be made directly available un-
der a fair use agreement. Code to reproduce data
collection is available in our repository.

Distant Labeling As mentioned, part of previ-
ous profiling work relying on using distant label-
ing techniques (e.g., Beller et al., 2014; Emmery
et al., 2017; Gjurkovic et al., 2021) have used in-text
self-reports. We argue that, despite the underlying
assumption of distant labeling (also referred to as
weak labeling) being that these are not always ac-
curate, the potential for error increases when using
semi-structured patterns in noisy user-generated
text. In Emmery et al. (2017) in particular, potential
ambiguities (e.g., “Sometimes I think I’m a girl”)
were partially addressed through a set of rules
shown to improve inter-rater label agreement by
12.5%. Hence, for all labels, we deliberately opted
for structured retrieval (as in, i.a., Gjurkovic and
Snajder, 2018). This increases confidence in the
labels, limiting error to user-level (i.e., some users
might still lie) rather than error in noisy language.
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Age/Gen. Per. Nat. Pol. Prev. (%)

v 58.54
v 21.19

v 8.84
v 8.57

v v 2.18
v v 0.40
v v 0.10

v v 0.07
v v 0.04
v v 0.04

v v v 0.02

Table 2: Prevalence (Prev.) of different attribute
(co-)occurrences (Gen. = Gender, Nat. = National-
ity, Per. = Personality, Pol. = Political Leaning).

It is also worth mentioning that despite the large
sample, authors reporting multiple attributes are ex-
tremely rare (see Table 2). This is certainly a strong
limitation compared to data gathered through au-
thor inquiry (see e.g., Volkova et al., 2014), and
affects the extent to which cross-correlations, or
multi-label author predictions can be investigated.

Reddit as a Corpus According to a report from
Pew Research Center,8 Reddit users are predomi-
nantly white (70%), male (67%), aged 18-29 (64%),
with a college degree (42%), in the higher income
bracket ($75k+, 35%), and lean liberal (43%)—
prototypical of the WEIRD group (Henrich et al.,
2010). This implies that for many research pur-
poses, Reddit may induce a bias. Additionally,
our approach inherently introduces bias by utiliz-
ing self-reports since it relies on users comfortable
divulging this information about themselves.

In our sample, we observe a less WEIRD distri-
bution (see Figures 1 and 2). While the majority is
still male, at 57.3% they are less represented, the
majority of the users is older than 30 years (mean
year of birth=1988, SD=12.4), personality types
are convincingly INT(J/P), and political leaning is
distributed bell-shaped to the left and right with the
majority being centrist). Due to our collection strat-
egy, the top portion of nationalities are all English-
speaking or European countries; other countries
are often collectively labeled as ‘non-European’.

Reddit as a platform has biases too: while featur-
ing a huge variety of topics, the largest subreddits
predominantly center around news, hobbies, and
memes.9 Hence, given all considerations above,
any models trained on these data should be tested
on an unbiased (or at least more representative)
set, preferably one that is out-of-domain.

8pewresearch.org/journalism/2016/02/25
9reddit.com/best/communities/1/
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Figure 4: Rank-frequency distribution of author/n-
slices in the Random dataset.

Mitigating Data Contamination Contamination
may occur in setting up splits for model-training
purposes. We identify a few causes here: first,
and most obvious, in-text self-reports will be picked
up on by text classifiers and might cause classi-
fication results to be misrepresentative and likely
non-generalizable. In the current version of the cor-
pus, we have filtered all age/gender patterns (see
above), although mentions beyond that (“I’m a ...")
are challenging to remove completely.

