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Abstract
Temporal Knowledge Graph (TKG) reasoning has received a growing interest recently, especially in forecasting the
future facts based on the historical KG sequences. Existing studies typically utilize a recurrent neural network to
learn the evolutional representations of entities for temporal reasoning. However, these methods are hard to capture
the complex temporal evolutional patterns such as sequential and repetitive patterns accurately. To tackle this
challenge, we propose a novel Sequential and Repetitive Pattern Learning (SRPL) method, which comprehensively
captures both the sequential and repetitive patterns. Specifically, a Dependency-aware Sequential Pattern Learning
(DSPL) component expresses the temporal dependencies of each historical timestamp as embeddings for accurately
capturing the sequential patterns across temporally adjacent facts. A Time-interval guided Repetitive Pattern
Learning (TRPL) component models the irregular time intervals between historical repetitive facts for capturing
the repetitive patterns. Extensive experiments on four representative benchmarks demonstrate that our proposed
method outperforms state-of-the-art methods in all metrics by an obvious margin, especially on GDELT dataset,
where performance improvement of MRR reaches up to 18.84%.
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1. Introduction

Knowledge Graphs (KGs) have greatly promoted
the development of practical applications, such as
electronic health records analysis, disaster monitor-
ing and financial forecasting (Zou, 2020). However,
large scale KGs often suffer from incompleteness
and therefore limit the performance of downstream
applications. To address this issue, KG reason-
ing that predicts missing facts from known facts
in the existing KGs is a crucial task in the field of
natural language processing. Prior KG reasoning
research traditionally focused on modeling static
features based on static KGs (Yang et al., 2014).
While the facts in KGs are dynamically evolving
over time, how to take advantage of the historical
information over Temporal Knowledge Graph (TKG)
has become an urgent demand (Gottschalk and
Demidova, 2018; Wang et al., 2023).

TKG can be regarded as a series of static KG
snapshots in the chronological order. Each fact
in the TKG is stored as quadruple (subject, rela-
tion, object, timestamp) (i.e. (s, r, o, t)), for exam-
ple, (Tokyo Olympic Games Women’s Table Tennis
Singles, Gold Medalist, Meng Chen, 2021/07/29)
indicates the fact that Meng Chen won the gold
medal of Tokyo Olympic Games women’s table ten-
nis singles in 2021.

Given a TKG with timestamps varying from t1
to tT , reasoning over it can be classified into two
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settings, interpolation and extrapolation (Jin et al.,
2019). Interpolation reasoning aims at predict-
ing missing facts within [t1, tT ], while extrapola-
tion reasoning attempts to forecast facts in future
timestamp t > tT .The extrapolation setting is of
greater significance as it is helpful for many practi-
cal applications, such as crisis warning (Boschee
et al., 2015) and disaster relief (Signorini et al.,
2011). This paper focuses on entity prediction
under the extrapolation setting over TKGs, which
aims to predict the missing object entity of a query
(s, r, ?, t+ 1)(e.g., (Paris Olympic Games Women’s
Table Tennis Singles, Gold Medalist, ?, 2024)).

TKG reasoning is quite challenging due to the
complex temporal dependencies, which is difficult
to be captured from temporal sequences. Great
efforts have been made on mining sequential pat-
terns of dependencies in previous studies (Li et al.,
2021b). They usually take advantage of recurrent
encoder networks to model the historical depen-
dency of events over timeline (Jin et al., 2019).

For historical dependencies of events, RE-NET
(Jin et al., 2019) employs a recurrent event encoder
to learn temporal dependencies from a temporal se-
quence of KGs. RE-GCN (Li et al., 2021b) applies
gate recurrent components to capture sequential
patterns across temporally adjacent facts. TITer
(Sun et al., 2021) introduces a temporal-path-based
reinforcement learning framework to travel on the
historical snapshots and search for temporal pat-
terns. To model the complex evolutional pattern,
CEN (Li et al., 2022b) employs a length-aware Con-
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volutional Neural Network (CNN) to mine evolu-
tional patterns of different lengths.

All the above-mentioned models utilize recur-
rent structures, such as GRU (Cho et al., 2014)
and LSTM (Hochreiter and Schmidhuber, 1997) to
capture temporal dependencies of facts implicitly,
which is insufficient to model the long-term temporal
dependencies.

Some other methods are proposed for model-
ing repetitive facts. Zhu et al. (2021) indicates that
many facts exhibit a repetitive pattern along the
timeline, such as economic crises happen period-
ically. CyGNet (Zhu et al., 2021) designs a copy
mode to identify repetitive facts with an indicator
vector of known facts in history. DA-Net (Liu et al.,
2022b) models the dynamic distribution of repetitive
facts by paying distributed attention to repetitive in-
formation at different historical timestamps. These
models capture such repetitive patterns in history,
which are proved to be of great help for TKG rea-
soning.

