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Abstract
Task-oriented dialogue (TOD) systems facilitate users in executing various activities via multi-turn dialogues, but
Large Language Models (LLMs) often struggle to comprehend these intricate contexts. In this study, we propose a
novel "Self-Explanation” prompting strategy to enhance the comprehension abilities of LLMs in multi-turn dialogues.
This task-agnostic approach prompts the model to analyze each dialogue utterance before task execution, thereby
improving performance across various dialogue-based tasks. Experimental results from six benchmark datasets
confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of
few-shot prompts, demonstrating its potential as a powerful tool in enhancing LLMs’ comprehension in complex

dialogue tasks.
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1. Introduction

Recent advancements in large language models
(LLMs) have achieved great success in various
NLP tasks (Brown et al., 2020; Touvron et al.,
2023; Chowdhery et al., 2022). However, the vast
model parameters pose challenges in downstream
fine-tuning. To circumvent these challenges, di-
verse prompting strategies have been researched
to enhance LLM performance (Brown et al., 2020;
Liu et al., 2021; Sorensen et al., 2022; Huang
et al., 2023; Bhattacharjee et al., 2023; Chae et al.,
2023; Siet al., 2023; Zhao et al., 2023). In-context
learning emerges as a viable alternative to fine-
tuning, leveraging examples to augment language
processing abilities. To elicit the reasoning abil-
ity of LLMs, Chain-of-Thought has been integrated
within the prompting framework, showing remark-
able performance in tasks requiring complex rea-
soning (Wei et al., 2022; Miao et al., 2021; Talmor
et al., 2018; Yao et al., 2024; Besta et al., 2023;
Zhou et al., 2022). Stemming from CoT prompting,
numerous studies have delved into refining CoT
via prompt design modifications (Li et al., 2022;
Fu et al., 2022; Zhang et al., 2022) and optimizing
reasoning paths (Wang et al., 2022a,b; Zelikman
et al., 2022). In contrast, to reduce dependency
on human demonstrations, the Zero-shot CoT (Ko-
jima et al., 2022) employs the post-append instruc-
tion, “Let’'s think step by step” to let Large Lan-
guage Models (LLMs) automatically generate rea-
soning steps.

* Corresponding authors.
1 Work done while interning at Alibaba.

Context: James decides to run 3 sprints 3 times a week.
He runs 60 meters each sprint.
Question: How many total meters does he run a week? Reasoning task

Context: Task-oriented Dialogue task

USER:I'd like to know what's available as cheap Asian Oriental food.
SYSTEM:You must try dojo noodle bar in the centre of town!
USER:I need to get the address please.

SYSTEM:The TR1992 leaves at 21:35. would that work for you?
USER:Yes, please book 5 seats for me.

Question:
When does the user need train to arrive?
How many train tickets needed by the user for the train?
What the cuisine that the user explicitly requested of the restaurant?
What the name that the user explicitly requested of the restaurant?
Which day that the user explicitly requested of the restaurant booking?

Figure 1: The input examples for the reasoning
task and the task-oriented dialogue are structured
into two components: Context and Question.

Despite the effectiveness of CoT prompting,
most existing prompting methods focus on elic-
iting the reasoning ability inherent in large lan-
guage models. However, these techniques might
need to be revised when applied to tasks that re-
quire contextual comprehension rather than rea-
soning steps. Specifically, dialogue-based tasks
(Lin et al., 2022; Hu et al., 2022a; Li et al., 2023;
Cai et al., 2023) serve as typical examples that re-
quire strong comprehension ability rather than rea-
soning ability. The task-oriented dialogue (TOD)
(He et al., 2022a,b,c) is one of the most represen-
tative tasks that facilitates users in executing vari-
ous activities, including but not limited to hotel and
restaurant reservations, by engaging in multi-turn
dialogues (Gao et al., 2023; Qian et al., 2023; Yu
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Avg. Answer Prompting
Task Dataset #Tokens Context Search Space Method Focus on
. MultiArith 16.6 Chain-of-Thought Reasoning
Reasoning  "oovigk 33 ohort Internal Plan-and-Solve Step
Dialog SGD 940.9 .
Understanding MultiwOZ — 1229.7 Long External Self-Explanation Context

Table 1: Comparative analysis of reasoning and dialogue understanding tasks, highlighting the distinctive

application of the proposed Self-Explanation method.

et al., 2023). An illustrative example of the rea-
soning task and the TOD task can be seen in Fig-
ure 1. Contrary to the reasoning task, which typi-
cally consists of concise context, the TOD mainly
involves multi-turn dialogues with long contexts.
Not only do these tasks differ in terms of context
length, but they also exhibit differences across nu-
merous other dimensions. As delineated in Table
1, the reasoning task predominantly emphasizes
intricate problem-solving steps that entail exten-
sive computations and conversions. This under-
scores the model’s inherent ability to reason. Con-
sequently, the scope of searching for an answer
predominantly resides within the model.

