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Abstract
Sign languages are multi-channel languages that communicate information through not just the hands (manual
signals) but also facial expressions and upper body movements (non-manual signals). However, since automatic
sign language translation is usually performed by generating a single sequence of glosses, researchers eschew
non-manual and co-occurring manual signals in favor of a simplified list of manual glosses. This can lead to
significant information loss and ambiguity. In this paper, we introduce a new task named multi-channel sign
language translation (MCSLT) and present a novel metric, SignBLEU, designed to capture multiple signal channels.
We validated SignBLEU on a system-level task using three sign language corpora with varied linguistic structures
and transcription methodologies and examined its correlation with human judgment through two segment-level
tasks. We found that SignBLEU consistently correlates better with human judgment than competing metrics. To
facilitate further MCSLT research, we report benchmark scores for the three sign language corpora and release the
source code for SignBLEU at https://github.com/eq4all-projects/SignBLEU.
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1. Introduction

Sign language translation (SLT) is an emerging
field that aims to bridge the gap between the
Deaf, hard-of-hearing, and hearing communities.
With the introduction of neural machine transla-
tion, SLT has experienced significant advance-
ments (Camgöz et al., 2018), and innovative strate-
gies for generating poses and videos continue to
be developed (Stoll et al., 2020; Saunders et al.,
2022).

A common approach to text-to-sign translation
is to predict glosses, semantic labels for individ-
ual signs (Müller et al., 2023). Gloss-based SLT
represents signing as a single sequence of gloss
tokens, standard sequence-to-sequence modeling
techniques can be used, allowing researchers to
leverage the capabilities of pre-trained language
models (Lee et al., 2023). However, by limiting
translation to a linear gloss sequence, non-manual
expressions that encapsulate additional semantic
and morphological aspects of sign language as
well as co-occurring manual signals are omitted.
Non-manual signals convey important descriptive
information, often playing the role of adjectives and
adverbs (Crasborn et al., 2008; Herrmann, 2013).
For example, mouthings can differentiate between
identical manual signals (Woll, 2001; Crasborn
et al., 2008), and eyebrow and head gestures
have been shown to play a pivotal role in forming
negative expressions and wh-questions (Zeshan,
∗Equal contributions.
†Corresponding author.
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Figure 1: Comparison of SCSLT and MCSLT (“d”:
dominant hand, “nd”: non-dominant hand, and
“nms”: non-manual signal).

2004a,b). Furthermore, co-occurring asymmetri-
cal manual signals can convey a high-level of infor-
mation or other meanings not easily represented
by symmetric or sequential manual signals (San-
dler, 2017). Hence, excluding these signals leads
to translations that are deficient in both semantic
and grammatical accuracy.

To tackle this limitation, we introduce a new
task: multi-channel SLT (MCSLT). First, we rede-
fine the traditional gloss-based SLT that produces
only a sequence of manual glosses as single-
channel SLT (SCSLT). We then define MCSLT as
SLT that predicts signals for multiple channels, al-
lowing modeling of concurrent manual and non-
manual signals (see Figure 1 for a visual com-
parison of the outputs of SCSLT and MCSLT).
Note that predicting only two manual channels (for
the dominant and non-dominant hands) simulta-

https://github.com/eq4all-projects/SignBLEU
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neously also qualifies as MCSLT. To our knowl-
edge, this study is the first to specifically define
and name this approach as MCSLT. We suspect
that the lack of large-scale multi-channel sign lan-
guage corpora and the absence of a validated met-
ric hindered the emergence of the MCSLT task.

To facilitate meaningful development of MCSLT,
we introduce SignBLEU, a new metric designed
to capture both sequential and concurrent signals
produced by MCSLT. We tested the proposed met-
ric at the system level by simulating corpus trans-
lations and analyzing correlation between text-
side BLEU scores and sign-side SignBLEU and
other automatic metric scores. SignBLEU showed
higher correlation with text-side BLEU scores than
other metrics commonly used in SCSLT. We also
showed that at the segment level, SignBLEU has
high correlation with human evaluation of transla-
tion naturalness and fidelity and of document sim-
ilarity. To support future research, we offer initial
benchmark MCSLT scores on three sign language
corpora.

The key contributions of our paper include:
• The introduction of the multi-channel sign lan-

guage translation (MCSLT) task, emphasizing
the importance of modeling multiple signing
channels.

• The proposal of SignBLEU, a new metric for
MCSLT, designed to assess both temporal
and concurrent signals.

• Comprehensive experiments that set baseline
MCSLT scores for three sign language cor-
pora and demonstrate that SignBLEU aligns
with human evaluation.

2. Related Work

We examined the factors that have influenced SLT
to date, including corpora, models, and evaluation
metrics. We limited analysis to studies translating
text to transcribed sign language expressions.

2.1. Sign Language Corpora
Initially, sign language corpora (Sutton, 2002; Nei-
dle, 2007; Prillwitz et al., 2008; Crasborn and
Zwitserlood, 2008; Johnston, 2010) were primar-
ily constructed for linguistic analysis of sign lan-
guage expressions. Therefore, the scale of cor-
pora was relatively small, and there was a ten-
dency to transcribe sign language expressions in
as much detail as possible. This detailed tran-
scription was achieved using multi-tier transcrip-
tion tools like ELAN (Wittenburg et al., 2006) to an-
notate sign language expressions across multiple
signing channels or by developing image-based
notations specific to sign language, such as Sign-
Writing (Sutton, 2000) and HamNoSys (Hanke,

'02 '04 '06 '08 '10 '12 '14 '16 '18 '20 '22
year

0
1
2
3
4
5
6
7
8
9

>10

# 
of

 c
ha

nn
el

s

ASL-Homework-RGBD
ASLG-PC12
ATIS
AUSLAN
BSL Corpus
Corpus NGT
DEVISIGN
Dicta-Sign
KETI
KRSL-OnlineSchool
NCSLGR
NIASL2021
Public DGS Corpus
RWTH-BOSTON-104
RWTH-PHOENIX-Weather T
Sign2MINT
SignBank
SSL Corpus

Figure 2: The number of annotated channels of
published sign language corpora by year.

2004). However, the introduction of the RWTH-
PHOENIX-Weather 2014 T corpus (Camgöz et al.,
2018) signaled the advent of deep-learning-based
SLT, prompting a shift towards large-scale data
construction. Figure 2 illustrates the number of
annotated channels in sign language corpora pub-
lished by year. The scarcity of corpora for MCSLT
relative to corpora for SCSLT can be seen clearly
from this figure.