To capture both sequential and repetitive pat-
terns, TiRGN (Li et al., 2022a) employs a local
recurrent graph encoder to capture temporal de-
pendencies at adjacent timestamps and designs a
global history encoder to collect the historical global
facts.

The existing repetitive pattern modeling methods
only take into account whether historical facts occur
or how often they occur, which are difficult to cap-
ture the historical variations of repetitive patterns
over time.

To address the above challenges, we propose a
novel Sequential and Repetitive Pattern Learning
(SRPL)1, a comprehensive method that captures
both sequential patterns and repetitive patterns. In-
stead of capturing historical dependencies implicitly,
we explicitly express the temporal dependencies
of each historical timestamp as embeddings for
capturing sequential patterns of facts. Concretely,
SRPL first calculates the historical embeddings
based on the temporal entity embeddings and tem-
poral dependency embeddings from multiple previ-
ous timestamps. Then, the historical embeddings
are used to generate hidden entity embeddings with
a Gated Recurrent Unit (GRU) for capturing the se-
quential patterns. Finally, we design a time-interval
guided attention mechanism to collect repetitive
facts.Our contributions are three-fold:

• We propose a novel SRPL model to capture
both sequential patterns and repetitive pat-
terns for TKG reasoning. As far as we know,
this is the first time to explicitly express the tem-
poral dependencies of each historical times-
tamp as embeddings for TKG, which could

1We make our code publicly available at
https://github.com/Huiweizhou/SRPL.

better capture long-term dependencies from a
sequence of KGs.

• We design a time-interval guided attention
mechanism to model irregular time intervals
between repetitive facts for capturing repetitive
patterns.

• We conduct extensive evaluations on four rep-
resentative datasets and the results show that
our model is richly superior to state-of-the-
art baselines by an obvious margin on all
datasets.

2. Related Work

TKG reasoning can be divided into two settings,
interpolation and extrapolation (Jin et al., 2019).

2.1. Interpolation Reasoning
The early works in temporal reasoning focus on
interpolation reasoning, which predict missing facts
at the historical timestamps. TTransE (Leblay and
Chekol, 2018) extends TransE (Bordes et al., 2013)
with the temporal constraints in the score function.
TA-DistMult (García-Durán et al., 2018) learns time-
aware representations of relations by a recursive
neural network to incorporate temporal information,
while using the same scoring function as DistMult
(Yang et al., 2014). HyTE (Dasgupta et al., 2018)
projects entities and relations to time-specific hy-
perplanes with a time-related projection instead of
a normal projection in TransH (Wang et al., 2014).

These methods tend to integrate time informa-
tion into the embeddings of different timestamps.
However, they neglect the temporal dependencies
of facts and could not capture temporal dynamics
for future fact prediction.

2.2. Extrapolation Reasoning
Recent works concentrate on modeling historical
evolution of facts to solve extrapolation problem
of TKG reasoning. According to human cogni-
tion, temporally adjacent facts have sequential pat-
terns. While according to historical recurrence the-
ory (Trompf, 1979), historical facts have repetitive
patterns.

To capture sequential patterns, query-specific
methods (Jin et al., 2019) and entire graph-based
methods (Li et al., 2021b) have been thoroughly
investigated. Query-specific methods typically con-
struct a subgraph sequence for each individual
query with certain hop numbers, and then model
the query-specific history with recurrent structures.
RE-NET (Jin et al., 2019) learns temporal depen-
dencies from the historical sequence related to the
subject entity in each query. TITer (Sun et al., 2021)

https://github.com/Huiweizhou/SRPL
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Figure 1: Overall Framework of our SRPL model.

and CluSTeR (Li et al., 2021a) capture sequential
patterns in query-related temporal path with rein-
forcement learning.

Entire graph-based methods usually model the
whole KG sequence uniformly to learn informative
sequential patterns across timestamps. RE-GCN
(Li et al., 2021b) captures the structural depen-
dencies within each snapshot based on GCN and
model the sequential patterns of all facts by gate
recurrent networks. CEN (Li et al., 2022b) lever-
ages a length-aware CNN to model the evolutional
patterns of different lengths. HisMatch (Li et al.,
2022c) combines both query-specific history and
entire graph-based history into a unified framework
to integrate two kinds of sequential patterns.

