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Abstract
Many utterances convey meanings that go beyond the literal meaning of a sentence. One class of such meanings
is scalar implicatures, a phenomenon by which a speaker conveys the negation of a more informative utterance
by producing a less informative utterance. This paper introduces a Natural Language Inference (NLI) dataset
designed to investigate the ability of language models to interpret utterances with scalar implicatures. Our dataset is
comprised of text extracted from the C4 English text corpus and annotated with both crowd-sourced and expert
annotations. We evaluate NLI models based on DeBERTa to investigate 1) whether NLI models can learn to
predict pragmatic inferences involving gradable adjectives and 2) whether models generalize to utterances involving
unseen adjectives. We find that fine-tuning NLI models on our dataset significantly improves their performance to
derive scalar implicatures, both for in-domain and for out-of domain examples. At the same time, we find that the
investigated models still perform considerably worse on examples with scalar implicatures than on other types of NLI
examples, highlighting that pragmatic inferences still pose challenges for current models.
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1. Introduction

A hallmark property of human language under-
standing is deriving interpretations of utterances
that go beyond the literal meaning (Grice, 1975).
For example, in many contexts, the determiner
some, which has the literal meaning of ‘at least
one,’ is intended to convey some, but not all, as
exemplified in (1).

(1) a. Alex ate some of the cookies.
b. ⇝ Alex did not eat all of the cookies.

This pragmatic phenomenon, known as scalar
implicature (Horn, 1984; Hirschberg, 1985), gener-
ally is assumed to arise from listeners reasoning
about alternative utterances that the speaker could
have used but did not. In this context, assuming
that a speaker knows how many cookies Alex ate,
a listener reasons that if Alex had eaten all cook-
ies, it would have been more informative to say
so, and consequently a listener draws the infer-
ence that Alex did not eat all of the cookies. The
phenomenon is called scalar implicature because it
involves pairs (or sets) of words that can be ordered
on a scale, often referred to as scalar items.

While for toy examples such as (1), the interpre-
tation of utterances involving scalar implicatures
can be straightforwardly computed using models of
pragmatic reasoning (e.g., Franke, 2009; Goodman
and Frank, 2016), inferring the intended meaning is
a lot more challenging for naturalistic utterances for
two reasons: First, scalar implicatures are context-
sensitive. For example, unlike (1), many utterances
with some, such as “You sound like you have some
small ones in the background,” do not give rise to

scalar implicatures (Degen, 2015). Second, scalar
items that give rise to implicatures are an open
class. This class includes determiners like some
and all but also scalar adjectives, such as good
and great (Kennedy and McNally, 2005), or verbs,
such as start and finish (see e.g., van Tiel et al.,
2016).

To what extent large language models (LLMs)
such as BERT (Devlin et al., 2018) or GPT-3 (Brown
et al., 2020) that form the foundation of most of to-
day’s natural language understanding systems can
draw such pragmatic inferences is still an open
question, especially if one moves beyond the im-
plicature from some to some but not all and if one
considers the context sensitivity of these utterances.
One piece of evidence for some models struggling
with scalar implicature comes from Jeretic et al.
(2020) who generated the template-based dataset
IMPPRES for evaluating natural language infer-
ence (Dagan et al., 2013; Bowman et al., 2015,
NLI) models on their ability to derive scalar implica-
tures. They found that a BERT-based NLI model
rarely predicted that some entails not all or derived
any other scalar implicatures. However, these au-
tomatically generated utterances were not verified
and do not provide a lot of context, so it remains
unclear whether humans would actually derive the
purported implicatures in all these cases. On the
other hand, for the some-not all scale, Schuster
et al. (2020) showed that a BERT-based model
can learn to predict context-sensitive scalar impli-
catures with relatively high accuracy, if it is trained
on similar examples. However, considering that
this work is limited to one scale, it remains unclear
whether models trained on examples including one
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scale can generalize to other scales.
In this work, we present SIGA (Scalar Implica-

tures with Gradable Adjectives), a novel English
NLI dataset targeting scalar implicatures. Impor-
tantly, the examples are extracted from naturalistic
corpora together with their context and we anno-
tate all examples using crowd-sourcing and expert
annotations. Further, we focus on an open class of
scalar items, namely gradable adjectives (Kennedy
and McNally, 2005).