However, when performing dialogue-based
tasks, success depends on a strong understand-
ing of the dialogue context rather than complex
reasoning. TOD tasks mainly obtain information
directly from the external contexts to which the
search space for answers is strongly related. The
different emphases of the two tasks resulted in
the underperformance of CoT prompts in dialogue-
based tasks. Judging from the results of exist-
ing evaluation studies (Heck et al., 2023; Hudecek
and DusSek, 2023; Bang et al., 2023), the current
LLMs with unoptimized prompting perform signif-
icantly worse than specialized small models on
some dialogue-based tasks. Hu et al. (2022b)
have reformulated the dialogue state tracking task
into a few-shot text-to-SQL paradigm, utilizing the
robust code capabilities of Codex. While this rep-
resents an intriguing approach for DST tasks, the
text-to-SQL may not be universally applicable, par-
ticularly in procedural TOD tasks such as next-
action prediction. Additionally, the example re-
triever needs to be retrained for each new dataset,
which imposes limitations on this approach.

To address the above issues, we explore sev-
eral ways to enhance the comprehension capa-
bilities of LLMs by mimicking the way humans
solve conversational problems (Chi et al., 1989).
We introduce the Self-Explanation prompt strat-
egy, prompt the model to explain every utterance
in the dialogue first, and then complete the task
based on the generated explanation. Despite its
simplicity, the proposed method enhances the per-

formance of dialogue comprehension of LLMs in
various dialogue-based tasks. More importantly,
our prompt is task-agnostic and can be easily ap-
plied to a variety of dialogue-based tasks. We
evaluate the proposed method across six dialogue-
based datasets. The results show that our prompt
consistently surpasses other zero-shot prompts
and is on par with or surpasses few-shot prompts.
In summary, our contributions include:

» We conduct a comprehensive comparison be-
tween reasoning tasks and dialogue under-
standing tasks, identifying the limitations of
current prompting methods.

» We propose a simple yet effective prompting
strategy, Self-Explanation, that significantly
enhances the dialogue comprehension ca-
pacities of large language models.

» Extensive experiments on six dialogue-based
datasets have demonstrated that the pro-
posed method surpasses existing prompting
approaches in performance.

2. Method

21.

As illustrated in Figure 3, task completion can be
deconstructed into four parts: context, question,
intermediate steps, and final answer. The former
two components belong to the input, while the lat-
ter two belong to the output generated by LLMs.

The context, denoted as C, provides a descrip-
tive framework that outlines the problem setting
and background. For reasoning tasks, this context
describes a specific situation. An example of this
can be observed in Figure 1, where C contains the
activities of James. Meanwhile, in the context of
TOD tasks, C typically is a multi-turn dialogue.

As for the question component, represented by
Q is an inquiry for specific information related to C.
In the realm of reasoning tasks, Q typically asks
for a value derived from multi-step computations.
This implies that the solution isn’t readily available
within C. To illustrate, refer to Figure 1 where Q

Formalization
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élere is a dialogue between an user and a system: R
USER:Hello, I am looking to book a train that will be
departing Cambridge after 13:15.
SYSTEM:The first train leaves at 15:00 and they run
every 51 minutes.
USER:I'd like to go to Birmingham New Street on
Thursday and leave after 13:45. Do you
have anything that would work for me?
Please output the dialogue state of above dialogue
\between an user and a system

/Here is a dialogue between an user and a system
departing Cambridge after 13:15.

every 51 minutes.

USER:I'd like to go to Birmingham New Street on
Thursday and leave after 13:45. Do you have |--
anything that would work for me?

Please output the dialogue state of above

dialogue between an user and a system

”

Let's first analysis the conversation utterance by
utterance, give every utterance an explanation.
Then output the dialogue state of above dialogue
based on your explanation to every utterance.