2.2. Sign Language Translation
Camgöz et al. (2018) introduced both an NMT-
based SLT method and the RWTH-PHOENIX-
Weather 2014 T corpus for SLT. SLT perfor-
mance improved with the adoption of the Trans-
former (Vaswani et al., 2017) and with increased
use of pre-trained language models as en-
coders (Camgöz et al., 2020; Miyazaki et al., 2020;
De Coster et al., 2021). Techniques like data aug-
mentation and multilingual NMT enhanced SLT
performance (Moryossef et al., 2021; Zhu et al.,
2023). However, as mentioned in §1, the above
methods do not generate non-manual expressions
or co-occurring expressions as they continued to
be limited to predicting simplistic single-channel
signals. To overcome this restriction, Jiang et al.
(2023) proposed a text-to-SignWriting method and
validated it by categorizing groups within the Sign-
Bank corpus (Sutton, 2002) into being either high-
resource or low-resource groups. Yet, with few
corpora adopting this transcription methodology,
a translation approach applicable to all multi-
channel sign language corpora is needed.

2.3. Evaluation Metrics for SLT
BLEU (Papineni et al., 2002) is the most widely
used metric in SLT research. For reproducibility in
reporting BLEU scores, many studies have recently
turned to using sacreBLEU (Post, 2018). Müller
et al. (2023) recommended using sacreBLEU
when reporting BLEU scores in SLT and called
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IX-3p.i  fs-JOHN  FUTURE  READ  BOOK  IX-loc.j

John will read the book.

English Text

ASL Expression for SCSLT

Linearized ASL Expression for MCSLT (all channels)
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Time-aligned American Sign Language (ASL) Expression

Blockified ASL Expression

D::IX-3p.i D::fs-JOHN D::FUTURE D::READ D::BOOK &ND::BOOK ~D::IX-loc.j

Linearized ASL Expression for MCSLT (manual channels)

Figure 3: An example of blockification and linearization.

for reporting metric signatures along with results.
As BLEU is precision-based, researchers explored
other types of metrics, such as ROUGE (Lin, 2004)
and METEOR (Lavie and Agarwal, 2007). Re-
searchers also employed chrF (Popović, 2015)
to measure the character-level n-gram F1 score,
and TER (Snover et al., 2006) to gauge the edit
distance between translated and reference sen-
tences. We argue that any metric for MCSLT
needs to be specifically adapted to handle simul-
taneous signals across multiple channels. Further
details on our proposed method are provided in §3
and §4.

3. Towards Multi-channel SLT

To model the complex form of multiple signal chan-
nels, we introduce two transformations: blockifica-
tion and linearization. Blockification converts time-
aligned annotation data (e.g., ELAN’s EAF format)
to a unit-less sequence of co-signed blocks, and
linearization converts block data to a simplified
text sequence. The block representation should
always be used for evaluation, while linearization
allows us to apply existing sequence-to-sequence
techniques to MCSLT. Figure 3 illustrates these
two processes.

3.1. Blockification

ELAN and equivalent annotation formats can accu-
rately transcribe sign language expressions down
to time alignment and categorical signal attributes,
but this representation is too rich to model effec-
tively. Instead, we discretize this representation
into a two-dimensional grid of equal-sized gloss
blocks.

The “blockification” process can be performed in
three steps. First, an ordered set of signing chan-
nels is identified along with a surjective mapping
from annotation tiers to channels (e.g., multiple
mouth gesture tiers not containing overlapping an-
notations may be mapped to a single “mouth” chan-
nel). Second, the signing timeline is segmented
into maximal segments of uninterrupted signing
such that barriers between segments correspond
to the start or end of at least one signal and no
annotation starts or ends within a segment. Third,
every non-empty segment is converted to a list of
gloss values, sorted according to the given tier-
channel mapping and subsequent channel order.

Note that to generate information-rich blocks, we
combine annotation tiers by articulator wherever
possible when blockifying data. For example, an-
notations for “head shake” and for “head nod” can
usually be combined into a single “head” channel,
assuming the gestures never co-occur.
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We can formally define the block representation
as a gloss-valued c′ × t′ matrix:

Bc′×t′ =

b1,1 . . . b1,t′
... . . . ...

bc′,1 . . . bc′,t′

 ,

where c′ is the number of channels, t′ is the num-
ber of signal overlap segments, and bij is either
a gloss or null. The block representation is de-
signed to capture dependent relationships across
channels, so that each column is an uninterrupted
segment of signing.

As a trivial example, consider the following
double-channel data with gloss annotations g1, g2,
and g3 on channels ch1 and ch2:

ch1: |———g1———|
ch2: |–g2–| |——g3——|

The block representation would then be the follow-
ing 2× 5 matrix:

B =
ch1 :
ch2 :

(
g1 : : g1 : : g1 : : g1 null
null g2 null g3 : : g3

)
,

where colons denote that a signal is continued to
the adjacent column. See the “Blockify” transfor-
mation in Figure 3 and Appendix A.1 for more in-
formation.

Although this process removes duration informa-
tion, it facilitates the modeling of sign overlap and
alignment, which is a more realistic modeling tar-
get to progress to from linear gloss sequence pre-
diction. We consider this representation to be the
gold-standard for basic MCSLT and always calcu-
late SignBLEU from block data (see §4.1 for more
details).

3.2. Linearization
Inspired by the graph linearization technique of
Bevilacqua et al. (2021), we transform block sign
language expressions into a format that is compat-
ible with existing translation models. Since man-
ual channels typically convey the most meaning,
to linearize time-aligned or block data, we first list
all manual signals, ordered by signal start time as
shown in the “Linearized ASL Expression for MC-
SLT (manual channels)” section of Figure 3. We
then prefix each signal with a “D::”, “ND::”, or “B::”
to indicate channels for the dominant hand, non-
dominant hand, and both hands for two-handed
signs, respectively. To model manual signal over-
lap, we use the following two prefix tokens:

• ∼: This token indicates that the current signal
starts after but overlaps with the previous man-
ual signal.

• &: This token indicates that the current signal
starts at the same time as the previous manual
signal (though their endings may differ).