We then use this dataset to evaluate a state-of-
the-art NLI model based on DeBERTa (He et al.,
2020). Specifically, we consider the following two
questions:

1. Can NLI models learn to predict scalar implica-
tures for a broad class of gradable adjectives?

2. Do the predictions of scalar implicatures gener-
alize to examples that involve pairs of gradable
adjectives that the model was not finetuned
on?

To answer these two questions, we finetune De-
BERTa models on both the Multi-Genre Natural
Language Inference corpus (MNLI; Williams et al.,
2018) and a subset of our novel dataset. We then
evaluate the model both on an in-domain evalua-
tion set that is comprised of examples that contain
ajdective pairs that appear in the finetuning dataset,
and on an out-of-domain evaluation set (Linzen,
2020) that is comprised of examples that contain
adjective pairs that do not appear in the finetuning
dataset.

We find that performance of NLI models on ut-
terances with implicatures increases significantly
when finetuned on our dataset of implicatures com-
pared to a baseline model that was only finetuned
on MNLI. Furthermore, we find that they exhibit
some level of generalization since we observe sim-
ilarly large gains on examples involving adjective
pairs outside of the finetuning distribution. At the
same time however, we find considerably lower ac-
curacy on examples involving implicatures than on
other NLI examples, highlighting that such prag-
matic inferences still pose challenges for current
models. We make our dataset and the experi-
ment code publicly available at https://github.
com/Rashid-Ahmed/SIGA-nli.

2. Related work

The work most closely related to ours is Jeretic
et al. (2020), which also constructed a dataset for
evaluating whether NLI models can derive different
types of implicatures or whether they predict labels
that are more in line with the literal meaning of sen-
tences. However, unlike our work, they relied on
automatically generated examples instead of nat-
urally occurring sentences, and they did not verify

whether humans derive implicatures for their exam-
ples. Zheng et al. (2021) also used templates to
construct the GRICE dataset that contains short di-
alogs for testing the understanding of various prag-
matic inferences, including sclar implicatures. They
used this dataset to evaluate different (L)LMs on
their ability to learn to derive implicatures. Ruis et al.
(2022) evaluated the zero-shot and few-shot abili-
ties of several recent LLMs for their ability to answer
indirect questions, which sometimes also require
deriving scalar implicatures, Hu et al. (2023a) eval-
uated the ability of LLMs to draw a wide range of
pragmatic inferences using an expert-created set
of examples, and (Hu et al., 2023b) showed that
language models’ predictions of alternatives predict
when humans derive scalar implicatures. However,
none of these works used naturalistic examples
with a broad range of gradable adjectives.

A second line of work investigated how to auto-
matically extract sets of adjectives that map onto
the same scales (e.g., warm and hot). de Marn-
effe et al. (2010); de Melo and Bansal (2013) and
Shivade et al. (2015) used corpus statistics for
this purpose. Kim and de Marneffe (2013) inves-
tigated to what extent static word embeddings en-
code adjectival scales, and Kim et al. (2016) retrofit
static word embeddings to better encode adjecti-
val scales. In the context of pretrained language
models, Garí Soler and Apidianaki (2020) showed
that adjectival scales can be reconstructed to some
extent from the representations of BERT.

Finally, Liu et al. (2023) automatically gener-
ated an NLI dataset for evaluating different proper-
ties about the interpretation of gradable adjectives.
They found that a model finetuned only on MNLI
fails to predict relationships between sentences
with different uses of gradable adjectives but addi-
tional finetuning on a subset of their dataset led to
considerable improvements in model predictions,
and that these improvements also generalized to
novel adjectives. Lorge and Pierrehumbert (2023)
devised a similar task for scalar adverbs, such as
sometimes and often.

These works trying to extract scalar items or
probing language models for relationships between
scalar items concern an important prerequisite for
deriving scalar implicatures, namely identifying the
members of the scale which are required to com-
pute the implicature (see also Section 3). However,
just because it is possible to extract this information
from a language model does not necessarily mean
the model uses this information in interpreting ut-
terances, which is the focus of our work.