- /

Large Language
Models

USER:Hello, I am looking to book a train that will be |*""" """ "=-----

SYSTEM:The first train leaves at 15:00 and they run *[ "~~~ """ 7" ==~ .| 2.In the system's response, it provides information about the train

Large Language
Models

_____ - Birmingham New Street on Thursday and that they want to leave after

Based on the above dialogue, here is the dialogue state:
{"train-departure": "Cambridge", "train-leaveat": "after
13:15", "train-destination": "Birmingham New Street",

"train-day": "Thursday", "train-arriveby": "after 13:45"}x

Explanation of the utterances:
“*- 1.The user initiates the conversation and expresses their intention to
book a train departing from Cambridge after 13:15

" schedule but doesn't make any explicit requests or provide any new
information about the user's preferences.

3.In the user's next utterance, they specify that they want to go to

13:45. This is an update to their previous request, where they had only
specified that they wanted to depart from Cambridge after 13:15.

Based on the above explanation, here is the dialogue state:
{"train-departure": "Cambridge”, "train-day": "Thursday",
, "train-destination":

@irmingham New Street"}

%

Figure 2: Example inputs and outputs of GPT-3 with No explanation ahead (upper) and Explain before
answer (lower). Explanation greatly improves the understanding of the dialogue.

C : Here is a dialogue between an user and a system
USER: Hello, I am looking to book a train that will be departing
Cambridge after 13:15.

Q : Please output the dialogue state of above dialogue between an
user and a system.

T :Let’s first analysis the conversation utterance by utterance, give
every utterance an explanation. Then output the dialogue state of
above dialogue based on your explanation to every utterance.
Explanation of the utterances:
1.The user initiates the conversation and expresses their intention
to book a train departing from Cambridge after 13:15

A :Based on the above explanation, here is the dialogue state:
{"train-departure": "Cambridge", "train-leaveat" : "after 13:45",

"train-destination": "Birmingham New Street", "train-day":
"Thursday"}

Figure 3: The structure of inputs and outputs with
four parts.

probes for the aggregate distance James runs in
a week. Addressing this necessitates discerning
the frequency of James’ sprints per week and the
distance of each sprint. Subsequent multiplication
of these two values yields the final result.

On the other hand, in a TOD task, the Q is
more straightforward, often inquiring about the ex-
istence of specific information. Using Figure 1 as
a reference, the question might ask for the sched-
uled departure time of a reserved train or the type
of cuisine a user seeks. Responses to these types
of inquiries are readily extractable from C, obviat-
ing the need for additional computation.

In general, when presented with context C and
aquery Q, LLMs is tasked with generating the cor-
responding answer A, following a probabilistic dis-
tribution as denoted by:

A~ P(a]Q,C) (1)

However, a more refined prompting to guide the
LLMs in their response generation entails the
utilization of some intermediate problem-solving
steps in order to enhance LLMs performance. In-
stead of immediately generating the final answer
A, the model is prompted to generate a series of
intermediate problem-solving steps denoted as 7
based on the C and Q:

T~ P(i|Q,C) (2)
The format or content of Z can vary significantly
across different tasks. For reasoning tasks, 7
might encompass multiple reasoning steps, while
for understanding tasks, it could involve interpreta-
tions of C. Comparatively, let the LLM to first gen-
erate these Z, before arriving at the A, is a more
logical approach:

A~ P(a|Z,9Q,C) ©)

This paradigm shift not only enables the model to
demonstrate a deeper understanding of the prob-
lem but also provides greater transparency into
its problem-solving process, potentially enhanc-
ing the model’s interpretability and performance
across a wide range of tasks.
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2.2. Self-Explanation

Humans often find it challenging to respond to
questions grounded in extensive new information.
One strategy that has been empirically shown to
enhance comprehension of new material is self-
explanation. The concept of self-explanation, orig-
inating from psychological research (Chi et al.,
1989), involves learners generating explanations
for themselves while processing unfamiliar con-
tent. Notably, this study demonstrated that learn-
ers engaging in self-explanation were better able
to grasp core concepts and principles than their
counterparts who did not employ this strategy.

Drawing inspiration from human cognitive pro-
cesses and this psychological paradigm, we in-
troduce the Self-Explanation prompting method,
a zero-shot prompting technique designed to en-
hance multi-turn dialogue comprehension. Within
the process, models initially provide explanations
for each utterance in a multi-turn dialogue. Sub-
sequently, these models execute the specified
task, relying on their previously generated expla-
nations. In the process of explaining, the large
language models (LLMs) transform low-level nat-
ural language inputs into more abstract, high-level
information, such as the intent or action of the
speaker.

