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Abstract
Alignment with human preference prevents large language models (LLMs) from generating misleading or toxic
content while requiring high-cost human feedback. Assuming resources of human annotation are limited, there
are two different ways of allocating considered: more diverse PROMPTS or more diverse RESPONSES to be
labeled. Nonetheless, a straightforward comparison between their impact is absent. In this work, we first control the
diversity of both sides according to the number of samples for fine-tuning, which can directly reflect their influence.
We find that instead of numerous prompts, more responses but fewer prompts better trigger LLMs for human
alignment. Additionally, the concept of diversity for prompts can be more complex than responses that are typically
quantified by single digits. Consequently, a new formulation of prompt diversity is proposed, further implying a linear
correlation with the final performance of LLMs after fine-tuning. We also leverage it on data augmentation and
conduct experiments to show its effect on different algorithms.
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1. Introduction

Large Language Models (LLMs) have gained
widespread recognition for their proficiency in many
domains, including instruction following, intima-
tion and knowledge utilization (Brown et al., 2020;
Chung et al., 2022; Muennighoff et al., 2022; Wei
et al., 2022; Wang et al., 2022a; Zhou et al., 2022;
Von Oswald et al., 2023; Dai et al., 2023; Yang et al.,
2023a; Zhong et al., 2023; Schick et al., 2023; Li
et al., 2023; Song et al., 2023b; Qin et al., 2023;
Wang et al., 2023a; Yang et al., 2023b; Lyu et al.,
2024). However, they can reveal toxic or offensive
content either inadvertently or intentionally, under-
scoring the importance of aligning them with hu-
man values (Bai et al., 2022b). The transition of
paradigm from model-centric to data-centric (Zha
et al., 2023b,a) has led to the development of prod-
ucts that are refined using abundant data with hu-
man feedback (e.g., ChatGPT, Claude). These
products show remarkable capabilities in delivering
reliable responses, which prioritizes data collection
for LLM fine-tuning aimed at human alignment.

In this field, a natural challenge is the huge ex-
pense of high-quality human annotation for diverse
samples (Casper et al., 2023). The greater the di-
versity within the dataset is, the higher upper bound
of performance can be achieved. Nevertheless,
this diversity also results in higher costs. In detail,
LLMs are forced to generate responses in line with
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human preference, based on provided prompts.
When the annotation resources are limited, a deci-
sion must be made regarding the allocation of these
resources between a broader range of prompts or
a larger number of responses to be annotated, as
illustrated in Figure 1.

The well-known LLaMA-2 (Touvron et al., 2023b)
chooses to utilize samples of human alignment,
each containing one prompt and two responses
to maximize the prompt diversity. On the contrary,
various studies (Ouyang et al., 2022; Yuan et al.,
2023b; Song et al., 2023a) concentrate on providing
each prompt with more responses, enabling LLMs
to distinguish subtle differences among various can-
didates. Although both sides are intuitively reason-
able, there is currently a lack of direct comparison
and comprehensive analyses between them.

In this paper, we investigate the impact of both
prompts and responses for LLM fine-tuning in hu-
man alignment. We first design a quantitative ex-
periment to assess the effect of the two strategies.
A series of sub-datasets are created from the raw
dataset, some of which contain more prompts but
fewer responses for each prompt, while others have
more responses for each prompt but fewer prompts.
These subsets maintain a certain proportional rela-
tion to maintain a constrained total number of anno-
tations, on which we fine-tune LLMs and compare
their performances for comprehensive analyses.

While Song et al. (2023a) has demonstrated the
effect of increased responses, a scaling law be-
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Human: Does Sweden have a
nice country side?
 
Assistant: Yes, Sweden has
many beautiful country sides.
 
Human: Where at in Sweden?
 
Assistant: I am not very good at geography, but it

sounds like Sweden is very beautiful.

Most of Sweden is located in the south  
of the country, near the capital city of
Stockholm.

The location varies depending on the region  
of Sweden. There are forests, rivers, and
beautiful mountains in some areas. The forests
are a great place for hiking. There are several
cities in Sweden with great city parks that also
have many trees and paths to hike on.

(2)
(1)

Prompts Responses

Figure 1: Different directions of data expansion for human alignment: (1) Expanding more prompts;
(2) Expanding more responses for each prompt.

tween prompts diversity and the final performance
in human alignment is yet to be established. Sim-
ilar to Kaplan et al. (2020) and Muennighoff et al.
(2023) exploring the correlation token statistics and
evaluation metrics, the aforementioned quantita-
tive experiment manipulates prompt diversity by
adjusting training set sizes only, overlooking the
influence of token combinations representing syn-
tax and contextual information. To address this
gap, we introduce a novel formulation to empirically
define prompt diversity based on N-grams. Fur-
thermore, we uncover a linear relationship between
this diversity and the acquired reward scores by
examining various scales of training sets, different
base models, and algorithms.