On the other hand, some methods are proposed
to model repetitive facts and verify the effectiveness
of repetitive patterns in TKG reasoning. CyGNet
(Zhu et al., 2021) captures repetitive patterns by
modeling the occurrence frequency of historical
facts. DA-Net (Liu et al., 2022b) models dynamic
distribution of repetitive facts by dual layers of at-
tention, the first layer learns attention of the repet-
itive facts and the second layer adjusts the first
layer attention based on frequency changes of the
repetitive facts. TiRGN (Li et al., 2022a) simultane-
ously considers sequential patterns and repetitive
patterns, which designs a double recurrent mecha-
nism to encode the adjacent subgraph sequences
and constructs a candidate entity matrix to record
the occurrence of facts for collecting the repetitive
facts.

Great progress has been made on extrapola-
tion reasoning over TKG. However, these methods

mainly suffer from two issues. First, the sequential
pattern modeling methods only rely on recurrent
structures, which may lead to important information
oblivion in modeling long-term temporal dependen-
cies. Second, historical facts have both sequential
patterns and repetitive patterns. However, only few
researchers have investigated how to comprehen-
sively model both patterns for TKG reasoning.

To address these issues, we propose Sequential
and Repetitive Pattern Learning (SRPL), a novel
comprehensive method that mines both sequen-
tial patterns and repetitive patterns. SRPL models
long-term sequential patterns with explicit temporal
dependency embeddings across multiple historical
timestamps. Meanwhile SRPL captures repetitive
patterns by modeling the irregular time intervals
between repetitive facts.

3. Method

3.1. Problem Definition

We formalize a TKG as a sequential static KG
snapshots G = {G1, G2, ..., Gt, ...}, where Gt =
{E,R, Ft} at timestamp t contains the sets of enti-
ties, relations and facts. A fact in Ft is formalized
as a quadruple (s, r, o, t), where s, o ∈ E, r ∈ R.
The entity prediction under the extrapolation set-
ting aims to predict the missing entity of a query
(s, r, ?, t+1) or (?, r, o, t+1) with the previous snap-
shot sequence {G1, G2, ..., Gt}. In order to simplify
the illustration, we use (s, r, ?, t + 1) to represent
entity prediction task uniformly.
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3.2. Model Overview

The overall framework of SRPL is shown in Fig-
ure1(a), which consists of three components.
RGCN, Sequential Pattern Learning (DSPL) shown
in Figure1(b) and Repetitive Pattern Learning
(TRPL) shown in Figure1(c). RGCN (Schlichtkrull
et al., 2018) is employed to learn the spatial em-
beddings of entities at each timestamp. DSPL is
used to capture the sequential patterns with a se-
quence of dependency embeddings (ci,K , ..., ci,1)
of each entity i. TRPL mines repetitive patterns
with a time-interval guided attention mechanism. At
timestamp t for each entity i, the entity embedding
at timestamp t−1 hi,t−1 and relations embeddings
R are fed to RGCN to get the spatial embedding at
timestamp t hL

i,t firstly. Then, historical entity em-
beddings (hi,t−K , ...,hi,t−1), (ci,K , ..., ci,1) and hL

i,t

are used as the input of DSPL to generate the entity
embedding at timestamp t hi,t. Finally, hi,t and the
time-interval attention weight β(s,r)

i,t are fed to TRPL
to obtain the query-induced temporal embedding
h
(s,r)
i,t .

3.3. Dependency-aware Sequential
Pattern Learning (DSPL)

Traditional TKG reasoning approaches typically use
recurrent structures to learn the temporal patterns
from a sequence of temporal graph. However,
these recurrent structures are hard to capture long-
term temporal dependencies due to the vanishing
gradient problem.

For better capturing long-range dependencies in
traffic network, MSDR (Liu et al., 2022a) involves
the hidden states and dependencies from multi-
ple previous time-steps into the computation of the
current state. MSDR (Liu et al., 2022a) applies
a layer-wise attention to calculate the duration of
influence caused by multiple previous time-steps
in a graph convolution module.

To capture long-term temporal dependencies, we
propose DSPL, which explicitly models temporal
dependencies as embeddings and updates current
entity embeddings by historical entity and depen-
dency embeddings from multiple previous times-
tamps. Different from MSDR (Liu et al., 2022a), we
think that the influence of the hidden states and
dependencies from different timestamps should
be different for the current state in TKG reasoning.
Therefore, we propose a timestamp-wise attention
to accurately learn the duration of influence caused
by multiple previous timestamps.

Specifically, for each entity i, we represent the de-
pendency between the current timestamp and the
k-th previous timestamp as embedding ci,k ∈ Rd,
which can be trained globally. Thus, the influence
of k-th previous timestamp on the current state can

be expressed as hi,t−k + ci,k, where hi,t−k ∈ Rd

is the entity embedding of the k-th previous times-
tamp.