The framework is structured without the need for
demonstration examples. Following the problem
formalization in section 2.1, we organize the inputs
using the template "C:[C]. Q:[Q]. A:[A]”, wherein
[C] and [Q] represents the input slot designated
for the context and question, respectively. As for
the last part, [A] is populated by manually curated
instructions prompting the model to generate in-
termediate steps Z. Central to our method is the
instruction: "Provide explanations for each utter-
ance and then respond based on these explana-
tions.” For the decoding strategy, we opt for the
straightforward greedy decoding method, though
beam search decoding could be employed to pro-
duce a broader range of explanations.

3. Experiments

3.1.
3.1.1.

Experimental Setup
Datasets and task

We evaluate our self-explanation on six datasets
from three categories of dialogue understanding
tasks: Task-oriented dialogue (TOD), Emotion
Recognition in Conversations (ERC) task and Re-
sponse Selection (RS) task. For TOD task, the
datasets can be divided into two types based on
the dialogue schema: Procedural and Declarative
(Mannekote et al., 2023). In the context of task-
oriented dialogue, a dialogue schema refers to

a structured representation of the conversational
flow or the pivotal entities, commonly referred to
as “slots,” that must be identified and captured.
The Procedural schema, derived from the STAR
dataset (Mosig et al., 2020), represents a dialogue
domain as a directed graph closely resembling a
flowchart. Within this schema, discrete nodes cor-
respond to various elements such as user utter-
ances, system responses, or backend service in-
teractions. The central objective of the procedural
schema is to rigorously adhere to the prescribed
task flow. For Procedural schema, we choose the
STARV2 (Zhao et al., 2022) dataset.

STARv2 dataset, which is an upgraded version
of STAR (Mosig et al., 2020) with new ground
truth belief state and new natural language ac-
tion descriptions. STAR is a schema-guided task-
oriented dialogue dataset consisting of 24 tasks
across 13 domains. We evaluate the next action
prediction task, which is to predict the next system
action conditioned on the dialogue history and take
the weighted F-1 score as the metric.

The Declarative format, based on the Schema-
Guided Dialogue (SGD) dataset (Rastogi et al.,
2020) and MultiwOZ dataset (Budzianowski et al.,
2018), aims to capture the slots defined in dataset
ontology. For the declarative format schema, we
select MultivOZ 2.1, SGD, and SpokenWOZ (Si
et al.,, 2024) dataset and evaluate the dialogue
state tracking task, using Joint Goal Accuracy
(JGA) as the metric.

MultiwOZ2.1 is a fully-labeled collection of
human-human written conversations spanning
multiple domains and topics. It contains 7 do-
mains, 35 slots, and over 10k dialogues.

SGD is another declarative format dataset con-
taining over 16k multi-domain conversations span-
ning 16 domains with more slots and possible val-
ues compared to MultiWwOZ.

SpokenWOZ is a new multi-modal spoken TOD
dataset containing 8 domains, 5.7k dialogues, and
35 slots. It introduces the unique challenges in
spoken conversation.

Besides the task-oriented dialogue, we also
choose two datasets: MELD (Poria et al., 2018)
and MuTual (Cui et al., 2020) from the Emotion
Recognition in Conversations (ERC) task and re-
sponse selection task, respectively. MELD con-
tains over 10k utterances from the TV series
Friends, and each utterance is annotated with
emotion and sentiment labels. MuTual consists
of 8k manually annotated dialogues based on Chi-
nese students English listening comprehension ex-
ams. For both datasets, we use accuracy as the
metric.

14570



Model Method TOD ERC RS
MultiwOz2.1 STARv2 SGD SpokenWOZ \ MELD | MuTual

Vanilla 1.15 29.51 1.01 1.15 45.9 24.04

Llama2-7B Zero-shot CoT 1.87 26.4 1.09 0.71 46.4 25.66
-Chat Plan-and-Solve 1.66 33.5 4.03 2.57 46.1 26.64
Self-Explanation 2.7 48.26 5.62 4.82 46.74 31.55

Vanilla 11.28 51.24 8.76 3.68 58.83 56.09

Llama2-70B  Zero-shot CoT 8.93 45.09 7.69 6.75 59.92 55.19
-Chat Plan-and-Solve 10.19 50.6 8.06 713 59.33 54.74
Self-Explanation 121 56.35 11.18 6.67 60.98 45.26