This form of contamination can be partially ad-
dressed in several ways: slicing author profiles,
principled splitting, and domain filtering. Slicing (as
explained in Section 2.2)—in addition to being a re-
quirement for effective profiling (Luyckx and Daele-
mans, 2011)—spreads the impact that these few
scattered self-reports may have. Splitting should be
done at the author level; indeed, mixing authors be-
tween train and test sets creates arguably obvious
issues with evaluation (not being unseen examples
of the attributes they represent). Additionally, as
can be observed in Figure 4, the author-to-slice
ratio follows a Zipfian-like distribution, i.e., the ma-
jority is represented in only a single slice, whereas
a few have the bulk of the slices. To accurately
gauge generalization, the test set should consist of
authors with only a few slices worth of posts. Lastly,
the topical ‘domain’ of the subreddit might also un-
fairly influence classification success. As shown in
Kramp et al. (2023), classifying authors gathered
from the same subreddit is significantly easier, as
classifiers may pick up on particular content words
or other idiosyncratic cues from that domain. Ex-
plicitly excluding such subreddits (annotated in our
corpus, see Listing 2) is preferable.

3. Baseline Experiments

For our text classification baselines, we opt for three
tried-and-tested models with different architectures.
These serve as recommendations for baselines
worth exploring further, and to benchmark other
profiling model architectures.

pewresearch.org/journalism/2016/02/25
reddit.com/best/communities/1/
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3.1. Experimental Setup
Data We will report experiments on the Random,
Stratified, and Balanced sampling datasets. The
instances are sorted by the most frequent author
by default (descending); hence, a 90% split, only
shuffling after, suffices. Known self-reports and
in-domain portions were removed. We also filtered
bots known to Reddit (i.e., those having received
a bot tag). Tokenization for NB-LR and fastText
(detailed below) was implemented using spaCy,10

whereas for BB-LR we used the associated tok-
enizer. No further preprocessing was applied.

Targets All tasks were converted to binary or
multi-class classification tasks. Gender used bi-
nary assignment (male or female), age was divided
into categories following Pardo et al. (2015) (18-24,
25-34, 35-49, 50-64, 65-xx), nationality at country-
level, personality split into four binary tasks (one
per MBTI dimension), and political leaning used
the original three labels (left, center, right).

LR We include a standard Logistic Regression
model (implemented using sklearn, Pedregosa
et al., 2011). As input, it uses tf-idf over n-gram fea-
tures (here: token uni and bi-grams, and character
tri-grams with a minimum document frequency of
3, and an occurrence rate of 90%). The idf values
are smoothed, and tf values are scaled sublinearly.

fastText The fastText library (Joulin et al.,
2017) offers a fast linear model with a single em-
bedding layer and a hierarchical softmax function
(Mikolov et al., 2013). We opted for token uni-grams
and bi-grams (with a minimum occurrence of 3)
as input, used an embedding size of 50, learning
rate of 0.1, a bucket size of 1M, and trained for 25
epochs. It should be noted that fastText uses Hog-
wild (Recht et al., 2011) for parallelization; hence,
our results are not exactly replicable (standard devi-
ation is often negligible, see Emmery et al., 2017).

BB-LR Recently shown to be an effective model
for profiling, Kramp et al. (2023) use Big Bird
(google/bigbird-roberta-base in transform-
ers; Wolf et al., 2020) from Zaheer et al. (2020);
specifically, the [CLS] embeddings as input to a
Logistic Regression model. Big Bird facilitates the
processing of longer-form texts, where models such
as BERT (Devlin et al., 2019) may underperform.
Embedding extraction is relatively fast, and fine-
tuning typically runs in within a day on this data.

Evaluation For our metrics, we looked at macro
F1-score averages for all sets. In the Random set,

10github.com/explosion/spaCy

some labels are heavily skewed, and we want to
keep our model evaluations directly comparable.
Given that our goal is providing reasonable base-
lines, and not squeezing performance out of the
proposed models, we did not tune any hyperparam-
eters, and therefore did not apply cross-validation.

3.2. Results

Several baseline models were proposed, and their
results can be found in Table 3. Generally, perfor-
mance on most tasks, save for gender and nation-
ality prediction, is below majority baseline. Note,
however, that these are unoptimized models, and
we have performed no preprocessing whatsoever.
Given the noisy nature of the corpus, the underper-
forming baselines were to be expected. Even so,
there are indicators of performance gain through
increasing model complexity. We expect BB-LR to
see significant improvements when the model is
fine-tuned. The fact that there is no out-of-the-box
solution offers fruitful avenues for further studies.