The duration of influence by multiple previous
timestamps, namely the historical context embed-
ding of each entity i at timestamp t is calculated
with attention over K previous timestamps as fol-
lows:

hisi,t =

K∑
k=1

mi,t−k ⊙ (hi,t−k + ci,k) (1)

where hi,t−k is the entity embedding of entity i at
timestamp t− k, ci,k is the corresponding tempo-
ral dependency embedding of entity i between the
historical timestamp t − k and the current times-
tamp t, mi,t−k is the attention weight vector and ⊙
indicates element-wise multiplication.

The weight vector for each previous timestamp
is computed by a novel timestamp-wise attention:

gi,t−k = Wk(hi,t−k + ci,k) + bk (2)

λi[; , j] = softmax(gi[; , j]) (3)

mi,t−k = λi[K − k, ; ] (4)

where Wk ∈ Rd×d and bk ∈ Rd are the
trainable parameters at timestamp t − k, gi =
[gi,t−K ||...||gi,t−1] ∈ RK×d is the concatenation of
all K gi,t−k, gi[; , j] is the j-th column of gi, λi[; , j]
is the j-th column of λi and λi[K − k, ; ] is the
(K − k)-th row of λi.

The historical context embeddings explicitly cap-
ture the duration of influence over K previous times-
tamps. With rich historical information, the embed-
ding of entity i at timestamp t is updated by a GRU
unit:

hi,t = ui,th
L
i,t + (1− ui,t) hisi,t (5)

where hL
i,t is the spatial embedding of entity i at

each timestamp t. We calculate it with a shared
RGCN layer over the snapshot Gt:

hL
i,t = RGCN(hi,t−1,R, Gt) (6)

where L is the number of layers of RGCN and R
are the embeddings of relations R. The relation
embeddings R are randomly initialized and tuned
during training.

The time gate ui,t can be computed as:

ui,t = σ(Wuhisi,t + bu) (7)

where Wu ∈ Rd×d and bu ∈ Rd are the trainable
parameters. Then, we obtain the temporal embed-
dings of all entities Ht ∈ R|E|×d, where |E| is the
number of entities.
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Dataset |E| |R| |Ftrain| |Fvalid| |Ftest| Time Granularity
ICEWS14 6,869 230 74,845 8,514 7,371 1 day
ICEWS18 23,033 256 373,018 45,995 49,545 1 day
WIKI 12,554 24 539,286 67,538 63,110 1 year
GDELT 7,691 240 1,734,399 238,765 305,241 15 mins

Table 1: Statistics of the TKG datasets

3.4. Time-interval Guided Repetitive
Pattern Learning (TRPL)

To model the irregular time intervals between histor-
ical repetitive facts, we propose TRPL for capturing
repetitive patterns.

We first find the latest occurrence timestamp ti
of each candidate entity i according to temporal
snapshot sequence {G1, G2, ..., Gt}. For a query
(s, r, ?, t+ 1), the time interval between the query
timestamp t+ 1 and the latest occurrence times-
tamp t

(s,r)
i for candidate entity i is calculated as

follows:
q
(s,r)
i,t = t+ 1− t

(s,r)
i (8)

We set t(s,r)i = 0 for the facts that never happend.
Jiang et al. (2023) model the impact between two
roads with their relative time interval by a decay
function. Inspired by Jiang et al. (2023), we then
adopt a decay function to process the time interval
as follows:

v
(s,r)
i,t =

1

ln(q
(s,r)
i,t + e)

(9)

where e ≈ 2.718 is a natural constant. In this way,
v
(s,r)
i,t decreases with the time interval q(s,r)i,t increas-

ing.
Sequentially, the processed v

(s,r)
i,t of all candidate

entities form an indicator vector v(s,r)
t ∈ R|E|.

Furthermore, the obtained indicator vector v(s,r)
t

is used to calculate the time-interval attention
weight vector β(s,r)

t ∈ R|E| of each candidate en-
tity by using a fully connected layer followed by a
softmax layer:

β
(s,r)
t = softmax(Wlv

(s,r)
t + bl) (10)

where Wl ∈ R|E|×|E| and bl ∈ R|E| are trainable
parameters.

Finally, based on the above two components,
the query-induced temporal embedding h

(s,r)
i,t is

obtained based on the temporal entity embedding
hi,t and the corresponding weight β(s,r)

i,t :

h
(s,r)
i,t = β

(s,r)
i,t × hi,t (11)

where β
(s,r)
i,t is the i-th dimension of β(s,r)

t . In this
way, we obtain the query-induced temporal embed-
dings of all entities H

(s,r)
t ∈ R|E|×d.

