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Abstract
In vision-language pre-training (VLP), masked image modeling (MIM) has recently been introduced for fine-grained
cross-modal alignment. However, in most existing methods, the reconstruction targets for MIM lack high-level
semantics, and text is not sufficiently involved in masked modeling. These two drawbacks limit the effect of MIM
in facilitating cross-modal semantic alignment. In this work, we propose a semantics-enhanced cross-modal
MIM framework (SemMIM) for vision-language representation learning. Specifically, to provide more semantically
meaningful supervision for MIM, we propose a local semantics enhancing approach, which harvest high-level
semantics from global image features via self-supervised agreement learning and transfer them to local patch
encodings by sharing the encoding space. Moreover, to achieve deep involvement of text during the entire MIM
process, we propose a text-guided masking strategy and devise an efficient way of injecting textual information in
both masked modeling and reconstruction target acquisition. Experimental results validate that our method improves
the effectiveness of the MIM task in facilitating cross-modal semantic alignment. Compared to previous VLP models
with similar model size and data scale, our SemMIM model achieves state-of-the-art or competitive performance on

multiple downstream vision-language tasks.
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1. Introduction

Learning transferable vision-language representa-
tions for various downstream multimodal tasks (e.g.
image-text retrieval, visual question answering and
image captioning) by pre-training on large-scale
image-text datasets has attracted extensive atten-
tion in recent years (Tan and Bansal, 2019; Huang
et al., 2020; Li et al., 2021, 2022a; Ji et al., 2023a).
For vision-language pre-training (VLP), the most
crucial thing is to align the representation spaces
of the two modalities. To this end, contrastive learn-
ing between global image and text features is com-
monly adopted. However, such coarse-grained
alignment usually ignores detailed information in
image and text. To achieve finer-grained cross-
modal alignment, recent work (Ge et al., 2022; He
et al., 2022b; Geng et al., 2022; Bao et al., 2022)
has introduced the masked image modeling (MIM)
task into VLP.

Despite the achievements of MIM in the vision
domain, leveraging MIM to facilitate cross-modal
semantic alignment and promote vision-language
representation learning still faces significant chal-
lenges. 1) Semantic issue. Different from text

*Equal contribution.
fCorresponding authors.

whose words are naturally discrete and abstract,
the region information of image is continuous and
ambiguous. Therefore, without semantically mean-
ingful supervision for MIM, the inconsistency in se-
mantic levels between vision and language will im-
pair cross-modal alignment. However, in most ex-
isting methods, the reconstruction targets provided
for MIM lack high-level semantics. For instance, VL-
BEIT (Bao et al., 2022) uses a discrete variational
autoencoder (dVAE) to encode image patches into
discrete codes as MIM’s supervision. As dVAE is
trained through image reconstruction which sim-
ply minimizes pixel-level differences between origi-
nal and reconstructed images, its patch encodings
lack high-level visual semantics. VLMAE (He et al.,
2022b) and M3AE (Geng et al., 2022) take the raw
pixels of the masked regions as the reconstruction
targets of MIM, thus facing even more severe se-
mantic issue. 2) Insufficient text involvement.
Most previous methods directly introduce MIM into
VLP without elaborate designs for deep involve-
ment of text. For example, in MILES (Ge et al.,
2022) and MaskCLIP (Dong et al., 2023b), text fea-
tures do not directly participate in the MIM process,
which inevitably limits their contribution to cross-
modal semantic interaction. As for the selection
of masked patches, most methods simply adopt a
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random masking strategy without considering the
interaction between image and text.

To address these issues, we propose a
semantics-enhanced cross-modal MIM framework
(dubbed as SemMIM) to improve the effective-
ness of MIM in facilitating vision-language seman-
tic alignment. In this framework, we first propose
to inject high-level semantics into the local encod-
ings of image patches via self-supervised agree-
ment learning and sharing encoding space, which
can thus provide more semantically meaningful
supervision for MIM. Moreover, we make elabo-
rate designs for deep involvement of text during
the MIM process (i.e. masking strategy, masked
modeling and reconstruction target acquisition) to
further promote cross-modal interaction. Specifi-
cally, we adopt a fusion architecture which includes
an image encoder, a text encoder and a fusion en-
coder in the model. For masked image modeling,
we set an extra encoding head on top of the image
encoder, which projects the masked visual tokens
into an encoding space.