Additionally, these results call for further investi-
gation of the different tasks. The MBTI dimensions
from the Random set are highly skewed, and thus a
priori make for a challenging task. In future versions
of the corpus, this limitation would need addressing
through either collecting scores or collecting more
data to improve minority class representation. The
nationality prediction task seems rather easy to get
reasonable performance on; likely, a stricter filter-
ing of domain-related subreddits (that were not part
of the ones we extracted flairs from) is required.

Finally, to gauge the effects of different sampling
methods, we selected our best performing model
in the Random sample experiments (fastText) and
trained it on the Balanced and Stratified data. While
balancing seems to have an adverse effect on per-
formance (both age and nationality were too sparse
after undersampling), stratification seems to have
a partially positive effect, in particular for the per-
sonality dimensions.

4. Further Application and Outlook

We have presented a corpus that was initially set
up as one focused on author profiling. As argued in
Section 1, however, this task has inherent dual-use
problems. As such, we dedicate a portion of the
current work to discussing potential techniques that
work towards mitigation of these predictive mod-
els, recommendations for implementing them, as
well as an overview of other applications that might
benefit from this corpus. We end this section with
a discussion of improvements intended for future
versions of the SOBR corpus.

github.com/explosion/spaCy
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Model Age Gen. E/I S/N T/F J/P Nat. Pol. Avg

Random

Majority .633 .706 .848 .940 .784 .740 .167 .568 .673
LR .548 .797 .725 .888 .720 .635 .559 .440 .664
fastText .577 .825 .756 .922 .683 .666 .620 .505 .694
BB-LR .522 .781 .683 .900 .648 .568 .517 .430 .631

Model Age Gen. E/I S/N T/F J/P Nat. Pol. Avg

Stratified fastText - .819 .742 .932 .734 .666 - .439 .722
Balanced fastText - .793 .435 .499 .615 .635 - .454 .572

Table 3: Test split scores (Macro F1) per baseline on the Random and Balanced (latter excludes Age and
Nationality) sets (Gen. = Gender, Nat. = Nationality, E/I = extrovert/introvert; S/N = sensing/intuitive; T/F
= thinking/feeling; J/P = judging/perceiving, Pol. = Political Leaning), and their averages (Avg).

4.1. Adversarial Stylometry & Author
Obfuscation

Aside from profiling, the most obvious application
for the current corpus would be Adversarial Stylom-
etry (also referred to as author obfuscation: Kac-
marcik and Gamon, 2006; Brennan et al., 2012;
Thi et al., 2015). This machine learning task takes
a text as input and perturbs it in some way: this
might be through changes in characters (Eger et al.,
2019), translation (Rao and Rohatgi, 2000; Shetty
et al., 2018), paraphrasing (Reddy and Knight,
2016), word substitutions (Emmery et al., 2021),
or full style changes (Kabbara and Cheung, 2016).
The goal of these perturbations (the ‘attack’) is to
decrease the accuracy of a classifier used for pro-
filing. Hence, the success of this adversarial attack
is measured through its reduction in accuracy (Pa-
pernot et al., 2016b); however, an often-overlooked
additional constraint—particularly different from the
broader domain of adversarial Machine Learning—
is that this reduction should approach chance-level
performance (Emmery et al., 2018). After all, fool-
ing a profiling classifier (e.g., for privacy reasons)
to perform below chance implies we are system-
atically changing the labels, i.e., engaging in style
transfer. This is not always desirable (e.g., writing
like a liberal when one is conservative).

In relation to style, in addition to reducing perfor-
mance, another soft constraint is that the pertur-
bations should be limited to those that produce a
text that is grammatically and semantically consis-
tent with the original (Potthast et al., 2016). While
language model perplexity, semantic similarity met-
rics, or other approximations might be used, these
techniques only approximate consistency. An al-
ternative or complementary evaluation may involve
(trained) human raters. Existing annotation setup
suggestions range from simple obfuscator identifi-
cation tasks (Emmery et al., 2021) to complex (and
more robust: Potthast et al., 2018; van der Lee et al.,
2019) schemes involving linguistic analysis.

