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Abstract
Contrastive learning has recently achieved compelling performance in unsupervised sentence representation. As
an essential element, data augmentation protocols, however, have not been well explored. The pioneering work
SimCSE resorting to a simple dropout mechanism (viewed as continuous augmentation) surprisingly dominates
discrete augmentations such as cropping, word deletion, and synonym replacement as reported. To understand the
underlying rationales, we revisit existing approaches and attempt to hypothesize the desiderata of reasonable data
augmentation methods: balance of semantic consistency and expression diversity. We then develop three simple yet
effective discrete sentence augmentation schemes: punctuation insertion, modal verbs, and double negation.
They act as minimal noises at lexical level to produce diverse forms of sentences. Furthermore, standard negation
is capitalized on to generate negative samples for alleviating feature suppression involved in contrastive learning. We
experimented extensively with semantic textual similarity on diverse datasets. The results support the superiority of
the proposed methods consistently. Our key code is available at https://github.com/Zhudongsheng75/SDA

Keywords: Neural language representation models; Parsing, Grammar, Syntax, Treebank; Semantics;
Semi-supervised, weakly-supervised and unsupervised learning

1. Introduction

Current state-of-the-art methods utilize contrastive
learning algorithms to learn unsupervised sentence
representations (Gao et al., 2021; Yan et al., 2021).
They learn to bring similar sentences closer in the
latent space while pushing away dissimilar ones
(Hjelm et al., 2018). In the paradigm, multiple
data augmentation methods have been proposed
from different perspectives to curate different vari-
ants1 (Oord et al., 2018; Zhu et al., 2020). The
variants and the corresponding original samples
are deemed positive pairs in the learning proce-
dure (Chen et al., 2020). Previous studies have
shown that the quality of variants largely shapes
the learning of reasonable representations (Chen
et al., 2020; Hassani and Khasahmadi, 2020).

Conventional methods directly employ opera-
tions such as cropping, word deletion, and syn-
onym replacement in natural sentences (Wei and
Zou, 2019; Wu et al., 2020; Meng et al., 2021). In
addition, recent studies resort to network architec-
tures for manipulating embedding vectors, such as
dropout, feature cutoff, and token shuffling (Gao
et al., 2021; Yan et al., 2021). It enables more
subtle variants of training samples in the continu-
ous latent space in a controllable way and thereby
renders better representations, which is usually ev-
idenced by more appealing performance in typical

∗Equal contribution.
† Corresponding author.

1It refers to a sentence sample in this work.

Figure 1: Normalized representation visualization
of different augmentation methods and the way they
should be optimized.

downstream NLP tasks (e.g., textual semantic sim-
ilarity) (Zhang et al., 2021; Chen et al., 2021a).

If two sentences with large semantic gaps are
paired positively, the representation alignment is
likely to deteriorate (Wang and Isola, 2020). Dis-
crete augmentation methods usually have less com-
petitive results, because they can hardly keep the
sentence semantically consistent when applied ran-
domly at lexical level. As shown in Figure 1, sen-
tence semantics become incomplete after random
masking and word deletion (Wu et al., 2020) so that
optimizing their embeddings in the direction of the
original sentence (aka anchor) leads to misunder-
standing.

To learn better representations, augmentation
methods are supposed to generate samples that
are not only diverse in representation (Tian et al.,

https://github.com/Zhudongsheng75/SDA
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2020) but also similar in semantics. There is, how-
ever, a trade-off between semantic consistency and
expression diversity. Bigger differences between
vanilla samples and augmented ones also convey
less faithful semantics. Therefore, we hypothesize
that a good augmentation method in contrastive
learning should have desiderata to balance them.

Continuous methods can control semantic
changes since they utilize designed network struc-
tures to process redundant features (Huang et al.,
2021). SimCSE (Gao et al., 2021) utilizes dropout
(Srivastava et al., 2014) to obtain different embed-
dings of the same sentence to construct positive
pairs. But such continuous methods lack inter-
pretability to inspire further exploration of sentence
augmentation. To better prove our hypotheses and
find the promising direction of lexical data augmen-
tation methods, we propose three Simple Discrete
Augmentation (SDA) methods to satisfy the desider-
ata to different extents: Punctuation Insertion (PI),
Modal Verbs (MV), and Double Negation (DN).
Their impacts on the expression diversity increase
in a row but semantic consistency with the original
sentence tends to diminish gradually. In linguistics,
punctuation usually represents pause or tone (e.g.,
comma, exclamations) which has no specific mean-
ing itself. Modal verbs are used as supplementary
to the predicate verb of the sentence indicating at-
titudes such as permission, request, and so on,
which helps to reduce uncertainty in semantics.
DN helps two negatives cancel each other out and
thereby produces a strong affirmation, whereas the
improperly augmented sentence is at risk to be
logically confusing.