Vanilla 35.93 51.88 18.96 13.75 59.14 68.97

ChatGPT Zero-shot CoT 27.45 51.85 19.69 13.26 61.48 70.61
Plan-and-Solve 38.33 56.74 21.11 14.5 58.38 69.77
Self-Explanation 44.44 63.66 21.81 14.89 61.71 71.58

GPT4 Self-Explanation 50.97 70.27 25.75 25.94 \ 63.51 \ 91.87

Table 2: Comparing the performance of Vanilla, zero-shot CoT, Plan-and-Solve, and Self-Explanation
prompting methods on six dialogue datasets using different models. For STARv2 and the rest of TOD
datasets, we use the weighted F1 score and Joint Goal Accuracy(JGA), respectively. As for MELD and

MuTual, the accuracy metric is applied.

Method Model TOD ERC | RS
MultiwOz2.1 STARv2 SGD SpokenWOZ | MELD | MuTual
Llama2-
Few-shot 7B-Chat 16.99 31.59 5.95 4.81 45.7 32
(Vanillat+4shots) Llama2-
70B-Chat 29.1 50.4 5.81 7.7 58.23 | 56.21
ChatGPT 40.38 5239 17.34 14.13 55.09 | 72.51
(Selfgic;j:gtion) ChatGPT 44.44 63.66 21.81 14.89 61.71 71.58

Table 3: Comparing the performance of Vanilla+4shots and Self-Explanation prompting methods on six

dialogue datasets using different models.

3.1.2. Baselines

We compare our proposed zero-shot Explanation
with two types of prompt baselines: Zero-shot
baselines and Few-shot. For zero-shot baselines,
we include Zero-shot-CoT (Kojima et al., 2022)
and Plan-and-Solve Prompting (Wang et al., 2023).
The former appends “Let’s think step by step” to
the prompt. The latter extends the Zero-shot CoT
with a plan ahead and then carries out the plan.
Besides the zero-shot baselines, we also evalu-
ate the In-Context learning prompt performance on
TOD task. Considering the sample of TOD task
consists of a multi-turn dialogue and the slot list,
we only use 4 examples that for not exceed the
context window size. As for example selection, we
randomly selected 4 examples with the same do-
main as the test sample.

3.1.3. Model

We use two types of LLM: Closed-source LLM
ChatGPT and Open-source LLM LLAMA 2. For
closed-source LLM, we choose the most widely-
used LLMs ChatGPT with public APIs. We set the
temperature to 0 for prompting without explanation
and 1 for our self-explanation prompting for a vari-
ety of explanations. For easy comparison, we also
incorporate the open-source LLM, LLAMA 2 (Tou-
vron et al., 2023). We use the fine-tuned version
LLAMA 2-7B-Chat and LLAMA 2-70B-Chat, which
is optimized for dialogue use cases.

3.2. Main Results

Table 2 and 3 present the performance of our
method compared to baseline approaches across
six distinct datasets under zero-shot and few-shot
settings. In the zero-shot scenario, our prompt-
ing method consistently surpasses the baselines
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Method Prompt MultiwOZ 2.1 (JGA)
Vanilla Answer the questions based on the above dialogue 35.93
Understand Before you answer, first understand thg dlalogug, _then answer 36.52
the questions based on your understanding and original dialogue
Before you answer, first summarize the dialogue, then answer
Summary . S . 40.98
the questions based on your summary and original dialogue
Before you answer, first analyze the dialogue utterance
Self-Explanation by utterance, give every utterance an explanation. 44.44

Then answer the questions based on your explanation

Table 4: The effect of different intermediate steps measured on MultivOZ2.1 with GPT3.5-turbo.

on all evaluation datasets with open-source and
close-source models, except llama2-70b on Spo-
kenWOZ and MuTual. While CoT prompting does
not enhance performance on TOD tasks. This sig-
nificant improvement in all sizes of the model un-
derscores the effectiveness and generalization of
self-explanation prompting.

Among all six datasets, our method improves
the most on the STARv2 dataset. The proce-
dural task format aligns well with our prompting
method. Fine-grained sentence-by-sentence ex-
planations play a pivotal role in comprehending the
dialogue flow and following the given schema. The
enhanced performances on MultiwOZ, SGD, and
SpokenWOZ further affirm that the dialogue state
tracking task greatly benefits from self-explanation
prompts. By providing explanations for each utter-
ance, the likelihood of overlooking dialogue states
is diminished. In addition to the task-oriented
dialogue tasks, we assessed the impact of self-
explanation prompting on both the ERC and RS
tasks. However, the gains here were relatively
modest in comparison to the TOD tasks. Given
that our explanations are rooted in semantic inter-
pretations, they may not be as beneficial for tasks
centered on emotion recognition.