3.5. Inference Procedure and Learning
Objective

The TKG sequence from timestamp 1 to T are used
to train our SRPL model. When testing, we predict
the missing object entity (s, r, ?, T + 1) in GT+1.

ConvTransE (Shang et al., 2019) is utilized as
decoder to calculate the probability vector of all
entities as follows:

p(o
∣∣∣s, r,H(s,r)

t ,Ht,R ) = σ(H
(s,r)
t ConvTransE(st, r))

(12)
where σ(·) is the sigmoid function, st and r are the
embeddings of subject entity s and relation r. The
prediction loss for SRPL model is the sum of the
cross-entropy loss:

L =−
T∑

t=1

∑
(s,r,o,t+1)∈Ft+1

|E|−1∑
i=0

yi,t+1 log pi(o
∣∣∣s, r,H(s,r)

t ,Ht,R )

(13)

where T is the number of timestamps, yi,t+1 is the
ground truth label. The value of yi,t+1 is 1 if the
fact (s, r, i, t+ 1) happened, otherwise 0.

4. Experiments

4.1. Experimental Setup

Datasets and Evaluation Metrics: We compare
the performance of our model against other typical
baselines for entity prediction on four traditional
TKG datasets, including ICEWS14 (García-Durán
et al., 2018), ICEWS18 (Jin et al., 2019), WIKI
(Leblay and Chekol, 2018) and GDELT (Jin et al.,
2019). Detailed statistics of the datasets are sum-
marized in Table 1. We report the Mean Reciprocal
Ranks (MRR) and Hits@{1, 3, 10} under the time-
aware filtered setting (Han et al., 2020).

Implementation Details: The dimension of en-
tity embeddings, relation embeddings and depen-
dency embeddings are set to 200, respectively. The
number of layers of the RGCN is set to 2 and the
dropout rate is set to 0.3 for each layer. The se-
quence length K of historical contexts is set to 6, 4,
7 and 5 for ICEWS14, ICEWS18, WIKI and GDELT,
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Model ICEWS14 ICEWS18
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

1
TTransE 13.72 2.98 17.70 35.74 8.31 1.92 8.56 21.89
TA-DistMult 25.80 16.94 29.74 42.99 16.75 8.61 18.41 33.59
HyTE 11.48 5.64 13.04 22.51 7.31 3.10 7.50 14.95

2

RE-NET 39.86 30.11 44.02 58.21 29.78 19.73 32.55 48.46
TITer 41.73 32.74 46.46 58.44 29.98 22.05 33.46 44.83
RE-GCN 42.00 31.63 47.20 61.65 32.62 22.39 36.79 52.68
CEN 42.20 32.08 47.46 61.31 31.50 21.70 35.44 50.59
HisMatch 46.42 35.91 51.63 66.84 33.99 23.91 37.90 53.94
CyGNet 37.65 27.43 42.63 57.90 27.12 17.21 30.97 46.85
TiRGN 44.04 33.83 48.95 63.84 33.66 23.19 37.99 54.22
SRPL 56.19 50.12 59.02 67.43 47.58 40.93 50.72 59.22

Table 2: Main results (in percentage) of entity prediction on ICEWS14 and ICEWS18.The best results are
boldfaced, and the second best ones are underlined.

Model WIKI GDELT
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

1
TTransE 29.27 21.67 34.43 42.39 5.50 0.47 4.94 15.25
TA-DistMult 44.53 39.92 48.73 51.71 12.00 5.76 12.94 23.54
HyTE 43.02 - 45.12 49.49 6.37 0.00 6.72 18.63

2

RE-NET 58.32 50.01 61.23 73.57 19.55 12.38 20.80 34.00
TITer 73.91 71.70 75.41 76.96 18.19 11.52 19.20 31.00
RE-GCN 78.53 74.50 81.59 84.70 19.69 12.46 20.93 33.81
CEN 78.93 75.05 81.90 84.90 - - - -
HisMatch 78.07 73.89 81.32 84.65 22.01 14.45 23.80 36.61
CyGNet 58.78 47.89 66.44 78.70 20.22 12.35 21.66 35.82
TiRGN 81.65 77.77 85.12 87.08 21.67 13.63 23.27 37.60
SRPL 86.96 85.92 87.70 88.17 40.85 29.96 46.57 62.28

Table 3: Main results (in percentage) of entity prediction on WIKI and GDELT.

respectively. Adam optimizer is adopted for param-
eter with the learning rate of 1e-3 on all datasets.
The experiments are all carried out on RTX3090.