Although the proposed augmentation methods
keep the semantic meaning by carefully adding mi-
nor noises, the generated sentences are still literally
similar to the original sentence. Recent research
(Robinson et al., 2021) has pointed out the feature
suppression problem of contrastive learning. This
phenomenon could result in shortcut solutions that
the model only learns the textual rather than se-
mantic similarity. A focus on hard examples has
been proven effective to change the scope of the
captured features (Robinson et al., 2021). Thus,
we further utilize standard negation to construct
text contradicting all or part of the meaning of the
original sentence as hard negative samples. By
doing so, the model is encouraged to learn to dif-
ferentiate sentences bearing similar lexical items
yet reversed meanings.

To summarize, the contributions of this work are
as follows:

• We propose SDA methods (including stan-
dard negation) for contrastive sentence rep-
resentation learning, which leverages discrete
sentence modifications to enhance the perfor-
mance of representation learning (Section 4).

• Comprehensive experimental results demon-
strate that SDA achieves significantly better
performance, advancing the state-of-the-art
performance to a new bar from 78.49 to 79.60
(Section 5).

• Extensive ablations and in-depth analysis are
conducted to investigate the underlying ratio-
nale and clarify the hyper-parameters choices
(Section 6).

2. Related Works

2.1. Sentence Representation Learning
BERT (Devlin et al., 2019) has steered the trajec-
tory of sentence representation towards the tech-
nical orientation of Pre-trained Language Models
(PLM). A multitude of endeavors (Tan et al., 2020,
2021; Li et al., 2020; Su et al., 2021; Lu et al.,
2023a,b) has been dedicated to substantial im-
provements based on this paradigm, leading to
significant advancements in diverse domains. No-
tably, there is a pronounced practical demand for
sentence-level text representations (Conneau et al.,
2017; Williams et al., 2018). Consequently, learn-
ing unsupervised sentence representations based
on PLM has become a focal point in recent years
(Reimers and Gurevych, 2019; Zhang et al., 2020).
Current state-of-the-art methods utilize contrastive
learning to learn sentence embeddings (Kim et al.,
2021; Yan et al., 2021; Gao et al., 2021), which
in experimental results, can even rival supervised
methods. However, to advance unsupervised con-
trastive learning methods further, data augmenta-
tion emerges as a pivotal component.

2.2. Data Augmentation in Contrastive
Learning

Early research on contrastive sentence represen-
tation learning (Zhang et al., 2020) didn’t utilize
explicit augmentation methods to generate positive
pairs. Later, methods (Giorgi et al., 2021; Wu et al.,
2020, 2021) which use text augmentation methods,
such as word deletion, span deletion, reordering,
synonym substitution, and word repetition, to gen-
erate different views for each sentence achieve
better results. Compared to augmentation meth-
ods applied on text, several studies (Janson et al.,
2021; Yan et al., 2021; Gao et al., 2021; Wang
et al., 2022a) utilize neural networks, such as dual
encoders, adversarial attack, token shuffling, cut-
off and dropout, to obtain different embeddings for
contrasting. A more recent study DiffCSE (Chuang
et al., 2022) designed an extra MLM-based word
replacement detection task as an equivalent aug-
mentation. The purpose of data augmentation in
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Figure 2: An overview of the framework. The figure can be embodied as a training batch. Each sentence
is passed through the augmentation module to generate one positive and one negative for the anchor, the
positives generated by other sentences in the batch are also deemed as negatives for the anchor.

this study is to generate both semantic similar and
expression diverse samples so that models can
learn to extend the semantic space of the input
samples.

3. Preliminaries

3.1. Sentence-level Contrastive Learning

Given a set of sentence pairs D = {(xi, x
+
i )},

where sentence pairs (xi, x
+
i ) are semantically simi-

lar and deemed as positive pairs. Contrastive learn-
ing aims to learn a dense representation hi of a
sentence xi by gathering positive samples together
while pushing others apart in the latent space (Belg-
hazi et al., 2018). In practice, the training proceeds
within a mini-batch of N sentence pairs. The ob-
jective is formulated as:

li = −
esim(hi,h

+
i
)/τ∑N

j=1 e
sim(hi,h

+
j
)/τ

(1)

where hi and h+
i respectively denote the represen-

tation of xi and x+
i , sim() is the cosine similarity

function and τ is the temperature parameter. Under
the unsupervised setting, the semantically related
positive pairs are not explicitly given. Augmenta-
tion methods are used to generate x+

i for training
sample xi.