3. Background

The phenomenon we aim to target with our dataset
is scalar implicatures with gradable adjectives.

https://github.com/Rashid-Ahmed/SIGA-nli
https://github.com/Rashid-Ahmed/SIGA-nli
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Gradable adjectives (Kennedy and McNally, 2005)
are adjectives that map to some scale. For exam-
ple, the adjectives warm and hot are both grad-
able adjectives that map to a temperature scale.
Most semantic theories assume that the meaning of
such adjectives is based on a contextually-defined
threshold θ (Kennedy and McNally, 2005; Lassiter
and Goodman, 2017). A sentence, such as (2a),
is then semantically true if the temperature of the
coffee exceeds a threshold θwarm, whereas (2b)
is true if the temperature of the coffee exceeds a
threshold θhot > θwarm.

(2) a. The coffee is warm.

b. The coffee is hot.

Importantly, since there is no upper threshold,
according to such a meaning, (2a) is also true if
the temperature exceeds θhot, which goes against
the intuition that a warm coffee is not hot. This
intuition comes from the human ability to draw ad-
ditional inferences as in this case the derivation of
a scalar implicature. As mentioned above, theo-
ries of scalar implicature (Horn, 1984; Hirschberg,
1985) assume that listeners reason about alterna-
tive utterances that a speaker could have said but
did not. In this case, when someone utters (2a),
a listener reasons that if the coffee was actually
hot, it would have been more informative to use the
stronger scalar item hot and therefore it must be
that the coffee has a temperature between θwarm

and θhot.
While such a mechanistic derivation leads to the

intended interpretation in many cases, scalar impli-
catures tend to highly depend on the context and
the specific scalar item (see, e.g., Gotzner and
Romoli, 2022). For example, consider the pair of
sentences in (3):

(3) a. The student is intelligent.

b. The student is brilliant.

This pair of sentences also contains a weaker (intel-
ligent) and a stronger (brilliant) scalar item but ex-
perimental studies have shown that humans rarely
derive the implicature that the student is not bril-
liant after hearing or reading (3a) (van Tiel et al.,
2016). This fact, together with the observation that
the same scalar item sometimes gives rise to an im-
plicature and sometimes does not (see Section 1),
limits the explanatory power of purely mechanis-
tic accounts. A language model thus needs to be
able to consider many linguistic subtleties to derive
scalar implicatures in a human-like manner.

4. SIGA: A New Dataset for Pragmatic
NLI

4.1. Data Collection
To construct our dataset we extracted examples
from the C4 corpus (Raffel et al., 2020), which is
a multilingual corpus of more than 10 languages
that contains over 750GB of English language text
(Dodge et al., 2021). To find suitable examples, we
extracted all sentences that contained two related
scalar adjectives separated by "but not", e.g., sen-
tences that contained the phrase good but not great.
Here we are exploiting the observation that implica-
tures can be explicitly reinforced (Hirschberg, 1985)
and one linguistic device for such reinforcements is
the frame “WEAK but not STRONG” (Hearst, 1992;
de Melo and Bansal, 2013; van Miltenburg, 2015;
Pankratz and van Tiel, 2021), where WEAK and
STRONG are scalar items on the same scale of
varying intensity.

Using this frame has several advantages over ex-
tracting sentences with only a weak adjective. First,
some adjectives can be part of multiple scales. E.g.,
depending on the context “The movie was alright”
can mean that the plot was not amazing or that it
was not particularly funny (Hu et al., 2023b). By
extracting utterances that contain both a weak and
a strong scalar item, we can be certain which scale
a speaker/writer was considering. Second, consid-
ering that the speaker/writer explictly reinforced the
implicature means that the context does not rule
out the implicature. And lastly, in some cases the
speaker/writer may have explicitly reinforced the
implicature because it is surprising to appear in that
context and we hypothesized that this would give
us a set of contexts with varying levels of support
for the implicature.