Finally, we connect manual signals to co-
occurring non-manuals by inserting tokens for non-
manual signals directly before or after each man-
ual token with which they overlap, as illustrated
in the “Linearized ASL Expression for MCSLT (all
channels)” portion of Figure 3. By convention, we
interpret a sequence of identical non-manual to-
kens associated with adjacent manual tokens as
one continued non-manual signal, though repeti-
tion and continuation can be explicitly modeled by
introducing additional special tokens.

Since linearization removes signal start and end
alignment, it facilitates easier application of end-
to-end MCSLT and allows us to leverage large lan-
guage models (LLMs) trained on text data from the
same cultural region as our target sign language.
Note that we consider the additional information
loss in linearization to be an artifact or our current
translation technology and not intrinsic to our pro-
posed metric or task.

4. SignBLEU

In this section, we formally define SignBLEU as a
generalization of BLEU to multi-channel block data.

4.1. Multi-channel N-grams
To calculate SignBLEU, we convert block data
into n-grams using both the column and row di-
mensions. We propose using two types of n-
grams: temporal grams for capturing sequential
relationships within each signing channel (calcu-
lated along rows) and channel grams for captur-
ing co-occurring relationships between articulators
(calculated within columns). We denote the order
of temporal grams and channel grams by prepend-
ing the gram length with “t” and “c”, respectively.
E.g., the order of temporal grams of length four is
t4.

When calculating temporal grams, continued
glosses should be seen as a single element and
null-valued glosses should be skipped. Channel
grams can be calculated as the set of unordered n-
sized subsets of each column, again skipping null
values.

Continuing the double-channel example from
§3.1, we can calculate temporal grams of order t1
and t2 and channel grams of order c2 as below.

Size Grams

t1 {ch1g1}, {ch2g2}, {ch2g3}
t2 {ch2g2, ch2g3}
c2 {ch1g1, ch2g2}, {ch1g1, ch2g3}
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A comprehensive example of the n-gram calcu-
lation is presented in Appendix A.2.

Regarding n-gram generation from the block
and linear representations, it is essential to high-
light the following. As mentioned in §3.1, the
block representation does not capture duration
information—it only represents gloss overlap and
alignment. Therefore, raw signing data cannot be
reconstructed from the block representation. Sim-
ilarly, the linear representation cannot fully repre-
sent overlap, and conversion from linear to block
representation is imperfect. Since we consider the
block representation to be the correct representa-
tion for MCSLT, reference grams should always be
extracted from blockified annotation data, even if
hypotheses are generated from linear predictions.
If linearized reference data is lifted to a block repre-
sentation and used to generate n-grams, modeling
limitations (such as the information loss from lin-
earization) will be ignored and SignBLEU scores
will be inflated).

4.2. Scoring
After generating temporal and channel grams as
above, SignBLEU calculation is analogous to the
scoring method for BLEU, with minor adjustments.

First, modified precision is calculated for every
n-gram type and order, up to the maximum order:

pkn =

∑
h∈H

∑
g∈gramk

n(h)

Countclip(g)∑
h′∈H

∑
g′∈gramk

n(h
′)

Count(g′)
,

where k ∈ {t, c}, pkn is the precision score of order
n and gram type k, and gramk

n is the collection of
all n-grams of order n and gram type k. Next, a
brevity penalty is calculated to penalize short hy-
potheses.

BP =

{
1 if |h| > |r|
e(1−|r|/|h|) if |h| ≤ |r|

,

where |h| is the number of annotations in the hy-
pothesis and |r| is the number of annotations in
the reference with the most similar length. Note
that we use the raw annotation gloss count (not the
block count) to calculate the brevity penalty (e.g,
the number of glosses in the toy example from §3.1
is three). Finally, a composite score is created:

SignBLEU = BP × e

( nt∑
n=1

wt
n logpt

n+
mc∑
m=2

wc
m logpc

m

)
,

where wt
n is the weight for the temporal gram pre-

cision score of order tn, wc
m is the weight for the

channel gram precision score of order cm, and nt

and nc are the maximal orders for temporal and
channel grams, respectively.

To demonstrate the characteristics of different
gram orders, we calculate scores for temporal or-
ders (t1..t4) and channel orders (c2..c4) for all
experiments. Since SignBLEU uses two gram or-
ders, we limit each at four and report up to sixteen
order-based variants in our experiments. Similar to
BLEU, optimal gram orders and parameter values
will depend on the target data and task. Note that
we denote SignBLEU with maximal temporal order
nt and channel order nc as SB-tntcnc (e.g., for
temporal and channel order 1, we write SB-t1c1).

SignBLEU can be calculated over all semanti-
cally meaningful channels. However, a manual-
only variant of SignBLEU where n-grams are ex-
tracted only from the manual channels may be
appropriate, depending on the target task and
data. For reproducibility, SignBLEU also provides
a signature, similar to sacreBLEU (Post, 2018)
(see §5.2). A detailed scoring example is provided
in Appendix A.3.

5. Experimental Settings

This section provides an overview of data, metrics,
and implementations used in our experiments.

5.1. Datasets
Due to significant variation across sign lan-
guage and annotation methodologies, it is cru-
cial to assess the proposed SignBLEU on var-
ious datasets. To this end, we have se-
lected three sign language corpora. Table 1
contains key statistics of each corpus. Fur-
ther details on data splits and preprocessing
are provided at https://github.com/eq4all-projects/
SignBLEU/tree/main/reproducibility.

5.1.1. The Public DGS Corpus

The Public DGS Corpus (PDC) is part of the
DGS-Korpus project, first introduced by Prillwitz
et al. (2008). While PDC was not designed as
a parallel corpus for training machine translation
models, it features comprehensive multi-channel
annotations—each hand may be annotated indi-
vidually, and both mouthings and mouth gestures
have annotations—coupled with aligned German
and English sentences. We employ the third re-
lease (Konrad et al., 2020), which incorporates the
most recent updates as of 2020.

5.1.2. NIASL2021

Huerta-Enochian et al. (2022) introduced the NI-
ASL2021 corpus (NS21), a large-scale Korean-
Korean Sign Language (KSL) parallel corpus for
SLT, in 2021. The corpus, based on emergency
alerts and weather forecasts, includes non-manual

https://github.com/eq4all-projects/SignBLEU/tree/main/reproducibility
https://github.com/eq4all-projects/SignBLEU/tree/main/reproducibility
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PDC NS21 NCSLGR

Language Pair German-DGS Korean-KSL English-ASL

# Instances
train
dev.
test

61,912
983
985

29,980
1,397
1,398

1,124
375
375

Annotated Channels hands,
mouth

hands,
head,

eyebrows,
cheeks,
mouth

hands,
head,

eyebrows,
eyes,
mouth

Vocabulary Size source
target

19,947
4,674

4,323
4,503

1,994
918

Domain deaf
culture

emergency
alerts

short
stories

Table 1: Key statistics of sign language corpora.

signals from the head, eyebrows, cheeks, and
mouth, as well as separate annotations for each
manual channel.