Due to the small granularity of image patches,
it's challenging to directly acquire high-level se-
mantics from them. To tackle this, we propose to
harvest high-level semantics from global visual fea-
tures via self-supervised agreement learning, and
transfer them into patch encodings by sharing the
same encoding space. Specifically, we derive a
momentum image encoder from the original image
encoder, whose parameters are obtained via the
exponential moving average approach. Similarly,
a momentum encoding head is also derived on
top of the momentum image encoder. Given an
input image, we apply random augmentation to
obtain two different views of it, which are fed into
the original and the momentum image encoders re-
spectively. Then we employ the encoding heads to
map the obtained global visual features into the en-
coding space. By learning the agreement between
different views, we can acquire high-level visual
semantics and shape the semantic structure of the
encoding space. In the meantime, we share the
encoding space for global and local features, i.e.,
using the same momentum image encoder and en-
coding head to transform patch features into visual
encodings. The learned high-level semantics are
thus transferred to the local patch encodings. In
this manner, we obtain semantics-enhanced local
encodings and provide more semantically mean-
ingful reconstruction targets for MIM.

Moreover, to further enhance MIM’s ability of
facilitating cross-modal semantic alignment, we
make three elaborate designs for deep text in-
volvement throughout the entire MIM process. 1)
We leverage the semantic relevance between im-
age patches and the paired text to select masked
patches, which can encourage the utilization of tex-

tual information during masked modeling. 2) We
devise an efficient way of fusing textual information
while masked modeling. This allows recovering
the masked regions by reasoning both contextual
visual information and paired textual information,
and thus promotes cross-modal semantic interac-
tion. 3) We fuse text features when transforming
image patches into visual encodings with the mo-
mentum image encoder, so that high-level textual
semantics can also be injected into the encodings.

Visualization results demonstrate that the pro-
posed SemMIM framework can learn high-level
visual semantics effectively. And extensive experi-
ments show our model achieves state-of-the-art or
competitive performance on multiple downstream
vision-language tasks, which validates the superi-
ority of our method.

Our contributions can be summarized as follows:

* We propose a semantics-enhanced, text-
deeply-involved MIM framework to facilitate
fine-grained cross-modal semantic alignment
in vision-language pre-training.

+ High-level visual semantics are injected into
image patch encodings via self-supervised
learning and shared encoding space, thus pro-
viding more semantically meaningful recon-
struction targets for MIM.

+ Our elaborate designs for deep text involve-
ment throughout the entire MIM process fur-
ther promote cross-modal interaction, includ-
ing masking strategy, masked modeling and
reconstruction target acquisition.

2. Related Work

2.1.

Large-scale vision-language pre-training (Lu et al.,
2019; Huang et al., 2020; Zhou et al., 2020; Li
et al., 2021; Xu et al., 2021; Li et al., 2022a; Xu
et al., 2023; Shi et al., 2023) has shown promis-
ing performance on various downstream vision-
language tasks. To mine the associations be-
tween image and text, various pre-training ob-
jectives are proposed, which can be divided into
two categories: discriminative tasks and gener-
ative tasks. Two commonly-used discriminative
tasks are image-text contrastive learning (ITC) and
image-text matching (ITM). ITC is used to align
the global representations of image and text. ITM
aims to predict whether an image and a text match
with each other in the cross-modal representa-
tion space. Generative tasks aim to reconstruct
the corrupted text (or image) with the help of vi-
sion (or text) modality. For instance, masked lan-
guage modeling (MLM) predicts the masked tokens
by reasoning contextual text information and the
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paired image information (Wu et al., 2022; Chen
et al., 2023). In this work, we focus on improving
the effectiveness of the Masked Image Modeling
(MIM) task, so as to better facilitate fine-grained
cross-modal alignment.