Mining such examples requires a list of adjective
pairs that map onto the same scale for which we
used a list of 88 pairs compiled by de Melo and
Bansal (2013). This procedure resulted in about
10,000 examples, of which we sampled 1,600 ex-
amples such that we included all examples with
rare adjective pairs and subset of examples with
the most common adjective pairs, resulting in a
maximally balanced distribution of adjective pairs.
Following de Marneffe et al. (2019) and Parrish
et al. (2021), we also extracted the two previous
sentences (if they exist) along with the sentence
containing the scalar items.

In order to generate premise-hypothesis pairs for
the NLI task, we then removed "but not STRONG"
from the original utterance to form the premise. To
form the hypothesis, we copied the last sentence of
the premise and replaced the weak scalar item with
the strong scalar item. To illustrate this, consider
the following example, which shows the context (the
preceding two sentences), the original utterance,
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Figure 1: An example item in our annotation task.

the modified target utterance, and the hypothesis.

• Context: Of those, I watched Criminal Minds-
Suspect Behavior, Memphis Beat, and The
Protector. See, I told you I watch a lot of cop
shows.

• Original Utterance: These shows were good,
but not great.

• Target utterance:1 These shows were good.

• Hypothesis: These shows were great.

4.2. Crowdsourced Judgments
As we mentioned before, a sentence with a scalar
item does not necessarily give rise to a scalar im-
plicature. To estimate whether the modified utter-
ances give rise to implicatures, we used a crowd-
sourcing task that we conducted on Prolific.

Task description For each example, we pre-
sented annotators with the context including the
premise and a “statement” (the hypothesis). We
then asked participants to adjust a slider from 0 to
100 to indicate how likely they thought it was that
someone reading the text would believe the state-
ment to be true. Following Parrish et al. (2021),
we used a non-linear slider that allowed greater
precision at the slider’s endpoints assuming that a
difference between 99% and 100% is more mean-
ingful than a difference between 50% and 51%
(Tversky and Kahneman, 1981). Slider endpoints

1This is after the context, the final sentence of the
premise.

were labeled “very unlikely” and “very likely.” See
Figure 1 for an example annotation task.

Using a continuous slider deviates from the clas-
sic NLI data collection paradigm that directly asks
annotators to provide categorical entailment labels
(e.g., Bowman et al., 2015; Williams et al., 2018).
Further, we framed the annotation task as asking
what someone else would believe rather than ask-
ing annotators about their personal beliefs. The
reason for these deviations is that pragmatic in-
ferences are much less robust than logical entail-
ment, and importantly they can be explicitly can-
celed (Hirschberg, 1985). Therefore, we assumed
that some annotators would rarely provide contra-
diction or entailment labels if they interpret the task
as providing logical entailment relations, as some
annotators have been shown to do (Pavlick and
Kwiatkowski, 2019). Asking annotators to provide
continuous ratings about a generic listener’s be-
liefs alleviates these issues to some extent as this
allows them to express typical interpretations with
some uncertainty.

Annotator pool We initially recruited 100 anno-
tators who completed a pre-screener similar to the
one used by Parrish et al. (2021). Annotators were
paid USD 2.00 which resulted in a hourly rate of
approximately USD 15.00/hr. The pre-screener
contained 10 questions of which we used 8 for
selecting participants whose ratings fell into pre-
defined ranges for at least 75% of the questions.
This resulted in a pool of 83 annotators of which 62
completed at least one annotation task.

For the actual annotation tasks, we created
batches of 20 examples together with 5 examples
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Figure 2: Distribution of raw responses from the
annotation task.

Percentage of Examples
Unanimous Agreement 41.99
Majority Agreement (> 0.6) 40.85
No Majority 17.15

Table 1: Agreement levels for NLI label categories
Contradiction, Neutral and Entailment.

from MNLI, which we used for calibrating an an-
notator’s use of the scale (see Section 3.3). Each
task was completed by five annotators, and annota-
tors completed between 1 and 12 annotation tasks
(average: 6.6 tasks). No annotator completed the
same annotation task more than once.

Annotators completed a task on average in 10
minutes and were paid USD 2.00 (resulting in a rate
of USD 12.00-15.00/hr). We excluded ratings from
tasks that were completed in less than 4 minutes,
resulting in the exclusion of ratings from 54 tasks
(13.5%).