4.2. Main Results
Our method is compared with the current state-of-
the-art TKG reasoning baselines. The comparison
results are shown in Table 2 and Table 3. We divide
these models into two categories: interpolation (cat-
egory 1) and extrapolation (category 2) reasoning
models.

In the interpolation category, we select TTransE
(Leblay and Chekol, 2018), TA-DistMult (García-
Durán et al., 2018) and HyTE (Dasgupta et al.,
2018). From the results, we can see that the inter-
polation models (i.e., category 1) lag significantly
behind extrapolation reasoning models (i.e., cate-
gory 2). The main reason is the interpolation mod-
els do not capture the temporal dependencies of
historical facts, hence they cannot predict future
facts.

As for the extrapolation category, RE-NET (Jin

et al., 2019), TITer (Sun et al., 2021), RE-GCN
(Li et al., 2021b), CEN (Li et al., 2022b) and His-
Match (Li et al., 2022c) focus on capturing sequen-
tial patterns. Among them, RE-NET and TITer are
query-specific models, while RE-GCN and CEN
are entire graph-based models. From the results in
Table 2 and Table 3, we can see that entire graph-
based models outperform query-specific models
in general. Entire graph-based methods model
the TKG sequence as a whole, which can capture
richer temporal dependencies than query-specific
models. HisMatch performs much better than the
other sequential pattern capturing models, because
it combines both query-specific and entire graph-
based histories.

CyGNet (Zhu et al., 2021) is centered on captur-
ing repetitive patterns, which achieves slightly lower
performance in comparison with the sequential pat-
tern capturing models. It is perhaps that sequential
patterns are more important than repetitive patterns
for TKG reasoning.

TiRGN (Li et al., 2022a) and our SRPL take both
sequential and repetitive patterns into considera-
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Model ICEWS14 ICEWS18 WIKI GDELT
SRPL 56.19 47.58 86.96 40.85
w/o TRPL 41.63 32.35 72.03 19.69
w/o ci,k in DSPL 55.87 46.32 86.50 39.46
w/o hisi,t w hi,t−1 + ci,1 in DSPL 55.58 46.18 86.33 39.29
w/o hisi,t & ci,k w hi,t−1 in DSPL 53.85 44.71 85.82 38.87
w/o hisi,t & ci,k w hi,t−1 in DSPL
and layer-wise attention in RGCN 55.54 45.72 86.19 39.14

Table 4: Results (in percentage) of ablation studies with time-aware MRR.

Figure 2: Impact of historical timestamp K on ICEWS14, WIKI and GDELT.

tion. TiRGN gets better performance than the other
models except HisMatch on ICEWS14, ICEWS18
and GDELT. Our SRPL outperforms the other state-
of-the-art models on the four datasets in terms of all
the metrics. The results clearly demonstrate the ne-
cessity of capturing both sequential and repetitive
patterns for temporal reasoning.

Our SRPL achieves up to 9.77%, 13.59%, 5.31%
and 18.84% improvements in MRR comparing to
the sub-optimal models on ICEWS14, ICEWS18,
WIKI and GDELT datasets, respectively. By com-
prehensively capturing sequential patterns with ex-
plicit temporal dependency embeddings and mod-
eling repetitive patterns with irregular time intervals
between repetitive facts, SRPL gains the surpris-
ingly excellent performance.

4.3. Ablation Studies

In order to further investigate the contribution of
different components of SRPL, we conduct ablation
studies on ICEWS14, ICEWS18, WIKI and GDELT.
We report the MRR metric in Table 4.

Without TRPL, MRR drops by 14.56%, 15.23%,
14.93% and 21.16% on ICEWS14, ICEWS18, WIKI
and GDELT, respectively. This indicates that cap-
turing repetitive patterns are crucial for temporal
reasoning, and TRPL can effectively collect histori-
cal repetitive facts.

Removing temporal dependency embeddings
ci,k in DSPL, the performance in all datasets drops
significantly, which demonstrates that the necessity
of temporal dependency embeddings for capturing
sequential patterns.

Instead of using the historical context embedding
hisi,t of K previous timestamps in DSPL, we use
the hi,t−1 + ci,1 from the previous timestamp t− 1
to train the variant model, the performance also
drops significantly. This suggests that DSPL could
better capture sequential patterns with the help of
historical contexts.

Removing both hisi,t and ci,k in DSPL, we only
use the entity embedding hi,t−1 from the previous
timestamp t−1, which is the same as original GRU.
The sharper drop of performance can be observed
on all datasets, which demonstrates both histor-
ical contexts and dependencies are effective for
modeling the sequential patterns.