3.2. Unsupervised SimCSE
In transformer model f(·), there are dropout masks
placed on fully-connected layers and attention prob-
abilities. SimCSE2 builds the positive pairs by feed-
ing the same input xi to the encoder twice, i.e.,
x+
i = xi. With different dropout masks zi and z+i ,

the two separate output sentence embeddings con-
stitute a positive pair as follows:

hi = fzi(xi),h
+
i = fz+

i
(xi) (2)

2The SimCSE mentioned in this article are all under
the unsupervised setting.

Method Sentence
None He travelled widely in Europe.
PI He , travelled widely in Europe.
MV He must have travelled widely in Europe.

DN It is not the fact that he
didn’t travel widely in Europe.

Negation he didn’t travel widely in Europe.

Table 1: An example of different methods to gener-
ate the augmented sentence. The highlighted red
texts denote changes after augmentation.

3.3. Dependency Parsing and Syntax
Tree

Dependency parsing represents the relationships
between words in a sentence in the form of depen-
dencies. Each word in the sentence is connected
to another word, indicating its grammatical role and
the type of relationship it has with other words.

Syntax trees represent the hierarchical structure
of a sentence’s grammar. They consist of nodes,
where each node represents a word or a grammat-
ical unit, and edges represent syntactic relation-
ships. The root node represents the main clause,
and branches indicate phrases and sub-clauses.

4. Methodology

In this work, the augmentation module to gener-
ate positive samples for training data is denoted
as A(·). As illustrated in Fig. 2, we utilize A(·) to
subtly reword the original sentence in an attempt to
change the representation of the sentence to a lim-
ited extent on the premise that the sentence roughly
remains unchanged semantically. Afterword, Eq.
2 can be rewritten as follows:

hi = fzi(xi),h
+
i = fz+

i
(A(xi)) (3)

In practice, we utilize spaCy3 for dependency

3https://spacy.io/
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Figure 3: The syntax tree constructed through de-
pendency parsing and its representation.

parsing4 and then implement punctuation inser-
tion, modal verbs, and double negation. As shown
in Figure 3, first, each sentence needs to be pro-
cessed through dependency parsing to obtain a
central word and the dependencies between the
other words with the central word. Then, with the
central word as the root node and other words as
child nodes, the corresponding syntax tree can be
constructed through dependencies. Based on this,
we can design rules by traversing the syntax tree
in level to implement the SDA augmentation for
sentences as shown in Table 1 and Appendix A.

4.1. Punctuation Insertion (PI)
Punctuation usually doesn’t carry specific informa-
tion, whereas changing punctuation can have a
slight effect on the sentence. We devise a few
scalable rules and thereby generate semantically
similar examples as positives in a relatively con-
trollable way: (1) If a sentence has a subordinate
clause, insert a comma <,> between them; (2) If
there is a noun subject in the sentence, enclose it
with double quotes <" "> or append a comma <,>;
(3) Replacing the punctuation at the end of a sen-
tence with an exclamation point <!> or appending
it to the sentence.

These simple rules insert punctuation marks at
different positions of a sentence to ensure the di-
versity of augmentations. Moreover, the rules are
context-aware schemes. For example, <!> at the
end of sentences expresses emphasis tone, <,> be-
tween clauses means to pause, and <" "> frames

4We empirically think that grammatically correct
sentence transformation is more reasonable than the
stochastic manipulation without complying with basic
grammar rules explicitly.

the subject to highlight it. In this way, PI preserves
sentence structure and meaning to the greatest
extent and minimizes the magnitude of semantic
changes.

4.2. Modal Verbs (MV)
Adding modal verbs to a sentence is also a positive
generation method that slightly adjusts the mean-
ing of the sentence. The semantic change brought
by MV may be greater than punctuation, but it is still
linguistically reasonable. We first collect a list of
modal verbs such as: "must", "should", and "ought
to", as well as phrases that have the same function
such as "have to", "can’t but", "can’t help to", etc.
Then we randomly pick one phrase to modify the
predicate verb of the main clause. MV is more rad-
ical than PI because it supplements the speaker’s
attitudes (e.g., likelihood, permission, obligation,
and so on) towards the predicate verbs of the sen-
tence, uncertainty in semantics is thus reduced to
some extent.