Results Figure 2 shows the distribution of re-
sponses on examples with scalar items. As this
figure shows, annotators used the entire scale but
at the same time, many ratings are concentrated
at the endpoints.

4.3. Mapping to NLI Labels
To map the continuous ratings from annotators to
the NLI labels “contradiction”, “neutral” and “entail-
ment,” we estimated two thresholds (Chen et al.,
2020; Parrish et al., 2021) for each annotator:2 one
threshold for contradiction below which we labeled
examples as contradiction and one threshold for
entailment above which we labeled examples as

2We estimated individual thresholds for each annota-
tor since different annotators likely used the rating scale
differently.

entailment. For this estimation we used the ratings
for the MNLI examples and their corresponding
ground truth labels from the original dataset.3 Con-
cretely, we optimized the thresholds for each an-
notator such that the resulting decision boundaries
maximize the annotator’s F1-score on MNLI exam-
ples. As a regularization measure and to prevent
extreme thresholds due to outliers, we also consid-
ered the MNLI examples from all other annotators
when computing the per-annotator thresholds. For
each annotator, we computed a weighted micro-
averaged F1 with a weight of 0.05 for examples
that are from other annotators, resulting in an aver-
age F1 score of 82.29 on the MNLI examples.

Using the per-annotator thresholds, we then
mapped the examples involving scalar items to the
three entailment labels. To assess the quality of
this mapping, we computed agreement statistics
of these labels (Table 1). For examples with unani-
mous agreement, the mapped label is the same for
all annotators who rated that example; for exam-
ples with majority agreement the mapping resulted
in labels that were the same for more than 60% of
the annotators; for examples without a majority, no
label was the same for more than 60% of the anno-
tators. As is common practice for NLI datasets (e.g.
Bowman et al., 2015), we discarded all examples
for which there was no majority label, resulting in
the removal of 500 examples.4

4.4. Expert annotations
A manual inspection of some of the examples with-
out unanimous agreement revealed that many rat-
ings were close to the threshold between neutral
and contradiction or close to the threshold between
neutral and entailment. Since these distinctions are
theoretically important (e.g., a hypothesis-premise
pair labeled contradiction indicates a scalar impli-
cature), we further refined the labels through a two-
round expert annotation process.

In the first round, the first author annotated all
examples with an NLI label (without access to the
crowdsourced majority label). For 730 examples
(66.36%), their label agreed with the crowdsourced
majority label. For the remaining 370 examples
(33.63%) for which their label was different from
the majority label, the second author provided a

3We sampled a balanced number of contradiction,
neutral, and entailment examples. In order to avoid ex-
amples for which there may be disagreements betweeen
different annotators, we exclusively sampled examples
where all five annotators provided the same label.

4Most NLI datasets (e.g., SNLI and MNLI) exclude
data points only if there is no label that more than half
of the annotators assigned. We opted for the higher
threshold of 60% with the goal of eliminating examples
that exhibit systematic disagreements (see e.g., Pavlick
and Kwiatkowski, 2019).
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C N E Σ

training dataset 291 77 232 600
id-test dataset 85 17 73 175
ood-test dataset 99 24 111 234

Σ 475 118 416 1,009

Table 2: Number of examples per label for train and
in-domain (id) and out-of-domain (ood) test splits.

Scalar items train dataset id-test
good/great 336 94
uncomfortable/painful 79 25
small/tiny 86 29
uncommon/rare 72 20
possible/practical 27 7

Table 3: Distribution of scalar items in training and
in-domain test set. See Appendix A for the distribu-
tion of scalar items in the out-of-domain test set.

third NLI label for adjudication. For 331 examples,
the third label succesfully adjudicated between the
crowdsourced label and the annotation by the first
author, for the remaining 39 examples, all three
labels disagreed and the examples were discarded.

Lastly, the expert annotation process revealed
52 examples where the target utterance either con-
sisted only of one word (e.g., just “Great.”) or
it no longer made sense after removing “but not
STRONG” (e.g., “so” is likely interpreted differently
in the original utterance “So small but not tiny.” than
in the modified utterance “So small.”). We also re-
moved these examples, resulting in a final dataset
size of 1,009 examples.