2.2. Masked Image Modeling in VLP

Inspired by the success of MLM in multimodal
learning, recent methods (Ge et al., 2022; He et al.,
2022b; Geng et al., 2022; Bao et al., 2022) have
introduced MIM into VLP for fine-grained cross-
modal alignment. VLMAE (He et al., 2022b) and
M3AE (Geng et al., 2022) follow MAE (He et al.,
2022a) to recover the raw pixels of the masked
image regions with an autoencoder architecture.
Following BEIT (Bao et al., 2021), VL-BEIT (Bao
et al., 2022) and BEiT-v3 (Wang et al., 2022b)
utilize a pre-trained discrete variational autoen-
coder (dVAE) to encode image patches into dis-
crete codes as the supervision for MIM. As dVAE
is trained through image reconstruction which min-
imizes pixel-level differences between original and
reconstructed images, its encodings concentrate
more on low-level visual information. Therefore,
the above methods can’t provide high-level se-
mantic supervision for MIM. Such inconsistency
in semantic levels between vision and language im-
pairs MIM’s effectiveness in facilitating cross-modal
alignment. Another issue of existing methods is
insufficient text involvement in MIM. For instance,
in MILES (Ge et al., 2022) and MaskCLIP (Dong
et al., 2023b), text features do not directly partici-
pate in the MIM process. Thus during masked mod-
eling, the model only reasons visual information
to recover masked regions, without direct vision-
language interaction. This inevitably limits MIM’s
benefit to cross-modal semantic alignment. In this
work, we propose a semantics-enhanced cross-
modal MIM framework, which tackles the above
stated issues by local semantics enhancing and
text-deeply-involved cross-modal MIM.

3. Method
3.1.

As shown in Figure 1(a), our SemMIM framework
contains an image encoder F;(+), a text encoder
Er(+), a multi-modal fusion encoder Er(), a de-
coder D(-) and an additional momentum image
encoder E;(-). All the encoders are Transformer
models. The image encoder splits the input image
into patches and encodes them as a sequence
of visual features {v.s,v1,v2,...,un}. The text
encoder tokenizes the input text into tokens and
projects them into a sequence of word features
{Weis, w1, wa, ..., wr}. vgs and wes are the fea-
tures of the [CLS] token for image and text respec-

Model Architecture

tively. N is the number of image patches, and
L is the number of text tokens. The multimodal
fusion encoder fuses the visual features and the
word features through cross attention. The ob-
tained cross-modal representations are fed into
the decoder for sequence to sequence learning,
which equips our model with both understanding
and generation abilities.

3.2. Semantics-enhanced Cross-modal
Masked Image Modeling

3.2.1.

As pointed in PeCo (Dong et al., 2023a) and BEIT
v2 (Peng et al., 2022), a significant drawback of
the offline visual tokenizers (e.g. dVAE) adopted
by previous methods is that their encodings lack
high-level semantics. Instead, they concentrate
more on low-level visual information such as color
and texture. Taking such visual encodings as
supervision inevitably hinders MIM’s objective of
cross-modal semantic alignment. However, as the
granularity of image patches is rather small, it’s
challenging to directly acquire high-level seman-
tics from them. Therefore, we propose to harvest
high-level semantics from global image features via
self-supervised learning, which are further trans-
ferred to local patch features by sharing the same
encoding space.

Unlike using pre-trained dVAE or raw pixels as re-
construction targets, we adopt an online approach
and utilize the model itself to provide supervision
for MIM. As shown in Figure 1(a), we derive a mo-
mentum image encoder E; from the original image
encoder E;. E; shares the same structure with £,
and its parameters are obtained via exponential
moving averaging the parameters of E; during the
iterative updating process of the model:

Local Semantics Enhancing

0, :mGEI + (1 —m)bg,, (1)

where m is a momentum coefficient. Besides, we
add two encoding heads H; and H; on top of the
original and the momentum image encoders re-
spectively. Each encoding head is an MLP module,
which transforms the extracted image features into
categorical distributions in a K-dimensional encod-
ing space. Here the parameters of H; are also
obtained via exponential moving averaging the pa-
rameters of H;. Previous methods such as dVAE
encode image patches into discrete codes, i.e.,
their categorical distributions are one-hot. Instead,
to preserve more information, we adopt a softmax
form of categorical distributions. In other words,
the reconstruction target of each masked image
patch is a soft label.