4.3. Double Negation (DN)
In English and Chinese, double negatives cancel
one another and produce an affirmative. We lever-
age this linguistic rule to generate double negation
as the positive of the raw sentence. But double
negative is difficult to implement and multiple nega-
tive words in one sentence could make it confusing.
Therefore, DN is considered to be the most radical
among all three augmentation methods.

The implementation is to apply a negative trans-
formation to a sentence twice. Either inserting a
negative word or removing a negative is regarded
as a negative transformation. The negative words
are used to modify nouns or verbs in the sentence,
and corresponding negative words will be selected,
e.g., "no" is inserted before nouns and "not" before
verbs. If the sentence is only able to apply nega-
tive transformation once, we simply add a negation
phrase, such as "It is not true that" or "It can’t be
that", in front of the sentence as a second negative
transformation.

4.4. Negation as Negative Sample
The aforementioned augmentation methods are
to generate semantically consistent positive sam-
ples for the anchor sentence. To ensure the model
can learn the semantic correlation rather than the
textual shortcut solutions, we generate a negation
sentence for every training sample serving as a neg-
ative sample. The negation sentence and the an-
chor are highly similar in the text but have opposite
semantic meanings. Learning to distinguish a nega-
tion sentence from the anchor is helpful to alleviate
feature suppression (Wang et al., 2022b). However,
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Method Augmented %
Punctuation Insertion 98.14%
Modal Verbs 88.32%
Double Negation 87.89%

Table 2: The ratio of three augmentation protocols.

since negative samples in contrastive learning are
usually independent sentences that are completely
irrelevant to the original sentence, it is inappropri-
ate to treat negation sentences the same as those
independent negative samples. Therefore, we re-
lax the restriction of the negation sentence in the
optimization with a hyper-parameter δ, and rewrite
the contrastive loss function in Eq. 1 as follows:

li = −
esim(hi,h

+
i
)/τ∑N

j=1 e
sim(hi,h

+
j
)/τ + e[sim(hi,h

−
i
)−δ]/τ

(4)

where h−
i is the representation of the negation sen-

tence x−
i . And δ can be considered as a margin

which relaxed the distance between sentence xi

and x−
i compared to other independent negative

samples. The implementation of negation transfor-
mation has been introduced in Section 4.3, and the
rules guarantee the transformation is applicable for
arbitrary sentences.

5. Experiment Settings

5.1. Datasets
Semantic textual similarity (STS) task measures the
semantic similarity of any two sentences, it uses
Spearman’s correlation (Myers et al., 2013) to mea-
sure the correlation between the ranks of predicted
similarities and the ground-truth labels. We conduct
our experiments on seven standard English and
one Chinese STS datasets. For English STS, we
follow SimCSE5 (Gao et al., 2021) to use one million
sentences randomly drawn from English Wikipedia
for training. Datasets STS12-STS16 have neither
training nor development sets, and thus we evalu-
ate the models on the development set of STS-B
to search for optimal settings of hyper-parameters.
For Chinese STS, we choose the unlabeled corpus
data in SimCLUE dataset6 for training, which con-
tains about 2.2 million sentences. In the test phase,
we use the Chinese STS-B from CNSD7 without
the training set.

5.2. Baselines
For English STS, we compare our methods to com-
petitive contrastive methods including 1) IS-BERT

5https://github.com/princeton-nlp/SimCSE
6https://github.com/CLUEbenchmark/SimCLUE
7https://github.com/pluto-junzeng/CNSD

Param BERTbase RoBERTabase CN-RoBERTabase

learning rate 2e-5 1e-5 5e-5
batch size 128 64 128
τ 0.05 0.05 0.05
δ 0.5 0.5 0.5

Table 3: Hyper-parameter settings for English and
Chinese (CN) pre-trained model.

maximizes agreement between sentence embed-
dings and token embeddings (Zhang et al., 2020),
2) CT-BERT uses different encoders to obtain aug-
mented views (Janson et al., 2021), 3) DeCLUTR
samples spans from the same document as posi-
tive pairs (Giorgi et al., 2021), 4) ConSERT designs
four kinds of augmentation methods, i.e., adversar-
ial attack, token shuffling, cutoff and dropout (Yan
et al., 2021), 5) SimCSE utilizes standard dropout
as augmentation (Gao et al., 2021) and 6) ESim-
CSE (Wu et al., 2021) introduces word repetition
and momentum contrast mechanisms (He et al.,
2020a), 7) ArcCSE (Zhang et al., 2022) modifies
contrastive loss with angular margin and models
entailment relation of triplet sentences, 8) DiffCSE
(Chuang et al., 2022) adds an extra MLM-based
word replacement detection task as an equivalent
augmentation.