4.5. Data splits and statistics
We divided the examples into three splits: a training
split, an in-domain test split, and an out-of-domain
test split. For the training and in-domain splits, we
considered all 775 examples that include one of
the 5 most frequent scalar items (see Table 3) and
then randomly split this dataset into a training and
an in-domain test set. The out-of-domain test set
includes all utterances with the remaining 23 pairs
of scalar items. See Appendix A for the distribution
of scalar items in the out-of-domain test set.

Table 2 shows the distribution of labels in the
three data splits. Most examples were either la-
beled as contradiction or entailment. Recall that in
all examples, the target utterance in the premise
and the hypothesis differ only by the adjective: the
premise contains a weaker scalar item, and the hy-
pothesis contains a stronger scalar item. Therefore,
an NLI pair labeled contradiction indicates that the
premise gives rise to a scalar implicature, as in the

following pair:
(4) a. [...] There are very mixed opinions, but

some came back several times. The
quality was mentioned as good.

b. The quality was mentioned as great.
(Label: Contradiction)

Entailment examples, on the other hand, indicate
that the use of the weaker and stronger scalar item
is seen as synonymous, as in the following NLI pair:

(5) a. I felt pretty good with it. I did that 17
miler at 7:50 pace. My quad felt good.

b. My quad felt great.
(Label: Entailment)

Finally, for most examples that were labeled as neu-
tral, the context was not informative enough to indi-
cate how the utterance should be interpreted and
annotators considered it possible that the stronger
statement in the hypothesis could be either true or
false.

(6) a. but after cramping at the Yuengling
Shamrock Marathon in March I decided
to transfer my registration from the 50-
mile to the 50k (31 miles). My training
leading up to the race was good.

b. My training leading up to the race was
great.

(Label: Neutral)
In summary, as both the individual examples as

well as the aggregate statistics show, our dataset
covers the heterogeneity of utterances with grad-
able adjectives. In some contexts, they give rise to
implicatures and in others, they do not. Together
with the division of examples into in-domain and out-
of-domain test sets, this provides us with an optimal
dataset for investigating whether NLI models can
(learn to) draw scalar implicatures, as described in
the following section.

5. Modeling Experiments

As mentioned in the introduction, we used our novel
NLI benchmark to assess the ability of pre-trained
language models to derive scalar implicatures on
a diverse set of utterances.

5.1. Implementation details
Base model. We conducted all our experiments
using DeBERTa (He et al., 2020), a masked lan-
guage model similar to BERT (Devlin et al., 2019)
with an improved attention mechanism. We used
the weights of the “large” variant of the model5

5Accessed through the HuggingFace Tansformers
library (Wolf et al., 2020) at https://huggingface.
co/microsoft/deberta-large-mnli.

https://huggingface.co/microsoft/deberta-large-mnli
https://huggingface.co/microsoft/deberta-large-mnli
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Test data Model Accuracy F1 Score
C N E

SIGA in-domain
DeBERTa-large MNLI 37.71 8.88 3.71 59.22
DeBERTa-large MNLI+SIGA 57.14 62.76 33.33 56.45
Majority baseline 48.67 65.38 0.00 0.00

SIGA out-of-domain
DeBERTa-large MNLI 42.30 5.71 11.90 65.23
DeBERTa-large MNLI+SIGA 52.56 54.27 19.60 58.71
Majority baseline 42.31 59.46 0.00 0.00

MNLI DeBERTa-large MNLI 91.29 93.82 87.71 92.23
DeBERTa-large MNLI+SIGA 87.07 88.72 80.49 90.55

Table 4: Accuracy and F1 scores of models for in-domain and out-of-domain datasets. “MNLI” models
were finetuned only on MNLI (base model); “MNLI+SIGA” were additionally finetuned on our training
examples (finetuned model). C: Contradiction, N: Neutral, E: Entailment.

which has 350M parameters that were finetuned on
the MNLI (Williams et al., 2018) dataset. We chose
this model because it achieves above 90% accu-
racy on the MNLI evaluation splits and it has been
shown to perform well on other pragmatic tasks
such as predicting the content of presuppositions
(Parrish et al., 2021).