We also try to enhance data diversity by employ-
ing this new formulation to guide a data augmenta-
tion process. Beginning with existing samples, we
sample multiple new prompts and corresponding
responses, then assess them based on N-gram
overlap with the given demonstrations to determine
their acceptance. Implementing this method leads
to an improvement in performance compared to
randomly sampled data.

We conclude from all experiments that:
(1) Expanding responses yields more benefit

than prompts. We attribute it to two reasons: just
a few prompts can activate LLMs in human align-
ment, as explained in Zhou et al. (2023), while more
responses offer clearer signals for fine-tuning, thus
proving more help.

(2) The empirical formulation of prompt diversity
can establish a linear correlation with the final per-
formance of LLMs.

(3) Directed by the proposed formulation of
prompt diversity, the new process of data augmen-
tation can promote the performance of LLMs.

2. Related Work

2.1. Fine-tuning for Human Alignment

Despite their promising potential, large language
models carry the risk of generating toxic or offen-
sive content without human alignment. One ap-
proach that has gained considerable attention in
addressing this issue is Reinforcement Learning
from Human Feedback (RLHF) (Stiennon et al.,
2020; Ouyang et al., 2022; Bai et al., 2022a; Zhu
et al., 2023a,b; Yu et al., 2023). For instance, In-
structGPT (Ouyang et al., 2022) builds a three-step
pipeline of RLHF, which includes supervised fine-
tuning (SFT), reward model (RM) training, and rein-
forcement learning using PPO (Schulman et al.,
2017). This process involves collecting numer-
ous samples, each consisting of one prompt and
multiple candidate responses ranked by human
annotators. These annotated rankings are then
segmented into pairs to enhance computational
efficiency. Touvron et al. (2023b) allocate more
resources to the prompt collection to maximize its
diversity while featuring only two responses per
prompt. Conversely, some works introduce fine-
grained distinctions to LLMs by incorporating list-
wise comparisons among responses, or dynam-
ically sampling better candidates for SFT (Yuan
et al., 2023b; Dong et al., 2023; Song et al., 2023a),
also leading to improved performance.

While more prompts can cover a wider range
of domains and topics, limitations in annotation re-
sources often force researchers to choose one side
between diverse prompts and longer rankings with
more responses. In our study, we investigate the
impact of prompt diversity and compare it quanti-
tatively with that of responses. We also establish
empirical relations between prompt diversity and
the final performance of tuned LLMs.
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2.2. Scaling Analyses of LLMs
As LLMs continue to increase in scale, leading to
higher training costs, it becomes crucial to make
initial predictions regarding their performance. Var-
ious key factors of LLMs can be scaled to predict
the ultimate performance. From a micro perspec-
tive, Kaplan et al. (2020) and OpenAI (2023) try to
formulate power laws from the model size or the
amount of computation of LLMs to their converged
loss values during pre-training. In contrast, Lee
et al. (2023) examine the impact of different train-
ing paradigms for human alignment from a macro
perspective. Additionally, Zhang et al. (2023) ex-
plore how the assembly of LLMs can influence the
final performance, and Yuan et al. (2023a) show
that loss values can even indicate the accuracy of
mathematical reasoning.

The impact of data used in the pre-training or
fine-tuning stages can also be investigated. Ka-
plan et al. (2020) and Muennighoff et al. (2023)
scale the total number of tokens associated with
the performance levels achievable by LLMs How-
ever, token count may not perfectly represent the
diversity of data distribution. Zhao et al. (2023)
accordingly propose a tree-like structure for instruc-
tion alignment and study the scaling relationship
between the complexity of instructions and final suc-
cess rates. Lu et al. (2023) and Wei et al. (2023)
propose different metrics for the estimation data
diversity to label or filter training samples, build-
ing upon the observation (Zhou et al., 2023) that
a small dataset can unlock the specific capabili-
ties of LLMs through fine-tuning. Building on these
studies, we concentrate on the distribution of split
prompts and responses for human alignment, and
provide detailed analyses of performance improve-
ment influenced by dataset sizes and diversity.

3. Quantitative Experiments

3.1. Background
Different from pre-training, individual samples are
typically divided into a prompt x and a response y in
LLM fine-tuning. Specifically in human alignment,
a single prompt can be associated with multiple
responses y1:n = y1, y2, · · · , yn, ranked according
to varying levels of preference, which are learned
by LLMs to enhance their outputs.