5.3. Training Details

We use the same contrastive learning framework
introduced by SimCSE, and train three models with
Eq. 4. Each model uses one of the three augmen-
tation methods to generate the positive sample and
negation transformation to obtain the extra negative
sample. Since not all sentences can be augmented
with the rules as detailed in Table 2, we pair the
sentence with itself.

Our implementation is based on transformers
package. Following SimCSE, we use pre-trained
checkpoints of English BERT8 (uncased) (Devlin
et al., 2019) or RoBERTa9 (Liu et al., 2019). For
the Chinese STS task, we use Chinese-RoBERTa-
base10 as our pre-trained model. Two MLP layers
with batch normalization are added on top of the
[CLS] representation in training but removed in eval-
uation. We train our model with Adam optimizer
for one epoch and evaluate the model every 250
training steps on the development set and keep
the best checkpoint for the final evaluation on test
sets. The settings of important hyper-parameters
are listed in Table 3.

8https://huggingface.co/bert-base-uncased
9https://huggingface.co/roberta-base

10https://huggingface.co/hfl/chinese-roberta-wwm-
ext
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Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERT Models

IS-BERTbase
♢ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58

CT-BERTbase
♢ 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05

ConSERTbase
♠ 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74

SimCSE-BERTbase
♢ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

ESimCSE-BERTbase
♣ 69.79 83.43 75.65 82.44 79.43 79.44 71.86 77.43

ArcCSE-BERTbase
♠ 72.08 84.27 76.25 82.32 79.54 79.92 72.39 78.11

DiffCSE-BERTbase
♡ 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49

Our Methods
Punctuation Insertion 71.92 84.38 76.84 83.92 80.45 80.25 74.26 78.86
Modal Verbs 71.35 84.45 76.60 83.77 80.57 80.31 74.85 78.84
Double Negation 71.23 84.49 75.88 83.34 79.37 79.67 74.32 78.33
Ensemble 72.31±0.38 83.66±0.64 76.59±0.38 84.10±0.20 80.41±0.42 80.17±0.52 72.78±0.49 78.57±0.43

RoBERTa Models
DeCLUTR-RoBERTabase

♢ 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SimCSE-RoBERTabase

♢ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
ESimCSE-RoBERTabase

♣ 69.90 82.50 74.68 83.19 80.30 80.99 70.54 77.44
DiffCSE-RoBERTabase

♡ 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21
Our Methods
Punctuation Insertion 70.92 83.59 76.87 83.73 82.42 83.02 74.89 79.35
Modal Verbs 72.37 83.80 77.51 83.58 82.29 82.98 74.69 79.60
Double Negation 71.07 83.56 77.60 83.38 81.59 81.82 75.44 79.21
Ensemble 72.64±0.62 83.45±0.38 76.90±0.17 83.56±0.21 81.82±0.38 82.76±0.31 74.77±0.6 79.37±0.07

Table 4: Performance comparison with existing competitive methods on STS tasks. The bold numbers top
the competitions with the same pre-trained encoder and datasets. ♢: results from (Gao et al., 2021); ♣:
results from (Wu et al., 2021); ♡: results from (Zhang et al., 2020); ♠: results from (Chuang et al., 2022).

Method MR CR SUBJ MPQA SST TREC MRPC Avg.
SimCSE-RoBERTabase♢ 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
ArcCSE-BERTbase♠ 79.91 85.25 99.58 89.21 84.90 89.20 74.78 86.12
DiffCSE-RoBERTabase♡ 82.82 88.61 94.32 87.71 88.63 90.40 76.81 87.04
Our Methods
Punctuation Insertion 83.59 87.79 93.81 88.10 87.81 91.60 76.93 87.09
Modal Verbs 82.24 88.88 93.67 88.10 87.10 90.00 76.58 86.65
Double Negation 81.73 87.26 93.61 88.12 87.26 89.00 77.28 86.32
Ensemble 82.26±0.8 88.61±0.29 93.96±0.59 88.81±0.07 87.64±0.82 88.60±0.60 76.23±0.93 86.59±0.17

Table 5: SentEval transfer tasks results of different models. ♢: results from (Gao et al., 2021); ♡: results
from (Zhang et al., 2020); ♠: results from (Chuang et al., 2022).