To obtain more semantically meaningful visual
encodings, we first harvest high-level semantic in-
formation from global image features. Specifically,
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(b) Local semantics enhancing and text-deeply-involved cross-modal MIM

Figure 1: Overview of our method. (a) shows the model architecture and pre-training objectives of our
SemMIM framework. (b) illustrates the proposed local semantics enhancing approach, which harvests
high-level semantics from global visual features via agreement learning, and transfer them into patch
encodings by sharing the same encoding space. And (b) also shows our designs for deep involvement of
text during MIM, including text-guided masking strategy and injecting textual information into both masked

modeling and reconstruction target acquisition.

as illustrated in Figure 1(b), given an input image
1, we first generate two different distorted views
of it I; and I, through random augmentation. The
two views are then fed into the momentum and
original image encoders respectively, and get the
corresponding encodings of their [CLS] tokens d¢!®
and ds's. Inspired by DINO (Caron et al., 2021), we
learn the agreement between view 1 and view 2 as
follows:

L:cls = E(CE(dilsv (jgls))’ (2)

where CE denotes cross entropy loss. Through
this bootstrapping process on the [CLS] tokens,
we acquire high-level semantics from the global
image features and shape the semantic structure
of the encoding space. In the meantime, we use
the same momentum image encoder and encoding
head to transform local patch features into visual

encodings, i.e., the [CLS] tokens and the patch
tokens share the same encoding space. Therefore,
the learned high-level semantics can be naturally
transferred to the local patch encodings. In this
way, we achieve local semantics enhancing and
can provide more semantically meaningful recon-
struction targets for the MIM task.

3.2.2. Text-deeply-involved Cross-modal MIM

By enhancing local semantics, we provide more
semantically meaningful reconstruction targets for
MIM. However, lacking text involvement would lead
MIM to degrade into learning purely visual informa-
tion, which hinders facilitating cross-modal seman-
tic alignment. Therefore, we further make three
elaborate designs within our framework for deep
involvement of text during the entire MIM process.
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Firstly, we propose an text-guided masking strat-
egy. Instead of masking a proportion of image
patches randomly, we leverage semantic similari-
ties between image patches and text for masked
patch selection, so as to encourage the utilization
of textual information during MIM. Specifically, we
first compute the similarity S; between each local
patch feature and the global feature of the paired
text. Then we normalize the similarity scores of all
patches using softmax, and take them as sampling
probabilities to select a predefined proportion of
patches. In this way, image regions with higher
relevance to text are more likely to be selected,
thereby encouraging the model to recover masked
regions by reasoning textual information.

Secondly, we devise an efficient way of fusing
textual information while masked modeling, which
enables the model to recover masked regions by
reasoning both contextual visual information and
paired textual information. In cross-modal MLM,
an extra fusion encoder is often required. Instead,
we concatenate the output of the text encoder with
visual tokens at the last IV layers of the image
encoder. Thus the masked tokens can interact
with the paired text features via self-attention. We
also investigate the effect of the start visual layer
used to inject textual information for MIM. Please
refer to the ablation study in Section 4.4.

Thirdly, we also fuse text features when using the
momentum encoder to transform image patches
into encodings, which injects high-level textual se-
mantics into patch encodings. Note that the boot-
strapping on [CLS] tokens in Section 3.2.1 would
fail if textual information is leaked into [CLS] tokens.
Therefore, we infer twice at the last N layers of
the momentum encoder E;. One for regular vi-
sual modeling to extract [CLS] tokens, the other for
injecting textual information into patch encodings.

In Equation 2, we feed the two views I; and I5 of
the input image into the momentum and original im-
age encoders respectively. Here, to perform cross-
modal MIM, we first apply the proposed masking
strategy to replace the selected image patches
with a learnable [MASK] token. Then we input the
corrupted image I, into the image encoder E; to
recover the information of the masked regions. We
denote dg’f‘i“h as the categorical distribution of the

i-th masked patch of I, which is predicted by the
encoding head H;. And d’g’f’f" for that generated

by the momentum encoding head H;. The loss of
the MIM task can be formulated as follows:

M
1 patch jpatch
Lpaten = E(5; > CE(d55 ", d5i ™). (3)
i=1

where CE denotes cross-entropy loss. M is the
number of masked patches.