Intuitively, a broad range of prompts can poten-
tially enhance the generalization ability of LLMs,
thus improving their final performance. Likewise,
using diverse candidate responses can be bene-
ficial by enabling LLMs to capture subtle distinc-
tions reflecting different preferences. It is difficult
to determine the ideal number of samples and the
optimal length of response rankings for LLMs to
align with human preference. However, the fact

is that human annotations are always costly, and
the total amount of annotations can be accordingly
limited. Therefore, given a fixed amount of human
annotations, there has to be a trade-off between
increasing prompts (while reducing the length of
response rankings), or associating each prompt
with more responses (but fewer prompts in total) in
the dataset. Researchers need to make a choice
between these two directions (Ouyang et al., 2022;
Yuan et al., 2023b; Dong et al., 2023; Song et al.,
2023a; Touvron et al., 2023b).

In this section, we design a quantitative experi-
ment aimed at conducting preliminary comparisons
of their effects. We select a series of subsets for
fine-tuning, all sharing the same total annotation
volume, some emphasizing more prompts while
others prioritize more responses. Subsequently,
we apply two well-known algorithms to these sub-
sets and aggregate their performance results to
assess the impact of different configurations.

3.2. Dataset Construction
Similar to Yuan et al. (2023b), Rafailov et al. (2023)
and Song et al. (2023a), we utilize the Human
Preference Data on Helpfulness and Harmless-
ness, referred to as HH-RLHF (Bai et al., 2022),
as the foundational dataset. Each original sample
consists of a common prompt and two candidate
responses (named 2-ranking), one chosen by hu-
man annotators and the other rejected. We extend
each 2-ranking into 4-ranking through zero-shot
augmentation using Curie (Brown et al., 2020) and
Alpaca (Taori et al., 2023), neither of which has
been fine-tuned for human alignment previously.

Assuming the total volume of human annota-
tions is 2N, there are various subsets with different
prompt sizes and response ranking lengths. For
example, each subset may consist of N prompts
with 2-rankings, 2N/3 prompts with 3-rankings, or
N/2 prompts with 4-rankings, which all maintain 2N
annotations (2N=2×N=3×2N/3=4×N/2).

We also attach additional subsets containing N
prompts, 2N/3 prompts, and N/2 prompts with 2/3/4-
rankings, to present comprehensive results for fur-
ther analyses.

3.3. Metrics
Unlike some tasks that can be easily measured, hu-
man preference can be more abstract and hard to
estimate. Both Yuan et al. (2023b) and Song et al.
(2023a) utilize RMs to evaluate the performance of
fine-tuned LLMs, while the emerging GPT-4-as-a-
judge in human alignment (Rafailov et al., 2023) can
be also convincing. Our evaluation predominantly
relies on public reward models, employing distinct
reward models RMtrain and RMtest for training and
testing phases, respectively. The outcomes are
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Settings
(Algorithm, Backbone, Domain)

# Candidate
Responses

# Prompts (N=24000) # Prompts (N=3000)
N/2 2N/3 N N/2 2N/3 N

PRO, OPT-1.3B, Harmless
2 55.58 55.58 57.01 50.42 51.37 53.65
3 57.11 57.29 59.28 53.28 54.80 56.47
4 59.24 58.98 59.92 55.36 56.73 58.28

PRO, OPT-1.3B, Helpful
2 49.05 49.09 50.06 44.69 45.37 46.49
3 49.98 51.00 51.43 45.74 47.01 49.73
4 51.35 51.04 51.74 48.85 48.69 50.33

PRO, OPT-1.3B, Global
2 52.78 52.73 53.78 47.64 48.57 50.13
3 53.91 54.67 55.51 49.56 50.76 53.28
4 55.30 55.12 55.96 52.28 52.54 54.19

SFT, OPT-1.3B, Global
2 52.25 52.78 52.63 49.85 49.33 50.47
3 53.60 54.18 54.20 51.59 51.26 51.35
4 55.06 55.00 56.27 51.93 51.97 53.03

PRO, LLaMA-7B, Global
2 54.53 54.68 55.16 53.16 53.06 53.31
3 56.58 55.89 56.26 54.74 53.00 56.05
4 57.50 56.42 57.26 55.25 55.88 55.35

SFT, LLaMA-7B, Global
2 53.18 53.29 54.63 52.78 53.03 53.80
3 56.01 55.53 56.07 53.98 53.74 54.50
4 56.13 56.30 57.30 55.05 55.00 56.14

Table 1: Results of quantitative experiments. LLMs can acquire better performance with either diverse
prompts or responses used for fine-tuning, while increasing responses benefits LLMs more than increasing
prompts with the same amount of annotations (highlighted in red bold).

then cross-validated by GPT-4 assessments. For
fine-tuning, we combine all 4 subsets in HH-RLHF
for LLM fine-tuning and present the outcomes for
two representative subsets, namely Harmlessbase
and Helpfulbase. Furthermore, we provide the over-
all scores for all test samples across the 4 subsets.