6. Results and Analysis

6.1. Main Results
The experimental results including the three SDA
methods are shown in Table 4. Ensemble refers
to the integration of three SDA methods. The im-
plementation involves randomly selecting one aug-
mentation method for each training sentence to
generate positive samples. To eliminate the uncer-
tainty introduced by the random seed, the experi-
ment was conducted five times, and the ensemble
results are presented as a range. In the case of
BERT and RoBERTa, ensemble is represented as
the average of three SDA methods. It should be
noted that the results in the Table 4 have integrated
standard negation as hard negative examples.

Overall, experimental results clearly demonstrate
that the proposed SDA methods lead to significant
improvement in unsuperivsed sentence representa-
tion learning, which is evidenced by pushing state-
of-the-art performance to a new bar of 79.60 with
an overall improvement of 1.11%. More specifically,
when we look into those RoBERTa-based cases

(Table 4, the bottom half block), three proposed
data augmentation methods (i.e., PI, MV, and DN)
consistently surpass the previous state-of-the-art
performance by a clear margin across all STS.

In BERT-based cases, all methods can slightly
outperform to state-of-the-art methods across all
datasets. We suspect the reason why our meth-
ods perform worse on BERT than on RoBERTa is
caused by the introduction of next sentence predic-
tion task (NSP) in pre-training BERT, which is not
adopted in RoBERTa. The task predicts whether
two sentences are semantically consecutive, mak-
ing BERT more sensitive to the sentence-level se-
mantic change as compared to RoBERTa. The
learned representations from BERT are less likely
to conform to the "semantic consistency" hypoth-
esis. Previous works (Liu et al., 2019; He et al.,
2020b) also express similar opinions that NSP is
not helpful for sentence representation.

It is interesting to find out that the performance
of PI and MV are generally better than that of DN in
most cases. These observations can be explained
by our "semantic-expression trade-off” hypothesis.
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Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
SimCSE-RoBERTabase 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
Modal Verbs (MV) 72.37 83.80 77.51 83.58 82.29 82.98 74.69 79.60
w/o Negation as Negative 71.80 82.91 76.19 83.50 81.55 82.37 68.78 78.16
w/o Positive Augmentation 68.48 82.23 73.70 81.15 81.56 81.26 72.17 77.22

Table 6: The effect of the positive augmentation and the negation transformation. The winners and
runners-up are marked in bold font and underlined, respectively.

Methods Chinese STS-B
Roberta-base (last CLS) 68.25
SimCSE-RoBERTa-base 71.10
Punctuation Insertion 71.98
Modal Verbs 72.12
Double Negation 71.65

Table 7: Performance comparison on Chinese STS
task. All results come from our experiments, where
SimCSE is the result we reproduced on Chinese
dataset.

Concretely, PI and MV introduce diversity in ex-
pression while retaining the semantic meaning of
anchor sentences significantly. In contrast, the so-
phisticated correlation between linguistic expres-
sion (i.e., syntax, vocabulary) and the subtlety in
semantics makes DN difficult to faithfully replicate
the meaning of anchor sentences, deteriorating un-
supervised learning performance. For example,
"I’m hungry more” is not semantically equivalent to
"I’m not hungry no more”, and actually, they convey
opposite meanings to some extent. Although we
use rules based on syntactic analysis to limit the oc-
currence of this situation, it is difficult to completely
eliminate it in practice. In the next section, we will
conduct comprehensive ablation studies to elabo-
rate on the importance of semantic consistency.

6.2. Transfer Tasks
Furthermore, to analyze the actual impact of se-
mantic consistency on sentence representation, we
evaluate the SentEval transfer tasks in Table 4. The
effect of the RoBERTa series models are better than
that of BERT. So we selected the RoBERTa models
to compare them with the previous state-of-the-art
unsupervised contrastive learning models in trans-
fer tasks using the SentEval toolkit11. For each task,
SentEval trains the average embedding of the last
two layers as the sentence embedding and evalu-
ates the performance on the downstream task. To
ensure a fair comparison, we did not introduce any
additional training tasks, such as masked language
modeling. As shown in Table 5, our SDA methods
are able to match or surpass state-of-the-art ap-

11https://github.com/facebookresearch/SentEval

proaches in certain tasks while falling behind other
methods in some tasks. This suggests that different
sentence representation learning methods excel at
different downstream tasks, which may be related
to their training paradigms. Nevertheless, our SDA
method exhibits strong competitiveness in tasks
other than the SUBJ. It’s important to note that the
results in Table 4 include the standard negation.