5.1.3. NCSLGR

We use the ELAN version of Boston University’s
The National Center for Sign Language and Ges-
ture Resources corpus (NCSLGR) (Neidle and
Sclaroff, 2012). We use this corpus as it contains
the highest number of annotation tiers, despite its
relatively small size.

5.2. Metrics

To evaluate the utility of SignBLEU, we pitted it
against standard metrics used in SCSLT, includ-
ing BLEU, TER, chrF, METEOR, and ROUGE (specif-
ically ROUGE-L F1). Non-SignBLEU metrics were
calculated on linearized data (see §3.2).

We calculate two sets of metrics for each experi-
ment. First we calculate scores using all channels
and then again for representations of the manual
channels only. This allows us to better explore
the characteristics of each metric. We provide the
SignBLEU signature1used in our experiments and
sacreBLEU version 2.3.1 signatures for BLEU2,
TER3, and chrF4.

5.3. Implementation Details

We fine-tuned pre-trained LLMs on each test
corpora. We used BLOOM-CLP-German 1.5B
model5 for German-to-DGS, Ko-GPT-Trinity
1.2B model6 for Korean-to-KSL, and TinyLlama

1off:na||t:3|c:2|dim:1||m:sbleu|sm:exp|eff:n||v:0.1.0
2nrefs:1|case:mixed|eff:no|tok:none|smooth:exp
3nrefs:1|case:lc|tok:tercom|norm:no|punct:yes|asian:no
4nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no
5https://huggingface.co/malteos/bloom-1b5-clp-german
6https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5

Hyperparameter Search
Space

Pick
PDC NS21 NCSLGR

# Epochs {1, . . . , 8} 2 3 6
LR [10−6, 10−4] 3.9 ∗ 10−5 6.0 ∗ 10−5 8.4 ∗ 10−5

Grad. accum. {4, 8, 16, 32} 8 8 8
LoRA {T, F} F F F
Warm start {T, F} F T F
Batch size {8, 16} 8 16 16

Table 2: Hyperparameter search results.

Channels Metric
PDC NS21 NCSLGR

Dev. Test Dev. Test Dev. Test

All

SB-t1c1 20.15 19.43 24.75 26.27 21.70 22.02
SB-t1c2 14.25 13.43 21.19 22.67 18.01 18.30
SB-t1c3 0.00 0.00 16.02 17.60 12.27 12.45
SB-t1c4 - - 11.87 13.50 7.24 7.36
SB-t2c1 9.76 9.05 13.49 15.15 10.51 10.06
SB-t2c2 9.87 9.13 14.90 16.50 11.82 11.55
SB-t2c3 0.00 0.00 13.19 14.78 9.85 9.70
SB-t2c4 - - 10.79 12.38 6.75 6.69
SB-t3c1 4.89 4.20 7.52 9.17 5.88 5.06
SB-t3c2 5.86 5.12 9.38 11.08 7.42 6.66
SB-t3c3 0.00 0.00 9.33 10.99 7.04 6.47
SB-t3c4 - - 8.36 9.96 5.43 5.08
SB-t4c1 2.50 2.08 4.22 5.82 3.15 2.55
SB-t4c2 3.30 2.81 5.65 7.42 4.30 3.65
SB-t4c3 0.00 0.00 6.13 7.87 4.51 3.94
SB-t4c4 - - 5.92 7.59 3.85 3.44

Manual

SB-t1c1 19.56 19.23 20.96 23.32 20.75 20.97
SB-t1c2 0.00 0.00 20.14 22.33 5.52 6.73
SB-t2c1 9.54 9.21 10.47 13.07 13.71 13.23
SB-t2c2 0.00 0.00 12.85 15.40 6.51 7.23
SB-t3c1 4.87 4.40 5.65 8.18 9.44 8.59
SB-t3c2 0.00 0.00 7.69 10.40 5.93 6.08
SB-t4c1 2.57 2.13 3.26 5.51 6.29 5.67
SB-t4c2 0.00 0.00 4.66 7.23 4.70 4.68

Table 3: MCSLT Benchmark scores.

1.1B model7 for English-to-ASL translation. Each
model was fine-tuned and tested on one NVIDIA
A100 80GB GPU. We present hyperparameter
search results for each model in Table 2.

6. Experimental Results

We calculated and report SignBLEU benchmark
scores on the test set of each sign language cor-
pus (see §6.1). We then validated SignBLEU
by analyzing its correlation with text-based BLEU
scores at the system level and with human eval-
uation at the segment level (see §6.2 and §6.3).
Finally, we developed guidelines on how to inter-
pret SignBLEU scores and offer suggestions for
its usage (see §6.4).

6.1. MCSLT Benchmark Scores
We present MCSLT benchmark scores for the test
sets in Table 3. As mentioned in §1, these are ini-
tial MCSLT benchmarks, and we share them with

7https://huggingface.co/TinyLlama/TinyLlama-1.
1B-intermediate-step-480k-1T

https://huggingface.co/malteos/bloom-1b5-clp-german
https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5
https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-480k-1T
https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-480k-1T


14802

1 2 3 4
4

3
2

1

- - - -
8.8 6.7 5.0 3.7
12.8 10.6 8.9 7.6
8.8 6.7 5.0 3.6

PDC

1 2 3 4

4
3

2
1

107.2 95.1 85.1 77.1
135.9 123.8 113.8 105.8
205.6 193.5 183.5 175.5
100.3 88.2 78.2 70.2

NS21

1 2 3 4

4
3

2
1

12.4 8.9 6.7 5.3
20.0 16.5 14.4 12.9
36.5 32.9 30.8 29.4
10.8 7.3 5.2 3.7

NCSLGR

1 2 3 4

2
1

5.6 4.4 3.4 2.6
5.5 4.3 3.4 2.6

1 2 3 4

2
1

119.4 114.0 108.6 103.2
82.9 77.5 72.1 66.7

1 2 3 4

2
1

8.0 6.6 5.5 4.5
6.8 5.4 4.3 3.3

0

5

10

100

150

200

10

20

30

3
4
5

75
100

5.0

7.5

temporal length

ch
an

ne
l l

en
gt

hAll
Channels

Manual
Channels

Figure 4: The average gramt and gramc counts per sentence by maximum gram order.

the hope that we can encourage further research
and advancements in MCSLT.