Compared to the few-shot baseline, our zero-
shot prompting either outperforms or matches per-
formance across all six datasets on all models we
tested, except for the open-source model on Multi-
WOZ2.1 dataset. This factor indicates that a com-
prehensive understanding of dialogue is more crit-
ical than merely having a set of examples. The
improvement of in-context learning is largely at-
tributed to showing model input-label pairing for-
mats and label space. For TOD tasks, the in-
put usually consists of multi-turn dialogues encom-
passing various topics, necessitating a deep un-
derstanding of the dialogue. The intricate nature
of TOD tasks demands a high level of comprehen-
sion, which merely a few examples fail to deliver.

3.3. Analysis

3.3.1. Effect of Intermediate steps

Drawing from psychological research, specifically
(Chi et al., 1989), it's evident that not all explana-
tions confer the same benefits. Factors like con-
tent, quality, and depth of explanations all have an
impact on the final result. To assess the impact
of different content of intermediate steps Z on di-
alogue comprehension, we carried out a compar-
ative study using ChatGPT on the Multiw0Z2.1
dataset, testing four distinct prompting methods.
The results of these tests can be found in Table
4,

In the Vanilla method, no additional instruction
is given before the model provides its response.
There are no intermediate steps Z to condition
on. In the Understand method, the model is
simply prompted with "Understand the dialogue
first” prior to answering. However, there’s no
specified format for the Z. With the Summary
method, the model is prompted to first summa-
rize the dialogue. It then bases its answer on
both the summary and the original dialogue. In
this method, the 7 is a coarse-grained summariza-
tion of the dialogue. Our observations revealed
that when comparing the self-explanation method
with Vanilla, there was a notable decline in perfor-
mance. This suggests that pre-processing or un-
derstanding the dialogue is essential for optimal
performance. Merely prompting the model to un-
derstand the dialogue without detailed instruction
for Z also resulted in reduced performance. This
demonstrates the importance of precise compre-
hension guidelines. The Summary method explic-
itly directs the model to use the summary as a
means of comprehension, subsequently answer-
ing based on that summary. This approach en-
hanced performance by approximately 5% JGA in
comparison to the Vanilla method. However, sum-
marizing is a relatively broad-strokes approach
and might overlook finer details essential for the
TOD task. Finally, our Self-Explanation prompting
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Method Prompt Multiw0zZ2.1 (JGA)
Commentary Deconstruct the dialogue, giving an interpretative 36.23
commentary on each sentence.

Interpret Review the dlalogu.e c;arefully and mtgrpret 38.46
each sentence within the conversation.

Insights Go over the_ cor_we_rsatlo_nal sen_tences _one by one, 3017

offering insights into their meanings.

Elucidation Break_dov_vn the conversa’.uc.)n and furnish an 40.41
elucidation for every individual sentence.

Self-Explanation Analyze the dialogue utterance by utterance, 44.44

give every utterance an explanation

Table 5: The effect of variant of trigger sentence on Multiv0Z2.1 with GPT3.5-turbo.

demonstrates superior performance, yielding an
approximately 9% improvement in the JGA metric
when compared to the Vanilla prompting method.
This enhancement underscores the efficacy of our
fine-grained, sentence-by-sentence explanation in
enhancing the dialogue comprehension of LLMs.

To further understand the effects of different trig-
ger sentences similar for self-explanation. We con-
ducted a comparative analysis of the impact of
variations or analogous trigger sentences on Self-
Explanation using ChatGPT on the MultivOZ2.1.
Our investigation involved a of methods such
as "Commentary,” "Interpret,” "Insights,” "Elucida-
tion,” and "Self-Explanation. The results are pre-
sented in Table 5. The Self-Explanation method
exhibits superior performance on the MultiwOZ
2.1 dataset, achieving a JGA score of 44.44. In
contrast, methods such as Commentary and Inter-
pretation demonstrate more superficial analyses,
yielding lower JGA scores of 36.23 and 38.46, re-
spectively. Insights and Elucidation offer a more
detailed breakdown of the dialogue but still fall
short of the personalized engagement achieved
by Self-Explanation, as evidenced by their JGA
scores of 39.17 and 40.41.