6.3. Ablation Study

To analyze the improvement made by the gener-
ated positive sample and the extra negative sample
respectively, we compare four settings: using no
discrete augmentation (SimCSE), using both posi-
tive augmentation (MV) and negation as negative,
only using positive augmentation (w/o Negation
as Negative) and only using negation as negative
(w/o Positive Augmentation). We present the re-
sult of MV here in Table 6 since its general good
performance. We can observe that either using
positive augmentation or using negation as nega-
tive achieves better performance compared to the
method without discrete augmentation, and com-
bining the two methods can make further improve-
ments.

Notice that although using negation as negative
performs seems worse on most STS series (STS12-
16, STS-B) datasets than using positive augmen-
tation, it obtains 3.39% lift on SICK-R dataset. By
measuring the average Jaccard similarity (Jaccard,
1912) between the test sentence pairs, we find
that sentence pairs in SICK-R (57.24%) are much
more similar on text than the STS series of datasets
(47.39%), which supports our argument that textual
similar negative sample can help alleviate feature
suppression problem.

6.4. Results on Chinese Datasets

Results on Chinese STS datasets are presented in
Table 7. As compared to state-of-the-art method,
PI, MV and DN gain an improvement of 0.78%,
1.02% and 0.55% respectively, demonstrating that
the proposed SDA methods can be seamlessly gen-
eralized to other languages like Chinese. This is
consistent with our expectation since some linguis-
tic phenomena are common in most of languages,
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Figure 4: Cases from SICK-R test set. The heatmap visualizes the spectrum of the weight of words in the
sentence representation. We rank sentence pairs based on sorted similarity scores in ascending order. A
better ranking should be closer to the ground truth (GT).

Augmentations STS-B
None (Unsup-SimCSE) 82.45
Cropping 10% 20% 30%

77.81 71.38 63.62
Word Deletion 10% 20% 30%

75.89 72.20 68.24
Synonym Replacement 77.45
Mask 15% 62.21
Word Repetition 84.09
Punctuation Insertion 84.55
Modal Verbs 84.99
Double Negation 84.12

Table 8: Performance comparison with discrete
augmentation methods. Dropout is set to default in
training as adopted in SimCSE and its variants.

e.g., minimal changes on punctuation or tone will
not affect semantics too much.

6.5. Random manipulation vs.
rule-based augmentation

We further compare different discrete augmenta-
tion methods such as cropping, word deletion, syn-
onym replacement, masking, and word repetition
as well as no discrete augmentation12 under the
same contrastive learning framework. The results
are shown in Table 8. A comparison of the devel-
opment set of STS-B shows that all the proposed
augmentation methods outperform previous meth-
ods. Cropping, word deletion, synonym replace-
ment, and masking (Wei and Zou, 2019; Wu et al.,
2020; Meng et al., 2021) even perform worse than
applying no discrete augmentation. We assume
the worse performance is in part due to the random-
ness inserted by these manipulations, dramatically
changing the sentence structure. Word repetition
duplicates words in a sentence and rarely changes
the semantics, thus it gets a competitive result,

12When no discrete augmentation is applied, the set-
ting falls back to SimCSE.

Augmentations avg. STS
None (Unsup-SimCSE) 76.57
Random Insertion 76.22
Punctuation Insertion 77.90

Table 9: Performance comparison between random
augmentation and rule-based augmentation.

which again demonstrates the importance of keep-
ing semantic consistency.

We then try different manipulations where the
randomness is reduced and thus semantic shift
is smaller. More specifically, in Table 9, we test
three settings, no manipulation, inserting punctua-
tion based on rules (i.e., PI), as well as randomly
inserting punctuation (Random Insertion). Notice
that we don’t use negation as a negative sample
in this experiment to control the variable. It turns
out that applying augmentation according to the
rules stands out among them, while Random In-
sertion performs worst. This result again verifies
the importance of retaining semantic consistency
since randomly inserted punctuation is more likely
to disturb sentence semantics while rule-based PI
generates syntax-correct sentences, boosting rep-
resentation learning.

6.6. Case Study
We calculate the weight of each word in the sen-
tence representation by gathering the attention
weights of the output token. We find that the
learned representations of our method pay more
attention to negative words. Since negative words
have great influences on sentence semantics, SDA
has largely excelled in those cases where negative
words occurred, as exemplified in Fig. 4.