Lastly, one needs to consider if perturbations
are made with the targeted profiler in a ‘supervised’
loop. One can assume to have access to all weights
and outputs (white box), outputs only (black box),
or no access at all (Papernot et al., 2016a). If one
intends to design a tool for privacy purposes, the
latter option is most realistic, as Internet users typ-
ically do not have access to the profiling systems
they are potentially subjected to. Evaluation should,
in that case, include transferability; i.e., how well
does an attack fitted in isolation work on targets it
has had no access to while doing so.

The SOBR corpus can be used to design obfus-
cation systems with a wider range of attributes than
have been used before, on more data than was
available before. Social media poses a challenging
platform, but should also provide enough vocab-
ulary and contemporary word usage to produce
plausible output. Different (categories of) subred-
dits provide a novel way to measure transferability
for the same author, within the same resource, but
on a markedly different domain.

4.2. Investigating Bias
Representations of language have, throughout sev-
eral iterations of larger scale computational tech-
niques (e.g., static word embeddings, transformer
embeddings), shown to encode and reproduce the
human biases found in their training data (Manzini
et al., 2019; Zhao et al., 2019; Basta et al., 2021; El-
safoury et al., 2022). With the advent of consumer-
oriented conversational systems interfacing with
Large Language Models (LLMs), concerns regard-
ing their harm (Bender et al., 2021), and subse-
quent work on analyzing and mitigating bias (Go-
nen and Goldberg, 2019; Kumar et al., 2020; Wang
et al., 2020) have rapidly increased (Abid et al.,
2021; Felkner et al., 2023; Ghosh and Caliskan,
2023; Kolisko and Anderson, 2023).

Bias may refer to inherent skews in data, or
systematic modeling errors, and the SOBR cor-
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Figure 5: Political Leaning for the top 50 most represented Subreddits.

pus can be used to investigate these. While not
as strong as claimed in other work, Reddit is cer-
tainly a biased resource, underlying many mod-
ern LLMs. Hence, data-sided bias (Wevers, 2019;
Spinde et al., 2021), as well as societal biases re-
lated to topics that are discussed on Reddit, are
prevalent in this resource. For example, Figure 5
demonstrates how our annotations of political lean-
ing may be used to estimate bias in political repre-
sentation on a particular subreddit (similar to, e.g.,
Gordon et al., 2020). For example, some peculiar-
ities include that r/politics, r/worldnews, and
r/teenagers feature predominantly left-leaning
users, whereas r/memes and r/wallstreetbets
have more right than left-leaning users. On the
surface level, these subreddits do not voice, or are
themed around, a particular leaning (in contrast
to, say, r/Anarcho_Capitalism, r/Libertarian,
and tangentially r/antiwork). More specifically,
the submissions (links, text, pictures, videos) and
posts (comments) on these subreddits might be
evaluated in view of its general political leaning,
and that of the users themselves (e.g., what type
of content gets upvoted where, why, and how does
that relate to bias?).

Such biases may further propagate into the mod-
els trained on this data, and manifest in the tasks
they are employed for. These downstream effects
of model-sided bias often prove harmful to soci-
ety (Crawford, 2017), and a large body of work
is dedicated to pinpointing and measuring such
harmful biases (Blodgett et al., 2020; Delobelle
et al., 2022; Talat et al., 2022). Dev et al. (2022)
provide a broad overview of demographic dimen-
sions that may be subject to bias, of which age,
gender, nationality, and political ideology are in-
cluded in SOBR. A closely related corpus is Reddit-
Bias (Barikeri et al., 2021), which provides religion,
race, gender, and orientation variables, and offers a
highly curated corpus specifically for studying mod-

els of language’s behavior on biased statements
(i.e., a posteriori, or extrinsic bias). It is therefore
complementary to SOBR, which can be employed
to measure a model’s bias when trained, or fine-
tuned on the data (i.e., a priori, or intrinsic bias).