3.2.3. Pre-training Objectives

In addition to the cross-modal MIM task, we also
jointly train the pre-training tasks below to learn
cross-modal alignment following existing methods
(Li et al., 2021, 2022a; Xu et al., 2023):
Image-Text Contrastive Learning (ITC, £;;.) aims
to learn better uni-modal representations before
fusion. Image-Text Matching (ITM, L;,) uses
a binary classification task to predict whether a
pair of image and text is matched with each other.
Masked Language Modeling (MLM, £,.1,,) aims
to predict the randomly masked words based on
cross-modal representations. Prefix Language
Modeling (PLM, £,,) aims to equip the model
with generation capability. Given an image and
the prefix text 7?7, we use the decoder to predict
the suffix text 7. Following previous methods (Li
et al., 2021, 2022a), we assign equal loss weights
to all these pre-training objectives, and thus the full
pre-training objective is:

E = ﬁcls + Epatch + Eitc + Litm + Emlm + Eplm (4)

4. Experiments

4.1. Pre-training Datasets

Following ALBEF (Li et al., 2021), we use a hybrid
pre-training dataset with 4 million images and 5.1
million captions, including two in-domain datasets
(MS COCO (Lin et al., 2014), Visual Genome (Kr-
ishna et al., 2017)), and two web-crawled datasets
(Conceptual Captions (Sharma et al., 2018), SBU
Captions (Ordonez et al., 2011)).

4.2. Implementation Detail

We adopt ViT-B/16 as the visual encoder, and ini-
tialize it with CLIP-ViT (Radford et al., 2021) which
is pre-trained on 400 million noisy image-text pairs.
Besides, we use a 6-layer Transformer architecture
for both the text encoder and the fusion encoder,
and a 12-layer Transformer architecture for the de-
coder. The text encoder and the fusion encoder
are initialized using the first 6 layers and the last
6 layers of the BERTy,5c model respectively. For
pre-training, we use the AdamW (Loshchilov and
Hutter, 2018) optimizer with a weight decay of 0.02.
We use different learning rates for the visual en-
coder and the rest parts of our model, which are
warmed-up to 1e-5 (ViT-B/16) and 1e-4 (BERTpage)
in the first 1000 iterations, and decay to 1e-6 fol-
lowing a cosine schedule. We pre-train our model
for 20 epochs on 8 NVIDIA A100 GPUs, with a
total batch size of 1024. The image resolution
is 224 x224 for pre-training and is increased to
384 x 384 for fine-tuning. For the encoding head,
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Methods # Pretrain MSCOCO (5K test set) Flickr30K (1K test set)
data TR IR TR IR

\ \ R@1 R@5 R@10 R@1 R@5 R@10 \ R@1 R@5 R@10 R@1 R@5 R@10
UNITER (Chen et al., 2020) 4M 65.7 886 938 529 799 880 |873 980 992 756 941 96.8
OSCAR (Li et al., 2020) 4M 70.0 911 955 540 80.8 885 - - - - - -
ALBEF (Li et al., 2021) 4M 731 914 96.0 56.8 815 89.2 | 943 994 998 828 96.7 984
VinVL (Zhang et al., 2021) 4M 746 926 963 581 832 90.1 - - - - - -
ALIGN (Jia et al., 2021) 1.8B 77.0 935 969 599 833 898 |953 99.8 100.0 849 974 986
VLMAE (He et al., 2022b) 4M 773 936 974 596 836 903 | 952 99.6 999 836 96.6 985
SCL (Ji et al., 2023a) 4M 777 941 974 60.1 845 914 | 959 99.8 100.0 845 974 989
MAP (Ji et al., 2023b) 4M 793 948 976 609 862 93.1 | 949 995 998 838 972 987
VL-BEIT (Bao et al., 2022) 4M 79.5 - - 61.5 - - 95.8 - - 83.9 - -
BLIP (Li et al., 2022b) 14M 80.6 952 976 631 853 911 | 966 99.8 100.0 872 975 98.38
X-VLM (Zeng et al., 2022) 4M 80.4 955 982 631 857 916 |968 99.8 100.0 86.1 974 98.7
mPLUG (Li et al., 2022a) 4M 80.5 954 979 633 853 912 |96.7 99.8 100.0 86.5 975 98.38
Ours \ 4M \ 815 962 983 642 86.1 91.6 \ 97.0 99.8 100.0 86.9 97.8 99.0

Table 1: Evaluation results of image-text retrieval on MSCOCO and Flickr30K datasets.