Furthermore, a manual analysis of a subset of
MNLI revealed that the dataset contains very few
instances of pragmatic inferences (Jeretic et al.,
2020). We confirm this finding through a more tar-
geted anlaysis of all examples in MNLI for which the
premise and the hypothesis contain different adjec-
tives modifying the same noun phrase, which may
be an indication for a pragmatic inference (e.g., as
in the premise-hypothesis pair “I saw a good movie”
and “I saw a great movie”). While there exist 1,771
examples with different adjectives across the two
statements, in almost all cases the adjectives are
intended to be synonyms (e.g., small and little) or
they are ordinals (e.g., first and second) and thus
do not constitute examples involving scalar impli-
catures. This lack of implicature examples in MNLI
allows us to evaluate how much pretraining by itself
equips models with the ability to draw pragmatic
inferences.

Finetuning. To test whether models can learn
to derive context-sensitive scalar implicatures, we
also finetuned DeBERTa on our training split. We
finetuned the model for 3 epochs with a learn-
ing rate of 5e-06 using the AdamW optimizer
(Loshchilov and Hutter, 2019).

Evaluation. We evaluate all models separately
on the in-domain test split and the out-of-domain
test split. Since the predicted labels are theoret-
ically meaningful in our dataset, we report both
the overall accuracy as well as F1 scores for each
prediction category.

5.2. Results and Discussion
Table 4 shows the results of the original model as
well as the finetuned models on both test splits as
well as the MNLI test split. The model that was
exclusively finetuned on MNLI, i.e., on virtually no
examples that require scalar implicature computa-
tions, performs very poorly on both the in-domain
and the out-of-domain test split. This low perfor-
mance is particularly pronounced for the contra-
diction and neutral examples, which indicates that
the model incorrectly considers most examples in-
volving scalar implicatures as entailment. This is
not suprising considering that most examples in
MNLI whose premise and hypothesis contain dif-
ferent adjectives on the same scale are contexts
in which annotators treated the different adjectives
as synonyms. Therefore, models trained on MNLI
may have learned the heuristic that a premise and
hypothesis involving two different adjectives on the
same scale indicate an entailment relation.

If we additionally finetune the model on the SIGA
training examples, we observe large increases in
accuracy (significant at a level of α = 0.05 accord-
ing to a non-parametric permutation test) on both
the in-domain and the out-of-domain test sets and
for both datasets, and the models outperform a
majority baseline that always predicts contradiction.
This suggests that the model can to some extent
learn when humans would draw scalar implicatures
if it is trained on such examples and this behavior
also transfers to examples involving unseen scalar
items. At the same time, however, even with these
additional training examples, the performance on
the SIGA test sets is still a lot lower than the per-
fomance on MNLI, which highlights that examples
with scalar implicatures still pose challenges for NLI
models, even with explicit supervision.

Table 4 also shows that while both models
achieve very high accuracy on MNLI, additional
finetuning on SIGA examples led to a non-negligible
drop in performance. In combination with the con-
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siderably improved performance on contradiction
examples in the SIGA test sets, this raises the ques-
tion whether the differences on all test sets primarily
stem from the model predicting contradiction more
often. An analysis of the differences in predicted
labels between the base model and the finetuned
model ruled out that explanation: While indeed
many labels changed from entailment or neutral to
contradiction on examples in SIGA, the finetuned
model predicted a lot more neutral and entailment
labels than the base model. However, for the MNLI
examples the predictions changes were also very
heterogeneous, so it was not the case that finetun-
ing on SIGA examples only affected predictions on
examples with scalar adjectives.

In summary, the comparisons between the base
model and the finetuned models suggest that on the
one hand, finetuning on a small number of exam-
ples involving scalar implicatures improves model
performance on examples with both seen and un-
seen scalar items. On the other hand, however, as
evidenced by the change in predictions on MNLI,
the additional finetuning affects model behavior on
a broad class of examples, which suggests that the
additional finetuning targets not only the weights
that are involved in deriving scalar implicatures.