Furthermore, instead of using the timestamp-
wise attention in DSPL, we use a layer-wise at-
tention as the same as MSDR (Liu et al., 2022a) to
learn the historical information. That is, we make
the following changes: replacing hisi,t and ci,k with
the entity embedding hi,t−1 in DSPL, and using a
layer-wise attention in RGCN to learn the histori-
cal context embeddings. The performance on all
datasets drops, which proves that our timestamp-
wise attention is more conducive to learn the du-
ration of influence caused by multiple timestamps.

4.4. Impact of Historical Timestamp K

To investigate the impact of historical timestamps,
we vary the number of previous timestamps K
when training SRPL models. The MRR and Hits@1
performance on ICEWS14, WIKI and GDELT are
shown in Figure 2. From the figure we can see that
the best performance can be achieved when K is



14751

Decay Function MRR Hits@1 Hits@3 Hits@10
f(x) = (ln(x+ e))−1 47.58 40.93 50.72 59.22
f(x) = (log2(x+ 2))−1 45.56 38.65 48.94 57.43
f(x) = (lg(x+ 10))−1 38.44 31.83 41.61 50.42
f(x) = (330− x)/330 43.42 33.87 49.59 59.67
f(x) = e−3x/500 41.63 37.45 43.48 48.31
f(x) = cos(πx/600) 25.11 21.51 27.54 30.40

Table 5: Results (in percentage) of the different decay functions on ICEWS18.

Metric Model

Subset
Repetitive Facts Unobserved Facts
a b c d e f
10.4% 17.8% 20.4% 19.9% 8.4% 23.1%

Hits@1
SRPL 54.84 54.71 52.03 50.07 40.09 18.39
CyGNet 31.49 25.84 20.49 18.84 10.02 0.39
TiRGN 32.96 26.44 23.50 22.33 10.45 9.47

Hits@3
SRPL 78.55 77.00 75.40 72.35 67.59 29.38
CyGNet 42.91 41.64 37.46 31.43 19.83 3.04
TiRGN 46.02 41.95 37.99 36.64 21.54 17.93

Table 6: Results (in percentage) of different subsets on GDELT.

6, 7 and 5 on ICEWS14, WIKI and GDELT, respec-
tively. And the MRR and Hits@1 on each dataset
keep improving with the the number of previous
timestamps K increasing to the optimum value, and
then gradually decline. This indicates that learn-
ing hidden states in GRU from relatively long-term
timestamps is helpful to avoid information forget-
ting. However, too long historical timestamps would
introduce noises and affect the accuracy of SRPL
models.

4.5. Effects of Different Decay Functions
We replace the decay function of formula (9) used
in TRPL with other decay functions. Table 5 com-
pares the effects of the different decay functions,
including the log functions (the first three rows), the
linear function (the forth row), the exponential func-
tion (the fifth row) and the trigonometric function
(the sixth row). We set the average decay rate of
the linear function, exponential and trigonometric
functions to be the same as that of our log function
(the first row).

As shown in Table 5, we can find that: (1) Our
decay function outperforms the linear function, ex-
ponential and trigonometric functions, which sug-
gests log function is more suitable as delay func-
tion. Even so, except the trigonometric function,
the MRR and Hits@1 of the models with the linear
function and exponential function achieve better
performance than state-of-the-art models. This
demonstrates the effectiveness of the proposed
TRPL for capturing repetitive patterns. (2) Remov-

ing the base e of our log function with base 2 or 10
can lead to a drop of 2.02% and 9.14% in MRR, re-
spectively, which shows that the average decay rate
with different bases greatly influence the reasoning
performance.

4.6. Detailed Analysis on Repetitive Fact
Collection

To get insight into the performance of SRPL on
repetitive facts with different time intervals, we con-
duct more detailed analysis on the test data of
GDELT. We split the facts in the test data according
to the time interval between the test timestamp and
the nearest repetitive facts. The time intervals are
(a) 1-3, (b) 4-12, (c) 13-40, (d) 41-500, (e) 501-2304
and (f) unobserved facts, respectively.

Table 6 shows the comparison results of our
SRPL, CyGNet (Zhu et al., 2021) and TiRGN (Li
et al., 2022a) with Hits@1 and Hits@3 on each
subset. CyGNet models the occurrence frequency
of historical facts to each query. Instead of the
frequency, TiRGN only considers whether the fact
has happened before. Similar to ours, TiRGN cap-
tures sequential patterns and repetitive patterns
simultaneously.