6.7. Parameter Analysis
We first compare the results with different augmen-
tation proportions. When we set the augmentation
proportion to x%, only x% samples in the dataset
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Figure 5: Parameter sensitivity for (a) proportion
of augmented sentence pairs in training and (b)
margin δ.

are paired with augmentation, and (1−x)% samples
are paired with themselves, which means (1− x)%
samples use dropout as augmentation method. We
can see from Fig. 5 (a), the performance increases
with a higher augmentation proportion.

Then, we study how parameter δ influences our
methods. By tuning δ rate from 0.1 to 0.9, we collect
the results in Fig. 5 (b). We find the best settings
are 0.5 for both PI and MV, and 0.3 for DN. Since the
augmented sentence constructed by DN is more
similar to the negation sentence on text than the
other two augmentation methods, thus a tighter
restriction is needed to help differentiate the positive
and negative.

7. Conclusion

In this work, we study the role of data augmenta-
tion in contrastive sentence representation learning
and argue that the desiderata of reasonable data
augmentation methods are to balance semantic
consistency and expression diversity. Three sim-
ple yet effective discrete augmentation methods,
i.e., punctuation insertion, modal verbs, and double
negation are developed to substantiate the hypoth-
esis. We further alleviate feature suppression with
a negated sentence as a negative sample. Armed
with well-executed discrete data augmentation, we
achieve better results compared to more compli-
cated state-of-the-art methods. Our work offers a
promising direction of textual data augmentation
and can be readily extended to multiple languages
and beyond along this direction.

8. Limitations

Since our augmentation methods are implemented
by rules, there could be some cases that the rules
are not applicable or cause syntax mistakes. We
have tried our best to alleviate such phenomenon
and make the rule cover as many samples as possi-
ble as shown in Table 2. We believe that it is abso-
lutely feasible to use advanced LLMs like GPT4 to
improve the quality of double negative generation,

especially in cases where some simple methods
do not work well. However, the cost of API calls or
LLMs deployment cannot be ignored, especially for
academia. Using LLMs to combine simple meth-
ods like ours to accelerate inference time or reduce
resource dependencies is a valuable new direction.

In this work, we explore discrete text augmen-
tation methods and propose three of them which
achieve better results on STS tasks than previous
studies. However, we believe that effective discrete
augmentation methods can be abundant. Our pur-
pose is not to find the best augmentation method,
but to reveal the underlying rationales of a good
augmentation method. Hence, we make our code
available for replication and extension by the com-
munity.
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A. Pseudo-Codes of Algorithms

Algorithm 1, 2, 3 are the pseudo-codes of the three
proposed augmentation methods. The input sen-
tence is first parsed by a spaCy sentence parser to
obtain each token’s part-of-speech (POS) and de-
pendency tag. Then we apply the rules described in
the algorithms on the parsed sentence to construct
the augmented sentences.

Algorithm 1 Punctuation Insertion
Input: one sentence S
Output: the augmented sentence
1: if subordinate clause in S then
2: pos← Start position of subordinate clause
3: return S.Insert(′,′ , pos)
4: end if
5: if noun subject in S then
6: pose ← End position of the noun subject
7: S ← S.Insert(′,′ , pose)
8: return S
9: end if

10: if S end with punctuation punc then
11: S ← S.Replace(punc,′ !′)
12: else
13: S ← S.Append(′!′)
14: end if
15: return S

Algorithm 2 Modal Verbs
Input: one sentence S, set of modal verbs Vmv

Output: the augmented sentence
1: mv ← Random.Choice(Vmv)
2: for word w in sentence do
3: if w is be-verb then
4: return S.Replace(w,mv +′ be′)
5: end if
6: if w.dep == ROOT and w.pos == verb

then
7: return S.Replace(w,mv + w.lemma)
8: end if
9: end for

10: return S

Algorithm 3 Double Negation
Input: one sentence S
Output: the augmented sentence
1: S′ ← S, count← 0
2: for word w in S do
3: if count == 2 then
4: return S
5: end if
6: if w is negative word then
7: S ← S.Delete(w)
8: count++
9: end if

10: if w.dep == aux then
11: S ← S.Replace(w,w +′ not′)
12: count++
13: end if
14: if w.dep == ROOT and w is verb then
15: S ← S.Replace(w,′ do not ′ + w)
16: count++
17: end if
18: end for
19: if count == 1 then
20: return ′Not that ′ + S
21: else
22: return S′

23: end if
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