3.3.2. Error Analysis

We conducted a comprehensive analysis of er-
rors in three distinct categories: Hallucination,
Missed Information (Missing info), and Mismatch.
The Hallucination errors occur when the model
generates additional dialogue states that are not
present in the dialogue. These errors suggest
an over-generation of information by the model.
The Missed Information errors manifest when the
model omits or fails to include dialogue states that
are clearly specified within the dialogue. Such er-
rors indicate a deficiency in the model’s capacity to
capture essential information. As for mismatch er-
rors, they are observed when the dialogue states

45

Hallucination = Mismatch Missing info
40 38.27
34.96
35
30
24.93 252
25 b
21.85
20
16.67
15 13.12 63 .
10.54 . 10.69 14

10 |
5
0 L S

Vanilla Zero-shot CoT Plan-and-Solve Self-Explanation

Figure 4: The error rate of three error types in Multi-
WOZ2.1 dataset with different prompting methods.

generated by the model do not align with the infor-
mation specified in the dialogue.

As shown in Figure 4, we demonstrate the ef-
fectiveness of our proposed prompting method
in minimizing all three error types. Specifically,
our method exhibits a substantial reduction in
both hallucination and mismatch errors when com-
pared to other prompting methods. This out-
come underscores the significant contribution of
our explanation-based approach in mitigating dia-
logue misunderstanding errors. Regarding miss
information errors, the fine-grained sentence-by-
sentence explanation helps ensure that the model
does not overlook crucial information distributed
across multiple turns of dialogue, which prevents
the omission of essential details and thereby en-
hances the overall accuracy and completeness of
the generated dialogue states.

3.3.3. Case Study

To have a straightforward understanding of how
explanation affects task completion, We manu-
ally checked all the cases of the MultiwOZ2.1
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Error Reason  Dialogue Content Self-Explanation Vanilla
L . taxi-arriveby: taxi-leaveat:
o .
Time involved & | need to get to Michaelhouse cafe by 12:45. 12:45 12:45

Missing info.

& | am leaving Cambridge at 12:00 on Sunday,
can you please tell me the travel time on that ride?

train-departure:
cambridge

train-departure:
None

Task unclear

understand \youid you like the phone number?

& Please help me find the attraction downing college.
O Yes, it's on Regent Street in the centre of town.

attraction-name:

downing college

attraction-area:
centre

attraction-name:
downing college

Table 6: The example of three typical error reasons in the MultiwOZ2.1 dataset where Self-Explanation
gets the correct answer, and Vanilla gets the incorrect answer.

dataset where self-explanation led to correct an-
swers, while the Vanilla approach resulted in incor-
rect responses. As shown in Table 6, we summa-
rized three typical errors.

Broadly, these errors can be categorized into
three primary reasons: temporal confusion, infor-
mation omission, and task comprehension issues.
For the first error reason, temporal confusion pri-
marily manifests as a misunderstanding about the
relation between times. For instance, consider a
scenario where a user requests a taxi arrive at
12:45. In this case, the Vanilla prompting model
incorrectly assigns 12:45 to the time of taxi de-
parture. While sentence-level explanation rectified
such temporal misinterpretations.

The second reason for error is missing informa-
tion, which mostly happens in the long dialogue.
The large amount of dialogue information may dis-
tract the model from correctly capturing all the in-
formation needed to complete the task. As the
case of this error shows, the user expresses the
place, time, and date of departure in a single sen-
tence. The model output of vanilla prompting over-
looks the place of departure, whereas the output
of self-explanation prompting correctly captures all
the information about the user request.

The last error reason is a task-specific error. In
the dialogue state track task, the dialogue state
should only include the information that the user
explicitly requested while excluding the details that
the system provides. In the illustrative example of
the final type of error, the user explicitly requests
an attraction called Downing College, to which
the system subsequently provides relevant details.
The model output of self-explanation prompting
correctly distinguishes between the user’s query
and the system’s response. Conversely, the out-
put of Vanilla prompting mistakenly includes the
system response within the dialogue state, lead-
ing to task failure.

3.3.4. Connection with CoT Prompting

We have explored self-explanation prompting as a
simple way to enhance the understanding of multi-
turn dialogue in large language models. In this
section, we explore the concept of self-explanation
prompting and its relationship with CoT prompting,
shedding light on how these two techniques con-
tribute to improving the performance of large lan-
guage models.