# Pretrain COCO Caption NoCaps
Methods Data Cross-entropy Optimization CIDEr Optimization zero-shot
B@4 M C S B@4 M C S C S
OSCAR (Li et al., 2020) 6.5M - - - - 41.7 30.6 140.0 245| 834 114
VinVL (Zhang et al., 2021) 5.65M 38,5 304 130.8 234 41.0 31.1 1409 25.2| 97.3 13.8
BLIP (Li et al., 2022b) 14M 38.6 - 1297 - - - - - 105.1 14.4
SimVLM;,s. (Wang et al., 2021) 1.8B 39.0 329 1348 24.0 - - - - - -
mPLUG (Li et al., 2022a) 4M 39.3 30.1 1324 23.3 412 30.8 140.2 25.2| 98.3 129
Ours | 4M ]398 309 1335 239 417 31.3 1415 254| 988 135

Table 2: Evaluation results on COCO Caption “Karpathy” test split and NoCaps validation set. B@4:

BLEU@4, M: METEOR, C: CIDEr, S: SPICE.

# Pretrain VQA
Methods Data Test-dev Test-std
E2E-VLP (Xu et al., 2021) 4aM 73.25 73.67
OSCAR (Li et al., 2020) 6.5M 73.16 73.44
ALBEF (Li et al., 2021) 4M 74.54 74.70
VLMAE (He et al., 2022b) 4M 75.3 75.4
PTP-BLIP (Wang et al., 2023a) 4M 75.5 75.9
ALBEF (Li et al., 2021) 14M 75.84 76.04
VinVL (Zhang et al., 2021) 5.65M 76.52 76.60
VL-BEIT (Bao et al., 2022) 4M 77.53 77.75
BLIP (Li et al., 2022b) 14M 77.54 77.62
METER (Dou et al., 2022) 4M 77.68 77.64
mPLUG (Li et al., 2022a) 4M 77.58 77.73
FLM,ar4e (Wang et al., 2023b) 4M 77.80  77.84
SimVLM;.s. (Wang et al., 2021) 1.8B 77.87 78.14
Ours | 4M | 7812 78.18

Table 3: Evaluation results on VQA.

we set the dimension of the categorical distribution
(i.e. the K value) to 1024.

4.3. Evaluation on Downstream
Vision-Language Tasks

Image-Text Retrieval. We conduct experiments
on MSCOCO and Flickr30K (Young et al., 2014)
datasets and adopt a two-stage retrieval strategy
following ALBEF (Li et al., 2021), which takes
a fast retrieval via uni-modal encoders and then
reranks via the fusion encoder. As shown in Ta-
ble 1, our model outperforms previous methods

on both datasets. Note that VLMAE (He et al.,
2022b) and VL-BEIT (Bao et al., 2022) are also
MIM-based methods. VL-BEIT adopts an offline
tokenizer (i.e. dVAE) to provide reconstruction
targets for MIM, while VLMAE directly recovers
the raw pixels of the masked regions. We outper-
form these two methods by a large margin on both
MSCOCO and Flickr30K. This shows that, by inject-
ing high-level semantics into local patch encodings
via self-supervised learning and shared encoding
space, our model can provide more semantically
meaningful supervision for MIM and improves the
effectiveness of MIM for cross-modal alignment.
Besides, our model also surpasses BLIP (Li et al.,
2022b), which uses a significantly bigger dataset
of 14 million image-text pairs for pre-training.

Image Captioning. We evaluate the image cap-
tion generation ability of our model on COCO
Caption (Lin et al., 2014) and NoCaps (Agrawal
et al., 2019) datasets. We fine-tune our model on
COCO Caption, and test on the “Karpathy” test split
and NoCaps validation set. Following OSCAR (Li
et al., 2020), we first fine-tune our model with
cross-entropy loss, and then with CIDEr optimiza-
tion (Rennie et al., 2017) for 5 extra epochs. As
shown in Table 2, our method surpasses mPLUG
(Li et al., 2022a) which uses the same amount of
pre-training data. On COCO Caption, our method
even outperforms some methods which use much
more data for pre-training. For instance, we sur-
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Supervision for MIM | MSCOCO VaA
| TR IR Test-dev

w/o MIM ‘ 79.0 62.3 77.20

raw pixels | 786 622 77.08
dVAE ‘ 79.8 62.7 77.54

Ours \ 81.5 64.2 78.12

Table 4: Performance comparison of different su-
pervision for MIM. Retrieval results are reported in
terms of the R@1 of TR and IR.