We report all-channel and manual-channel
SignBLEU scores up to gram order t4c4, result-
ing in 24 different metrics. Naturally, it can be chal-
lenging to determine which metrics to prioritize for
each corpus. We suggest analyzing both gram
frequencies and annotation methodologies as a
good starting point. Figure 4 presents the aver-
age nt-gram and nc-gram counts per sentence cat-
egorized by temporal and channel lengths. These
counts not only reveal the characteristics of each
corpus, but can also provide a glimpse into which
temporal and channel levels it would be beneficial
to focus on for each corpus.

6.2. Correlation with Text-side BLEU
Inspired by the success of backtranslation for
translation evaluation and given that our three
test sets have both text-side and sign-side anno-
tations, we measured the correlation between cor-
pus BLEU scores on the text side and various cor-
pus metric scores on the sign side. To do so, we
make two assumptions: supplied text translations
of sign language data are of high quality and cor-
pus BLEU is reliable for system evaluation.

We simulated translation systems using ran-
domly sampled hypothesis and reference sen-
tences. For each corpus and simulation run, we
sampled 200 instances, splitting the samples into
two sets of 100 instances. We used one set as
reference translations and one set as hypothesis
translations. We then scored the simulated sys-
tem with each metric. We repeated these sam-
pling and scoring steps 10,000 times to get 10,000
system scores. Finally, we calculated rank correla-
tion (using Spearman’s Rho and Kendall’s Tau-b)
between each sign-side metric and the text-side
BLEU scores. Unlike most system-level analysis,
this simulation does not compare system perfor-
mance over the same instances. However, due to
the law of large numbers, this will not matter given
enough samples.

Channels Metric
PDC NS21 NCSLGR

ρ τ ρ τ ρ τ

All

Existing Metrics
BLEU-1 .206 .140 .153 .104 .128 .083
BLEU-2 .258 .178 .228 .153 .276 .184
BLEU-3 .264 .182 .272 .183 .450 .302
BLEU-4 .267 .184 .251 .171 .457 .305
chrF .127 .085 .127 .085 .205 .136
METEOR .229 .154 .199 .135 .277 .180
ROUGE .225 .151 .196 .133 .242 .160
1-TER .081 .055 .099 .065 -0.021 -0.013

SignBLEU
SB-t1c1 .207 .140 .186 .125 .248 .163
SB-t1c2 .238 .169 .211 .142 .260 .174
SB-t1c3 .054 .044 .193 .130 .325 .226
SB-t1c4 - - .156 .106 .400 .321
SB-t2c1 .229 .173 .205 .138 .389 .261
SB-t2c2 .259 .201 .230 .154 .372 .248
SB-t2c3 .064 .053 .217 .146 .359 .251
SB-t2c4 - - .178 .120 .403 .325
SB-t3c1 .401 .326 .189 .127 .543 .416
SB-t3c2 .410 .334 .211 .142 .543 .414
SB-t3c3 .064 .053 .220 .149 .537 .417
SB-t3c4 - - .197 .134 .451 .367
SB-t4c1 .390 .318 .172 .117 .648 .525
SB-t4c2 .389 .318 .185 .126 .648 .524
SB-t4c3 .064 .053 .201 .137 .618 .498
SB-t4c4 - - .207 .142 .466 .380

Manual

Existing Metrics
BLEU-1 .186 .125 .221 .148 .362 .249
BLEU-2 .264 .181 .309 .211 .604 .431
BLEU-3 .274 .189 .305 .209 .614 .441
BLEU-4 .279 .193 .301 .207 .613 .439
chrF .146 .099 .255 .173 .445 .308
METEOR .224 .151 .262 .178 .488 .335
ROUGE .208 .140 .236 .161 .372 .251
1-TER .081 .054 .122 .081 -0.026 -0.017

SignBLEU
SB-t1c1 .191 .128 .238 .161 .369 .252
SB-t1c2 .062 .050 .235 .160 .368 .292

SB-t2c1 .320 .255 .326 .223 .623 .477
SB-t2c2 .084 .069 .320 .218 .449 .364

SB-t3c1 .422 .345 .319 .219 .703 .570
SB-t3c2 .084 .069 .319 .218 .475 .387
SB-t4c1 .389 .318 .280 .204 .689 .561
SB-t4c2 .070 .057 .280 .204 .485 .395

Table 4: System level correlations of text-side
BLEU with multiple sign language metrics. We
highlight the top-1 and top-5 highest correlation
scores for readability.

Table 4 provides a summary of the correlation re-
sults. All three datasets showed higher correlation



14803

A
ll 

C
h
a
n
n
e
ls

M
a
n
u
a
l 
C

h
a
n
n
e
ls

Easy Hard Total

𝜌 𝜏 𝜌 𝜏 𝜌 𝜏

(a) similarity ranking

A
ll 

C
h
a
n
n
e
ls

M
a
n
u
a
l 
C

h
a
n
n
e
ls

Naturalness Fidelity Combined

𝜌 𝜏 𝜌 𝜏 𝜌 𝜏

(b) direct assessments

Figure 5: Correlations with human judgments. Highest scores are highlighted in bold for readability.

with a SignBLEU variant than with other metrics.
We can also see features of each dataset reflected
in the different gram order scores. For example,
the difference between single-channel and double-
channel manual SignBLEU correlation for PDC is
likely due to how most PDC manual signs are anno-
tated for only a single channel. Contrast this with
NS21 which contains mostly two-handed (symmet-
ric and asymmetric) manuals and shows little differ-
ence between single-channel and double-channel
manual SignBLEU scores.

6.3. Correlation with Human Judgment
We performed two additional segment-level exper-
iments to explore agreement with human evalua-
tion.