Our corpus may also be employed to study bias
mitigation (Sun et al., 2019). This can be employed
data-sided (Zmigrod et al., 2019; Vanmassenhove
et al., 2021; Tokpo and Calders, 2022, the latter of
which use style transfer, related to the obfuscation
methods discussed in Section 4.1), model-sided
(Karimi Mahabadi et al., 2020), although often far
from trivial (Gonen and Goldberg, 2019), and down-
stream (Behnke et al., 2022). Finally, our resource
may also be employed for demographic-aware fine-
tuning (Garimella et al., 2022); it should be noted,
however, that this may in turn heighten the risk of
targeted influencing attempts on a large scale (e.g.,
through automated generation of messages for a
specific target group: Griffin et al., 2023).

4.3. Future Work
Future versions of the corpus will include more data;
currently it is restricted to two years, but other than
computational constraints limiting the current ver-
sion, there is no reason why it cannot span more.
Other attributes, such as non-binary gender, race,
religion, education, income, profession, hobbies,
and sexual orientation, to name a few found in other
corpora (Barikeri et al., 2021; Tigunova et al., 2020)
would be logical additions. Furthermore, it is worth-
while exploring options to gather multiple labels per
author. Relying on flairs for more accurate label-
ing is a limitation in this regard; however, in the
future, this portion of the corpus might be used to
assess the accuracy of labels gathered through
textual self-reports.

For the data splits, we looked at a sample of au-
thors, and an undersampled variant thereof. We
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did not consider varying author slice sizes, as this
would increase the experimental complexity, but it
is certainly worth exploring this as an experimental
parameter. While we have filtered the splits ac-
cording to meta-data in the corpus (domains, bot
tags), inspecting the data reveals there are still
quite some repeating patterns that might be intro-
duced by moderators, or unverified bots. In the
future, these should be identified and filtered using
techniques from related work (Hurtado et al., 2019;
Daelemans et al., 2019).

Additionally, the personality classifications em-
ployed in this study were based on the self-reported
results of the Myers-Briggs personality test, which
presents some psychometric limitations (Boyle,
1995; Stein and Swan, 2019). Although the pop-
ularity of the test allowed us to capture a larger
set of users sharing self-reported personality as-
sessments, potential refinements may incorporate
detailed personality trait scores rather than binary
categorizations, or finding user-provided informa-
tion of more reliable personality evaluation instru-
ments, such as the HEXACO test (Ashton and Lee,
2007). Gjurkovic et al. (2021) showed that lack of
self-reports may be overcome through predictive
modeling on weaker tests.

Lastly, an underexplored component in the cur-
rent work is Reddit’s dialogue context. Barikeri et al.
(2021) in particular argue in favor of studying bias
in this context; we believe conversational cues, and
topical context to an author’s posts may also prove
informative for profiling and obfuscation purposes.
Our corpus stored the original post ID and sub-
mission IDs, hence retrieving these across Reddit
snapshots should prove an interesting addition.

5. Ethical Considerations

Our work deals with a highly sensitive topic; auto-
matically inferring latent personal information from
text data. This section provides our ethical consid-
erations and position regarding this research.

Dual Use Computational stylometry is inherently
a dual-use task (Hovy and Spruit, 2016; Emmery,
2023), as it falls within the privacy-security trade-off.
The main consideration is whether the amount of
sensitive information one can infer, and the errors
and harms in making such inferences, outweighs
potential applications for public benefit. It is thereby
notably different from, for example, the encryption
debate (i.e., securing all communication hiding mali-
cious actors on a platform), and the implementation
of backdoors in such algorithms (e.g., to provide
CSAM detection software). We see this as being
closer to debates around the use of facial recog-
nition and biometric scanning (Smith and Miller,
2022): i) both authorship identification and profiling

require data covering a large amount of individuals,
ii) the collection and intended application largely
takes place in ‘public (online) spaces’, iii) although
it may be used in a targeted manner, broad ap-
plication, and indexing based on individuals (e.g.,
Clearview AI for facial recognition) is to be expected
given its various use cases.