From a broader perspective, OpenAl’s docu-
mentation indicates that giving models a moment
to "think” is instrumental in improving their perfor-
mance. This aligns with the human thinking pro-
cess, where rushing to conclusions often results in
errors. Referring to Section 2.1, the intermediate
steps Z can be viewed as the concrete expression
of "think”. Specifically, CoT prompting enforces
a sequence of reasoning steps before accepting
an answer, effectively granting models "thinking”
time. Similarly, our self-explanation prompting of-
fers models a moment of reflection, but it steers
them to interpret the intricate context, C, as op-
posed to generating the reasoning paths.

From a micro perspective, CoT prompting
guides the model toward a solution by gradually
narrowing the scope of potential answers with mul-
tiple reasoning steps. In tasks requiring reasoning,
the solution isn’t straightforwardly derived from
the C. The response involves extensive calcula-
tions and transformations, heavily drawing on the
model’s innate reasoning ability. This suggests
the solution space is largely related to the reason-
ing capabilities of the model. The intermediate rea-
soning steps elicited by CoT prompting put con-
straints on the solution space.

Conversely, in the TOD task, the query Q typi-
cally seeks details readily available within C. Un-
like reasoning assignments, these questions don’t
demand intricate computations. Thus, the so-
lution space for TOD primarily resides within C.
Our self-explanation prompting method, designed
to enhance dialogue comprehension, provides a
different and more suitable dialogue-based tasks
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approach to narrowing down the solution space.
Empowering the model to generate accurate re-
sponses by harnessing the information already
present in the context.

In summary, while CoT prompting and self-
explanation prompting differ in their specific ob-
jectives, they both share a fundamental goal of
improving model performance by providing more
time to think to narrow down the answer search
space. CoT prompting guides models through
complex reasoning paths, while self-explanation
prompting encourages models to thoroughly grasp
the context, ultimately leading to improving the per-
formance on downstream tasks.

4. Related Work

Prompting Methods: The exploration of prompt-
ing methods for large language models has been
vast. One of the conventional methods is in-
context learning (ICL), as highlighted by GPT-
3(Brown et al., 2020). In ICL, multiple demonstra-
tions are provided before a test sample, and the
model’s performance significantly hinges on these
demonstrations (Lu et al., 2021). Liu et al. (2021),
endeavor to retrieve examples semantically simi-
lar to a test query sample, utilizing metrics like the
L2 distance or cosine-similarity distance derived
from sentence embeddings. In addition to these
distance metrics, the concept of mutual informa-
tion emerges as a potent example selection crite-
rion (Sorensen et al., 2022). Here, the goal is to
select a template that optimizes the mutual infor-
mation between the input and the model’s output.
Taking this further, several studies, such as (Rubin
etal., 2021), have shifted towards a supervised ap-
proach, training models to pick the most relevant
demonstrations from a pool of candidates.
Reasoning Strategies: Beyond merely select-
ing examples, their format or ordering can sig-
nificantly influence a model’s performance. The
Chain-of-Thought (CoT) strategy (Wei et al., 2022),
a pioneering prompting approach designed to en-
hance the performance of large language mod-
els (LLMs) on intricate reasoning tasks. Unlike
ICL, which relies on prepending input-output pairs,
CoT integrates a sequence of intermediate rea-
soning steps into the demonstration, thereby am-
plifying the reasoning capabilities of LLMs. In
order to empower the model planning capabili-
ties(ITree of Thoughts(ToT)(Yao et al., 2024) was
proposed to enhance LLM’s capability for complex
problem solving through tree search via a multi-
round conversation. Recognizing the importance
of diverse reasoning paths, the self-consistency
strategy (Wang et al., 2022a) was introduced. It
first creates multiple reasoning paths rather than
just one and subsequently selects the most coher-

ent answer by considering all the generated paths.
Further automation in this domain is achieved with
zero-shot CoT (Kojima et al., 2022). Instead of re-
lying on human-annotated reasoning sequences,
this method induces the model to generate reason-
ing steps by simply prompting it to “think step by
step”.

5. Conclusion

In this paper, we find CoT prompting is subopti-
mal for multi-turn dialogue tasks. To enhance the
comprehension of LLM, we propose a new zero-
shot prompting strategy called Self-Explanation
prompting, which guides the LLM to first under-
stand the multi-turn dialogue by explaining every
utterance and then completing the task based on
dialogue with its explanation. Extensive experi-
ments show that explanation prompting can boost
the LLMs contextual understanding of multi-turn di-
alogue and significantly outperform or perform on
par with the previous zero-shot and few-shot base-
lines.
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