6.3.1. Task #1: Ranking

We examined the correlation between sentence-
level similarity rankings by SignBLEU and human-

based similarity rankings on NS21, using a set of
147 questions. For each question, a reference
sign language video and four candidate videos
were provided. Most videos were between ten and
twenty seconds long. Evaluators ranked the candi-
date videos by similarity to the reference video and
were instructed to base their rankings on mean-
ing similarity first and signing flow and vocabu-
lary use second. Out of the 147 questions, 115
were easier to rank (termed “Easy”) as the can-
didate videos were randomly sampled from both
the same and different domains as the reference
video, leading to larger semantic differences be-
tween candidate videos. The remaining 32 ques-
tions, labeled “Hard”, posed a greater challenge.
Their candidate videos were intentionally sampled
to have a unigram gloss precision of over 90%, re-
quiring close scrutiny to determine similarity rank-
ings. While this is not a translation task, it provides
insight into the MCSLT and SignBLEU.

Four native signers individually ranked candi-
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date videos. We then aggregated their responses
into labels, allowing for ties. Metric-based simi-
larity was calculated with our test metrics applied
to existing annotations for each video. To reduce
bias, candidate videos were selected with one ad-
ditional criterion–all five videos had to have either
the same signer wearing the same outfit or have
different signers.

Figure 5a presents the rank correlation as a
heatmap. Correlation was computed using both
Spearman’s Rho (ρ) and Kendall’s Tau-b (τ ). Man-
ual BLEU-1 and manual BLEU-2 showed the high-
est agreement with human scores on the total
ranked dataset and on the “Easy” subset, respec-
tively. Post-evaluation interviews with the four
evaluators revealed that for the “Easy” ranking
task, non-manuals and co-occurring signs could
be completely ignored and almost all candidate
videos could still be correctly ranked. Thus, it
makes sense that a simple BLEU-1 or BLEU-2
score would perform well for this task. On
the other hand, rankings from the “Hard” sub-
set showed higher correlation with all-channel
SignBLEU scores, especially scores of channel
order c2, c3, and c4. This suggests that evalu-
ation of multiple channels, including non-manual
channels, was required to effectively rank the can-
didates.

It is worth noting that since NS21 was con-
structed from manually-translated emergency
alerts and weather broadcasts, non-manual sig-
nals may play a secondary role to manual signals,
in contrast to collected from spontaneous signing.

6.3.2. Task #2: Direct Assessments

Since our primary objective was to validate
SignBLEU as a metric for machine translation, we
collected native signer direct assessments of auto-
matic translation results and compared them with
metric scores. We randomly selected 53 instances
from the development subset of NS21 and gener-
ated translations for each instance using the same
model used to report NS21 benchmark scores. To
avoid bias introduced by the influence of an avatar
representation, we hired two experienced signers
to create signing videos based on the translations
by re-signing the predicted multi-channel glosses.
Eighteen evaluators then scored each video. For
each instance, each evaluator first watched the re-
signed video and scored it for naturalness. They
then viewed one of the correct reference transla-
tion videos and scored the re-signed video for fi-
delity. All training and evaluation was conducted
in sign language. Naturalness and fidelity were
both evaluated on eleven-point Likert scales la-
beled uniformly from 0 to 100.

Again, we analyzed correlation between evalu-
ator and metric-based scores using Spearman’s

Rho (ρ) and Kendall’s Tau-b (τ ). Results are dis-
played in Figure 5b. Note that we used z-scores
calculated separately over each evaluator’s natu-
ralness and fidelity scores for correlation analysis.
“Combined” was calculated from the mean of nat-
uralness and fidelity z-scores.

All metrics showed higher correlation with fidelity
than with naturalness. This aligns with results
from the “Easy” subset of the similarity ranking
experiment, where metrics evaluated on manual
channels demonstrated higher correlations than
those on all channels. These experimental re-
sults further illustrated that NS21 is more biased
towards manual information. Overall, we found
that SignBLEU outperformed existing metrics. In-
terestingly, manual SB-t1c2, which emphasizes
co-occurring signs, showed the highest correla-
tion with human-scored naturalness, and man-
ual SB-t3c2, which captures a sequential rela-
tionship in addition to co-occurring relationships,
showed the best correlation with human-scored fi-
delity.

6.4. SignBLEU Guideline

To use SignBLEU, an appropriate max gram order
must be selected. One can simply use the t1c2
variant due to the high number of temporal and
channel grams of this order, as seen in Figure 4.
This variant also showed high correlation with hu-
man judgment on NS21. However, it showed poor
and mediocre correlation with manual-only and all-
channel PDC, respectively.

If human evaluation is available for one’s corpus,
it should be utilized to find appropriate gram orders.
If it is not available, but text-side translations for
your data are, we recommend performing correla-
tion analysis with text-side BLEU, as in §6.2.

To help with gram order and other parameter se-
lection, we will publish additional analysis online at
https://github.com/eq4all-projects/SignBLEU.

7. Conclusions and Future Work

In this study, we proposed a new gloss-based sign
language translation (SLT) task that we termed
multi-channel sign language translation (MCSLT).
MCSLT refers to any SLT that generates gloss pre-
dictions across multiple signal channels. We then
proposed and validated a new metric, SignBLEU,
for MCSLT evaluation. We hope that more SLT re-
search will adopt the multi-channel approach, and
we will continue to evaluate and refine SignBLEU
as an open-source solution to MCSLT evaluation.

https://github.com/eq4all-projects/SignBLEU
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ing they felt no pressure. Moreover, they were
made aware of their right to withdraw from the
study at any time without any repercussions.

To ensure participant compensation, we col-
lected certain personal information. However,
upon completing the compensation-related admin-
istrative processes, all personal data was de-
stroyed. For the sake of data security, access to
the evaluation data was restricted to the authors,
all of whom are registered researchers under the
research plan sanctioned by the IRB.

Our study, aimed at comparing and assessing
sign language videos, necessitated the inclusion
of deaf individuals who use sign language as their
primary language of communication. Every step,
ranging from recruitment and guideline explana-
tion to the evaluation itself, was communicated
in sign language to ensure clear communication.
Risks for participants were kept to a minimum.

Participants spent a maximum of 2 hours in the
study, spanning the time from introduction to the
evaluation guidelines through to the completion of
the actual evaluation. As compensation for their
time and insights, they received payment exceed-
ing the national minimum wage.

10. Limitations

• This study was focused on developing and vali-
dating a metric for automatic evaluation of MC-
SLT. Although the translation model used in
our experiments was optimized through hyper-
parameter search, the reported scores should
be considered only as preliminary benchmark
scores for MCSLT, and we do not consider our

modeling approach itself to be a technical contri-
bution.