Masking Strategy ‘ MSCOCO VOA
| TR IR  Testdev

random | 81.0 636 77.96
text-guided ‘ 81.5 64.2 78.12

Table 5: Ablation on the masking strategy. R@1
retrieval results are reported.

pass BLIP which uses 14M image-text pairs by a
large margin of 3.8 on the CIDEr metric. More-
over, on the NoCaps dataset which reflects the
zero-shot caption generation ability, we also out-
perform previous methods (Li et al., 2020; Zhang
et al., 2021; Li et al., 2022a) which use similar
amounts of pre-training data, showing the good
generalization ability of our method.

Visual Question Answering. We treat VQA as
an answer-generation task and directly apply un-
constrained open-vocabulary generation during in-
ference. Following OFA (Wang et al., 2022a), we
concatenate the question with the object labels
and OCR tokens extracted from images. As Table
3 shows, our model outperforms previous meth-
ods using similar amounts of pre-training data.
And we even surpass SimV LMy,.s. which uses
400x more image-text data for pre-training. We
largely outperform VLMAE by 2.82% on test-dev
and 2.78% on test-std, and surpass VL-BEIT by
0.6% on the test-dev split. The comparison vali-
dates that, with the proposed local semantics en-
hancing and text-deeply-involved cross-modal MIM,
our SemMIM framework equips the model with
more powerful semantic reasoning ability.

4.4. Ablation Study

The effect of local semantics enhancing. As
shown in Table 4, we compare different supervision
for the MIM task. Compared to the baseline model
which doesn’t perform MIM, in our experiment, us-
ing raw pixels as the reconstruction targets for MIM
in fact brings a slight performance drop. We an-
alyze this is due to raw pixels don’t have any se-
mantic abstraction, and thus taking them as MIM’s
supervision can’t achieve effective cross-modal se-

Mask Ratio | MSCOCO _ VaA
| TR IR Testdev

15% ‘ 80.8 63.6 77.65
30% ‘ 81.5 64.2 78.12
45% ‘ 80.6 63.4 77.71

Table 6: Effect of the mask ratio. Retrieval results
are reported in terms of the R@1 of TR and IR.

., | MSCOCO  VaA
| TR IR Test-dev
- | 804 632 7763
11800 629 7735
6 | 80.9 636 77.90
9 | 815 639 78.06
12 | 815 642 78.12

Table 7: The effect of the start visual layer used
to inject textual information for MIM. Results are
reported in terms of the R@1 of TR and IR.

mantic interaction. Using a pre-trained dVAE to pro-
vide supervision improves performance. However,
the boost is relatively limited, as the dVAE encod-
ings also lack high-level semantics. In contrast, our
method significantly surpasses raw-pixels-based
and dVAE-based MIM, showing that our proposed
local semantics enhancing approach can largely
improve the effectiveness of MIM.

The effect of the text-guided masking strategy.
We compare the performance of random masking
and the proposed text-guided masking. As Table
5 shows, applying text-guided masking brings sig-
nificant performance boost. As image regions with
higher relevance to text are more likely to be se-
lected, text-guided masking encourages the model
to recover masked regions by reasoning textual in-
formation, and thus further facilitates cross-modal
semantic interaction and fusion.

The effect of the mask ratio in MIM. In Table 6,
we experiment with different mask ratios for MIM.
The best performance is obtained at 30% mask
ratio. We analyze that a smaller mask ratio makes
some masked patches can be recovered by sur-
rounding patches without utilizing text information,
impairing fine-grained cross-modal alignment. In
contrast, too high mask ratio may cause severe
information loss, leading to a performance drop.

The effect of the start visual layer used to inject
textual information for MIM. Table 7 shows that
fusing textual information starting from different lay-
ers of the image encoder has varying effects. The
first line is MIM without using textual information.
As can be seen, injecting text features into shallow
layers causes performance drop. We analyze this
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computer color: yellow

Figure 2: Pattern clusters of image patch encodings. The left six figures (our model) showcase high-level
semantic patterns the eye of elephant, banana, bowtie, hand, cat and computer. The right two figures
(dVAE) showcase relatively low-level visual patterns circle texture and yellow color.

Figure 3: Visualization of pattern layout of full images. Different patterns are shown in different colors.

is due to high-level textual semantics interfere the
modeling of low-level visual information. Starting
from deeper layers brings significant performance
improvement. This shows that the injected textual
semantics can help high-level visual features to
better recover masked regions, thereby facilitating
cross-modal semantic alignment.