6. General Discussion and
Conclusion

In this work we set out to investigate to what extent
NLI models based on pretrained language models
can derive and can learn to derive scalar implica-
tures. For this purpose, we created SIGA, a high
quality dataset consisting of naturalistic utterances
involving gradable adjectives and annotated this
dataset through a combination of crowdsourcing
and expert annotations. In experiments with a state-
of-the-art NLI model based on DeBERTa, we found
that without phenomenon-specific finetuning, the
model fails to derive scalar implicatures in almost
all cases. With additional finetuning, on the other
hand, we found that the model performs consider-
ably better on examples involving this phenomenon
and these improvements also transferred to exam-
ples with unseen scalar items.

Our findings corroborate recent findings that pre-
trained language model representations encode
some information about gradable adjectives and
their degrees of intensity on the corresponding
scale (Garí Soler and Apidianaki, 2020; Liu et al.,
2023). Further, our results echo the finding that ad-
ditional finetuning is necessary to guide the model
to make use of this information encoded in the rep-
resentation: Like Liu et al. (2023), we found that the
desired behavior started to surface only through
finetuning on task-specific examples.

Despite the positive findings, our results and es-

pecially the comparison to other NLI datasets also
highlights that current NLI models still struggle with
drawing pragmatic inferences and there is still a
considerable gap between human and model be-
havior.

7. Limitations

Despite the obvious limitation of constructing an
English dataset and evaluating only models in En-
glish, there are some limitations of our work that
should be considered when drawing conclusions
from our findings.

First, while DeBERTa is one of the best perform-
ing masked language models for NLI, we did not
evaluate more recent autoregressive models such
as GPT-3/GPT-4 (Brown et al., 2020) or Llama
2 (Touvron et al., 2023) and therefore we can-
not make definitive claims about larger models
trained with additional objectives such as reinforce-
ment learning from human feedback (Ouyang et al.,
2022). However, the results by Ruis et al. (2022)
and Hu et al. (2023a) suggest that many pragmatic
inferences still pose challenges for even the latest
large language models.

Second, compared to broader datasets such as
MNLI or automatically generated datasets such as
IMPPRES, our dataset is relatively small. Con-
sidering the substantial performance differences
across models, we are nevertheless confident that
our evaluation reveals systematic differences. Fur-
thermore, our dataset is comparable in size to other
specialized datasets such as the CommitmentBank
(de Marneffe et al., 2019), which has been an invalu-
able resource to study human and model behavior
with regards to speaker commitment.

Third, while we extracted all our examples from
a corpus, the modification due to the removal of
“but not STRONG” did lead to slightly unnatural sen-
tences in some cases. For example, without “but
not great”, the sentence “It’s good (but not great)
and I’m not sure I’d pay $25 for it.” becomes a bit
odd due to the combination of the positive adjec-
tive good and the negative second conjunct of the
sentence.

Finally, in this work, we made the simplifying as-
sumption that all English language users would
derive the same implicatures and we did not con-
sider individual differences. However, both work
in experimental pragmatics (e.g., Mayn and Dem-
berg, 2022) and in NLP (Pavlick and Kwiatkowski,
2019; Jiang and de Marneffe, 2022; Plank, 2022)
has recently highlighted that for many linguistic phe-
nomena, there exist systematic disagreements. We
consider investigating such disagreements both in
our raw human ratings as well as in similar datasets
an important direction for future work.
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Despite these limitations, we consider SIGA a
highly valuable resource for developing and evaluat-
ing natural language understanding models on their
ability to draw human-like pragmatic inferences.
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A. Scalar Items in Out-of-distribution Test Set

Scalar items out of distribution dataset
big/huge 43
good/best 28
thin/skinny 21
uncommon/unusual 17
dim/dark 17
interesting/fascinating 16
interesting/exciting 16
clean/spotless 15
neglected/forgotten 13
unfortunate/fatal 9
known/famous 7
big/large 6
further/far 5
thick/impenetrable 4
unusual/strange 4
unfortunate/disastrous 3
bleak/hopeless 3
great/best 2
small/little 2
uncommon/extraordinary 1
sufficient/ample 1
strange/weird 1

Table 5: Distribution of scalar items in out of distribution test set.
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