• Linearized sign language expressions and
equivalent multi-channel sign language ex-
pressions predicted by MCSLT models are
human-readable but are not directly viewable
as sign language expressions. Therefore, to
conduct human evaluations of naturalness and
fidelity, we presented the output as a sign lan-
guage video re-signed by native signers so that
the evaluator would not be negatively biased
by either raw visualization or by an avatar rep-
resentation. However, this approach required
re-signing the predicted MCSLT exactly, which
proved extremely difficult. While we cannot
guarantee that we were able to eliminate all
production bias, we conducted several rounds
of review for each video to remove extraneous
signals. Since most errors could be identified
quickly, the bigger challenge was simply the
energy- and time-cost of re-signing. Since
the synthetic utterances included many small
“errors”, signers had to practice each utterance
before filming and most videos were re-filmed
at least once. Due to these costs, we advise
against using this approach and emphasize
the need to find a better solution to isolated
human evaluation of SCSLT and MCSLT re-
sults, unbiased by avatar and other production
methodologies.

• Though we provided some interpretation as to
why certain max gram order variants performed
well or poorly, it is important to recognize that the
optimal choice of max gram order will depend on
the target corpus and the user’s specific objec-
tives.

• All corpora used in this study contain differ-
ent language pairs (German-DGS, Korean-KSL,
and English-ASL). Due to this, there were eth-
ical and accessibility-related limitations to per-
forming user evaluations for every corpus. To
alleviate this to some extent, and inspired by the
practice of assessing quality through backtrans-
lation in sign language production research, we
calculated correlation with text side BLEU score,
attempting to provide as objective a validation as
possible for all sign language corpora.
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Appendix A. Calculation Example

This section illustrates how SignBLEU is calcu-
lated using two example documents, document
1 and document 2, as seen in figure 6 (top and
bottom, respectively). This appendix is provided
to supplement the explanations for blockification

from §3 and both SignBLEU scoring (including
gram creation) from §4.

See Appendix A.1 the example blockification cal-
culation and Appendix A.2 for gram calculation.
Scoring is an extension of the modified n-gram
precision scoring from the original BLEU algorithm,
and the calculation for this example is covered
briefly in Appendix A.3.

The two examples shown here are synthetic
documents containing some degree of gloss over-
lap. Manual tiers are “both” for signals using both
hands and “right” for right-hand only signals. All
other tiers are non-manual tiers.

A.1. Multi-Channel Blocks
Blocks can be generated iteratively using annota-
tion start and end times.

Let G denote a collection of gloss annotations;
let T = {ti} denote the collection of all gloss start
and end times, de-duplicated and sorted in as-
cending order; and let g.start, g.end, g.tier, and
g.name denote annotation start, end, tier, and
gloss name for annotation g. Also assume that we
have a mapping M : tier 7→ channel that maps
tiers to target channels. M need not be injective as
we may want to map multiple tiers to the same sig-
nal channel. The block representation B of a doc-
ument can then be calculated using algorithm 1.

Algorithm 1 blockify(G,T,M) : B

1: n← (|T | − 1)
2: B ← {}
3: for i ∈ {1...n} do
4: ▷ Initialize block dictionary
5: block ← {}
6: gs← {g|g ∈ G,

g.start ≤ ti < ti+1 ≤ g.end}
7: for g ∈ gs do
8: ▷ Denote continuation
9: prefix← “ : ” if g.start < ti else “ ”

10: suffix← “ : ” if g.end > ti+1 else “ ”
11: name← prefix+ g.name+ suffix
12: channel ←M(g.tier)
13: block[channel]← name
14: end for
15: if |block| > 0 then
16: B.append(block)
17: end if
18: end for
19: Return B

This generates a sequence of blocks, where each
block maps channels to gloss names. By con-
vention, we add a key-value pair for each missing
channel, mapping the channel to null. Glosses
may be renamed by pre- or post-pending a spe-
cial symbol (shown here as “ : ”) to the gloss
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name to mark continuation from the previous or to
the next block, respectively. Continuation identi-
fiers are used to calculate intra-channel (temporal)
grams directly from the block representation and
are used in several SignBLEU variants that we are
still developing and plan to release in the future.
Given any fixed channel order γ, we can represent
a block sequence as a block matrix by converting
each block to a column vector with values ordered
by the order of their keys in γ. We consider the
block matrix synonymous with the block sequence
representation and refer to them both as block rep-
resentations.

See Table 5 for example block representations
of both ELAN examples from Figure 6.

A.2. Temporal and Channel Grams

Given annotation data represented as a block ma-
trix, n-grams can be easily calculated by extracting
n adjacent glosses from each row across blocks
(temporal grams) and sets of size n of non-null
glosses across channels from within each column
(channel grams).

A.2.1. Temporal Grams

Given a block matrix B, temporal grams can be
calculated as

∪
row∈B

gramn({b | b ∈ row, b 6= null,¬pre(b)}),

where gramn is the standard n-gram function
and pre is true if and only if there is a continuation
prefix. All experiments from this study used this
simple implementation to extract temporal grams
of order t1..t4 from each channel. Since chan-
nels may be constructed from multiple tiers dur-
ing blockification, extracting temporal grams from
the block representation may be easier than from
the original time-aligned annotation representa-
tion. Simply collect adjacent non-null glosses,
skipping those that start with continuation mark-
ers.

We are experimenting with including whitespace
(null values) and with weighting based on the
number of blocks a single signal spans, and we
may introduce parameters to allow for different
temporal gram calculations in the future.

A.2.2. Channel Grams

Channel grams are intra-block, inter-channel
grams (i.e., constructed from within a single block
column). However, since channels have no inher-
ent order, channel grams of size n from a given

block are the set of all n-length subsets of non-
null-annotations from that block. When calcu-
lating both temporal and channel grams, we skip
channel grams of order c1 since the high level of
overlap between temporal grams of order t1 and
channel grams of order c1 led to worse perfor-
mance.

A.2.3. 2D Grams

We experimented with two-dimensional grams con-
structed from both the temporal and channel di-
mensions, but the combination of separate tempo-
ral and channel grams performed better than the
implementations of two-dimensional grams that
we tested. Two-dimensional grams also suffer
from two other challenges: they are more sensi-
tive to small alignment changes and they lead to
a much higher computational complexity due to
the increased number of unique grams. We plan
to continue improving the two-dimensional imple-
mentation as a possible future improvement.

A.3. Scoring
As stated above, scoring is analogous to that of
the original BLEU algorithm, with adjustments to
handle multiple types of n-grams.