4.5. Visualization

Pattern Cluster. As shown in Figure 2, we visual-
ize the pattern clusters of the image patch encod-
ings obtained by our model and dVAE (Ramesh
et al., 2021). For case(a), we can find that the
patches are grouped with certain semantic mean-
ings, e.g., hand despite their complicated back-
ground. This demonstrates that our proposed lo-
cal semantics enhancing approach can effectively

inject high-level semantics into local patch encod-
ings, thus providing more semantically meaningful
supervision for cross-modal MIM. In contrast, as
case (b) shows, the patches grouped by dVAE
share similar textures or colors but have little in
common in semantics. This is because dVAE is
trained through image reconstruction which simply
minimizes pixel-level differences between original
and reconstructed images. Therefore, it concen-
trates more on relatively low-level visual informa-
tion rather than high-level semantics.

Pattern Layout of Full Images. In Figure 3, we
visualize all the patterns of the image patch en-
codings in full images, where different patterns
are distinguished by different colors. From the
outline of the patterns, we can find that the ex-
tracted patterns are discriminative. This shows
that, benefiting from the proposed local seman-
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Pre-train Time | MSCOCO
(GPU Days)) | TR@1 IR@1

28 (A100) | 73.1 56.8
57 (V100) | 735 56.6
320 (V100) | 746 58.1
64 (A100) | 762 57.1

Methods ‘ #Param

ALBEF (Li et al., 2021) 210M
FLM;4rge (Wang et al., 2023b)

VinVL (Zhang et al., 2021)

METER (Dou et al., 2022)

BLIP (Li et al., 2022b) 446M | 112(A100) | 80.6 63.1
mPLUG (Li et al., 2022a) 354M | 40 (A100) | 805 633
Ours | 360M | 32(A100) | 81.5 64.2

Table 8: Comparison of the number of trainable
parameters and the pre-training time.

tics enhancing approach, our model can effectively
obtain high-level semantic information in image
patches. Therefore, our SemMIM framework can
provide MIM with more semantically meaningful re-
construction targets, thereby more effectively pro-
moting cross-modal semantic alignment.

4.6. Efficiency

The number of parameters. Table 8 shows the
comparison of the number of trainable parame-
ters and the pre-training time with some existing
methods. ALBEF (Li et al., 2021) has fewer param-
eters than ours, mainly because it hasn’t decoder
and thus hasn’t caption generation ability. Com-
pared to mPLUG (Li et al., 2022a), with a mere
1.7% increase in the number of parameters, our
method achieves significantly better performance.
The reason why our method doesn’t substantially
increase the number of parameters is that, the pa-
rameters of the momentum model are acquired via
Exponential Moving Average (EMA), rather than
trainable parameters. Therefore, our method in fact
only adds the parameters of the encoding head,
an MLP module with less than 6M parameters. Be-
sides, our masking strategy and injecting textual
information do not add any learnable parameters.

Training efficiency. As Table 8 shows, com-
pared to existing methods, our method requires
almost the shortest pre-training time (except for AL-
BEF), while achieving state-of-the-art performance
across various vision-language tasks. On one
hand, compared to the baseline, most operations
we add are computationally efficient. For example,
the momentum model only needs a forward pass
to extract image features without requiring back-
propagation. Injecting textual information only in-
creases the sequence length slightly, as the text
length is much shorter than the number of image
patches. On the other hand, our SemMIM frame-
work effectively promotes cross-modal semantic
alignment, and thus accelerates the convergence
of training, requiring fewer training epochs.

Inference efficiency. It's also worth noting that,
although we add the cross-modal MIM task during
pre-training, this only affects the pre-training time
and has no impact on the inference speed. After

training, our model maintains similar inference effi-
ciency to other models with comparable size and
architecture such as mPLUG (Li et al., 2022a).

5. Conclusion

In this work, we have proposed a semantics-
enhanced cross-modal MIM framework (SemMIM)
for fine-grained vision-language semantic align-
ment. Firstly, we propose to inject high-level
semantics into local patch encodings via self-
supervised agreement learning and sharing encod-
ing space, which can provide more semantically
meaningful supervision for MIM. And we propose
a text-guided masking strategy and devise an ef-
ficient way of injecting textual information in both
masked modeling and reconstruction target acqui-
sition, which achieves deep involvement of text
during the entire MIM process. Extensive exper-
iments on various vision-language tasks and the
visualization results verify the effectiveness of the
proposed SemMIM method.
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