From the results, we observe that (1) SRPL signif-
icantly outperforms the other two models on Hits@1
and Hits@3 in all intervals. This demonstrates the
effectiveness of our time-interval guided attention
mechanism in modeling the repetitive parttens of
different lengths. (2) Both Hits@1 and Hits@3
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Model 1-hop 2-hop multi-hop
MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

RE-GCN 48.57 35.36 56.19 49.72 40.55 54.25 18.32 12.71 20.17
SDPL 55.94 40.84 67.15 57.84 47.63 64.73 26.56 22.09 28.69
Improvement 15.17% 15.50% 19.51% 16.33% 17.50% 19.32% 44.98% 73.80% 42.24%

Table 7: The percentage improvement of SDPL over RE-GCN in different sequential patterns on ICEWS14.

History Query at T+1 Answer Model Prediction

Violent group,Conduct boycott,Government,T -6
Government,Make statement,Judiciary,T -2
Judiciary,Accuse,Citizen,T

Judiciary,
Charge with
legal action, ?

Violent
group SRPL Violent

group

RE-GCN Citizen
Police,Use conventional military,Militant,T -13
Police,Arrest,Militant,T -10
Police,Use conventional military,Militant,T -3
Police,Detain,Criminal,T -1

Police, Arrest, ?
Militant SRPL Militant

TiRGN Criminal

Table 8: Case study.

decrease as the time interval gets longer for all
models. This indicates that the longer the time in-
terval between repetitive facts, the harder it is to
be collected. However, compared with the other
two models, the performance of our SRPL in each
interval is relatively stable. (3) For unobserved
facts, SRPL also achieves the improvements of
8.92%/18.00% in Hits@1 and 11.45%/26.34% in
Hits@3 over TiRGN and CyGNet. It is more likely
to benefit from DSPL in SRPL, which could cap-
ture informative sequential patterns. (4) TiRGN is
consistently better than CyGNet in all intervals, es-
pacially in the interval (f) unobserved facts. This
indicates that it is necessary to capture sequen-
tial patterns, which is helpful to capture repetitive
patterns.

4.7. Effects of DSPL on Capturing
Temporal Sequential Patterns

To demonstrate the effectiveness of DSPL in captur-
ing temporal sequential patterns, we compare pure
SDPL (SRPL w/o TRPL) with RE-GCN (Li et al.,
2021b) on ICEWS14. We divide the test data of
ICEWS14 into the following scenarios: (1) 1-hop
sequential patterns, that is, 1-hop reasoning can
lead to answer, for example, the sequential pattern
(A,R1,B,t-3), (B,R2,C,t-1) helps the object entity
prediction (A,R3,C,t+1);(2) 2-hop sequential pat-
terns; (3) multi-hop (more than 2-hop) sequential
patterns.

Table 7 shows the comparison results on each
scenario. RE-GCN focuses on capturing sequential
patterns and performs quite well. From the results
we can conclude that DSPL is obviously superior to
RE-GCN in all the scenarios, especially in the multi-
hop scenario. This shows that DSPL is capable of
capturing long-term temporal dependencies.

4.8. Case Study
In order to show the sequential patterns and repet-
itive patterns across temporally adjacent facts
learned by SRPL, Table 8 illustrates two cases that
SRPL gives the answers top 1 scores from the test
set of ICEWS18.

The first case shows that the sequential
pattern (A,Conduct boycott,B,T -6), (B,Make
statement,C,T -2) can lead to (C,Charge with
legal action,A,T+1). While RE-GCN incorrectly
predicts “Citizen” according to the similar recent
fact (C,Accuse,Citizen,T ). From the result, we
find that SRPL could capture long-term sequential
patterns.

The second case shows that the sequen-
tial pattern (A,Use conventional military,B,T -13),
(A,Arrest,B,T -10) and the repetitive context fact
(A,Use conventional military,B,T -3) lead to the
repetitive fact (A,Arrest,B,T+1). By contrast,
TiRGN mainly focuses on predicting sequential
facts with temporally adjacent facts, therefore incor-
rectly predicts “Criminal” according to the similar
recent fact (A,Detain,Criminal,T -1). We can see
that SRPL is able to accurately capture repetitive
facts with long time intervals.

5. Conclusion

In this paper, we propose a novel SRPL model,
which captures both sequential and repetitive pat-
terns for extrapolation TKG reasoning. SRPL cap-
tures long-term sequential patterns with DSPL, and
meanwhile, collects repetitive facts with TRPL. Ex-
perimental results on the four benchmarks reveal
the superiority of DSPL and the effectiveness of
TRPL. The qualitative analyses also show the ne-
cessity and significance of incorporating the two
patterns of historical facts.
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