The harms that may originate from these appli-
cations are in compromising privacy if successful,
as well as in the potential errors that are made
when not succesful. Computational stylometry may
be used to target and ban certain demographics;
aside from nefarious political and commercial ap-
plications (e.g., identifying dissidents, political mi-
crotargeting, predatory sales practices), it may be
used to perpetuate discriminatory barriers within
online communities, deliberately excluding certain
individuals or groups and controlling their access.

Adversarial stylometry puts itself at the other side
of this trade-off; through hiding author information,
privacy may be preserved, and the public may pro-
tect itself from harmful inferences. It is thereby
faced with the same set of ethical considerations
as encryption in potentially hiding individuals with
malicious intent. Author identification may be used
to uncover individuals on Darknet fora (Maneriker
et al., 2021), aid against deliberate spread of mis-
information (Pardo et al., 2020), and for content
moderation. Profiling may be used for applications
such as identifying predatory behavior against mi-
nors, or preventative identification of depression
(Choudhury et al., 2013). Hiding such information
may affect public security and wellbeing as well.

Demographic Attributes in NLP Several demo-
graphics used in this paper are subject to ethical
concerns underscored in related work: unspecified
definitions and strictly binarized representations of
gender (Larson, 2017), text-based personality scor-
ing (Fang et al., 2023, and see Section 4.3), and
US-centric political leaning (Preotiuc-Pietro et al.,
2017). Explicit inclusion of such (albeit limited)
variables has shown to improve performance on a
variety of tasks (Hovy, 2015), and these variables
are therefore not uncommonly used in Natural Lan-
guage Processing (NLP) research.

Furthermore, as also discussed in Section 4.2,
Reddit is inherently biased. Such unbalanced
sources of representation could lead to direct and
more indirect forms of harm (Sap et al., 2020). It
should also be mentioned that incorrect classifi-
cation of these attributes—which computational
stylometry, as well as obfuscation may contribute
to—could lead to further harm. The role of these
demographic attributes in SOBR is therefore to re-
produce their framing in prior, and potentially future
work. This does not mean these measures are ac-
curate, or fair, or this status quo should be upheld.
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Purpose To be as explicit as possible about the
purpose of this corpus: it is intended to study the ca-
pabilities and limitations of profiling and obfuscation
methods, and bias in the use and representation
of demographic attributes in web corpora; here,
specifically Reddit. We believe that first and fore-
most, the harms that originate from this technology
should be studied in a controlled research environ-
ment, and by no means support broad stylometric
profiling for applications beyond this.

Dissemination Our corpus is strictly intended
for the purposes laid out above. We thereby only
grant access under a fair use agreement and under
agreement of abiding by its intents and goals. As
mentioned in Section 2.3, authors are anonymized,
and we will further minimize shared information
through detection and cleaning of personal iden-
tifiers (using TextWash, Kleinberg et al., 2022),11

username mentions, and links containing sensi-
tive information—if not deemed necessary for the
intended application of the corpus.

Future Considerations While bias receives in-
creasing attention from the NLP community, we
hope this section, and the presented resources,
will also contribute to the discussion around the
application of stylometric profiling within NLP and
beyond. In turn, we acknowledge that the current
section is limited in scope; we believe broader dis-
cussion on this topic, in particular given the current
trend towards more openly accessible language
technology through LLM platforms, is not only war-
ranted, but increasingly urgent. Our future work
on this resource will focus on implementing data,
model, and risk cards (Gebru et al., 2021; Mitchell
et al., 2019; Mohammad, 2022; Dev et al., 2022;
Derczynski et al., 2023), and we hope that related
work will follow suit. Finally, NLP technologies that
follow a user-centered framing are not the norm,
and rare in security applications (Emmery, 2023).
We therefore hope the current work may in the
long run contribute to increased transparency and
accountability, providing the public with tools to
understand and control their information-sharing
practices, and the risks associated with them.
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