We found that weighting each gram order and
type evenly performed well in our original experi-
ments and recommend doing so as a safe start-
ing point. We calculate the brevity penalty using
the number of annotations included in the calcula-
tion, which can be calculated from the block rep-
resentation by counting glosses that do not start
with a continuation prefix. We tested several other
variants, including the number of blocks, the num-
ber of glosses (with or without a continuation pre-
fix), and the number of blocks containing man-
ual glosses, but the simple annotation count per-
formed the best in our initial experiments.

For the hypothesis and reference presented in
Figure 6, the modified precision for orders t1, t2,
t3, and c2 are as follows:

Order Score

t1 0.368421
t2 0.266667
t3 0.181818
c2 0.625

Finally, we can calculate the raw aggregate
score, the brevity penalty, and the final SignBLEU
score:

Score

Raw 0.325056
BP 0.768621

SignBLEU 0.249844
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Figure 6: Sample ELAN instances.
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Doc Channel
Blocks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1

right tomorrow1 date:8 weather1 afternoon1 start1 snow1: :snow1 - temp2: :temp2 - cold1 - danger1: :danger1 - - -

left - - weather1 afternoon1 start1 snow1: :snow1 - temp2: :temp2 - cold1 - - - - - -

eye - - - - - - EBf: :EBf - - - - - - EBf: :EBf: :EBf -

mouth - - - - - - - - - Ci: :Ci: :Ci: :Ci - - - Mo1: :Mo1

2

right - night1: :night1 start1: :start1 - - weekend1: :weekend1 - date:10: :date:10 day1 until1 snow1: :snow1 - temp2: :temp2 - cold1 danger1

left - night1: :night1 start1: :start1 - - weekend1: :weekend1 - - - day1 until1 snow1: :snow1 - temp2: :temp2 - cold1 -

eye - - - - - - - - - - - - - - - EBf: :EBf - - - - -

mouth Mmo: :Mmo - - Mmo: :Mmo Mmo: :Mmo - Mmo: :Mmo - - - - - - - Ci: :Ci - -

Table 5: Example blocks

Order Grams
Doc 1 Doc 2

t1

eye_EBf ×2, right_tomorrow1, right_date:8, right_weather1, right_afternoon1, right_start1, eye_EBf, right_night1, right_start1, right_weekend1, right_date:10, right_day1
right_snow1, right_temp2, right_cold1, right_danger1, left_weather1, left_afternoon1, right_until1, right_snow1, right_temp2, right_cold1, right_danger1, left_night1,
left_start1, left_snow1, left_temp2, left_cold1, mouth_Ci, mouth_Mo1 left_start1, left_weekend1, left_day1, left_until1, left_snow1, left_temp2,

left_cold1, mouth_Mmo ×4, mouth_Ci

t2

(eye_EBf eye_EBf), (right_tomorrow1 right_date:8), (right_date:8 right_weather1), (right_night1 right_start1), (right_start1 right_weekend1), (right_weekend1 right_date:10),
(right_weather1 right_afternoon1), (right_afternoon1 right_start1), (right_start1 right_snow1), (right_date:10 right_day1), (right_day1 right_until1), (right_until1 right_snow1),
(right_snow1 right_temp2), (right_temp2 right_cold1), (right_cold1 right_danger1), (right_snow1 right_temp2), (right_temp2 right_cold1), (right_cold1 right_danger1),
(left_weather1 left_afternoon1), (left_afternoon1 left_start1), (left_start1 left_snow1), (left_night1 left_start1), (left_start1 left_weekend1), (left_weekend1 left_day1),
(left_snow1 left_temp2), (left_temp2 left_cold1), (mouth_Ci mouth_Mo1) (left_day1 left_until1), (left_until1 left_snow1), (left_snow1 left_temp2)

(left_temp2 left_cold1), (mouth_Mmo mouth_Mmo) ×3, (mouth_Mmo mouth_Ci)

c2

(left_weather1 right_weather1), (left_afternoon1 right_afternoon1), (left_start1 right_start1), (left_night1 right_night1) ×4, (mouth_Mmo right_night1), (left_night1 mouth_Mmo),
(left_snow1 right_snow1) ×2, (eye_EBf right_snow1), (eye_EBf left_snow1), (left_start1 right_start1) ×2, (mouth_Mmo right_start1), (left_start1 mouth_Mmo),
(left_temp2 right_temp2) ×2, (mouth_Ci right_temp2), (left_temp2 mouth_Ci), (left_weekend1 right_weekend1) ×2, (mouth_Mmo right_weekend1), (left_weekend1 mouth_Mmo),
(left_cold1 right_cold1), (mouth_Ci right_cold1), left_cold1 mouth_Ci), (mouth_Mmo right_date:10), (left_day1 right_day1), (left_until1 right_until1),
(eye_EBf right_danger1), (eye_EBf mouth_Mo1) (left_snow1 right_snow1) ×2, (eye_EBf right_snow1), (eye_EBf left_snow1),

(left_temp2 right_temp2) ×2, (mouth_Ci right_temp2), (left_temp2 mouth_Ci),
(left_cold1 right_cold1)

t3

(right_tomorrow1 right_date:8 right_weather1), (right_date:8 right_weather1 right_afternoon1), (right_night1 right_start1 right_weekend1), (right_start1 right_weekend1 right_date:10),
(right_weather1 right_afternoon1 right_start1), (right_afternoon1 right_start1 right_snow1), (right_weekend1 right_date:10 right_day1), (right_date:10 right_day1 right_until1),
(right_start1 right_snow1 right_temp2), (right_snow right_temp2 right_cold1), (right_day1 right_until1 right_snow1), (right_until1 right_snow1 right_temp2),
(right_temp2 right_cold1 right_danger1), (left_weather1 left_afternoon left_start1), (right_snow1 right_temp2 right_cold1), (right_temp2 right_cold1 right_danger1),
(left_start1 left_snow1 left_temp2), left_snow1 left_temp2 left_cold1) (left_night1 left_start1 left_weekend1), (left_start1 left_weekend1 left_day1),

(left_weekend1 left_day1 left_until1), (left_day1 left_until1 left_snow1),
(left_until1 left_snow1 left_temp2), (left_snow1 left_temp2 left_cold1),
(mouth_Mmo mouth_Mmo mouth_Mmo) ×2, (mouth_Mmo mouth_Mmo mouth_Ci)

Table 6: Example grams.
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