3.4. Benchmark Algorithms

For each dataset, we select representative super-
vised methods as benchmark algorithms, because
supervised training can directly reflect the impact
of the datasets involved. Specifically, we opt for
two widely-used algorithms, namely Supervised
Fine-tuning and Preference Ranking Optimiza-
tion (Song et al., 2023a), denoted SFT and PRO,
to represent other methods that are either sensitive
or insensitive to response rankings.

To elaborate, SFT is similar to the pre-training
process but exerts supervision solely on the top
candidate y1,

LSFT(y
1 | x) = −

|y1|∑
i=1

log pΘ
(
y1i
∣∣x, y1<i

)
(1)

Instead, PRO forces the LLM to distinguish the
best one from multiple candidates. It utilizes
the whole ranking y1, y2, · · · , yn through multiple
one-to-many contrasts, implemented as:

L(y1:n | x) = −
n−1∑
k=1

log
exp

(
log pΘ(x,yk)

T k
k

)
n∑

i=k

exp
(

log pΘ(x,yi)
T i
k

) (2)

T i>k
k =

1

rϕ(x, yk)− rϕ(x, yi)
(3)

T k
k = min

i>k
T i
k (4)

and the final objective appends LSFT for a balance
between text quality and human preference,

LPRO(y
1:n | x) = βLSFT(y

1 | x) + L(y1:n | x) (5)

3.5. Implementation Details
The experiments are conducted with different
N (24000 and 3000). We mainly utilized OPT-
1.3B (Zhang et al., 2022) as the base LLM and
tested it with three different seeds, while incorpo-
rating LLaMA-7B (Touvron et al., 2023a) with just
one seed due to computational constraints. For
the fine-tuning process of LLMs, we configured the
total training steps to 4000 for each dataset, per-
forming validation every 500 steps. Both RMtrain

1

and RMtest
2 are publicly available checkpoints.

1https://huggingface.co/OpenAssistant/
oasst-rm-2.1-pythia-1.4b-epoch-2.5

2https://huggingface.co/OpenAssistant/
oasst-rm-2-pythia-6.9b-epoch-1

https://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5
https://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5
https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1
https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1
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Figure 2: Distribution of BLEU scores with different
settings.

The original dataset comprises newly added data
without human annotations. Therefore, we first
score all responses using RMtrain, then re-rank them
based on their scores. Furthermore, we ensure
that datasets of larger sizes will encompass their
smaller counterparts with rankings of the same
length, while for datasets of the same size, longer
rankings will include the shorter ones for each sam-
ple. More details are available in the code3.

3.6. Results of Automatic Evaluation
As demonstrated in Table 1, we gathered the av-
erage reward scores corresponding to various set-
tings, including algorithms, backbones, and do-
mains. These results aim to address the following
research questions (RQs).

RQ1: More Diverse Prompts or Responses?

Longer response rankings and more prompts are
both beneficial, but their effects are different. Gen-
erally, with an equal quantity of annotations, ex-
tending each ranking of responses leads to better
enhancement compared to expanding prompts, re-
gardless of the backbones used or the values of N.
These outcomes are highlighted in red bold within
each grid, where scores in the lower left side indi-
cate longer response rankings but fewer prompts,
while scores in the upper right side represent the
opposite scenario. This observation is compatible
with the hypothesis that LLMs possess the potential
for human alignment that can be activated with a
small number of samples (Zhou et al., 2023). How-
ever, more responses for each prompt offer clearer
alignment signals through comparisons, leading to
a more significant optimization of LLMs.

In detail, an increased number of responses ben-
efits PRO more than SFT, as the former empha-
sizes the importance of response rankings lacking

3https:github.com/F2-song/
ScalingAlignment

in the latter. Nonetheless, a longer ranking rep-
resents more samplings from the whole linguistic
space, where the preferred response is more likely
to be identified. This explains why SFT methods
also benefit from expanding responses. Further
examination of the results in the domains of harm-
lessness and helpfulness with OPT-1.3B and PRO
confirms the validity of the above statement.

RQ2: How Does the Allocation of Annotations
Impact the Quality of Output Texts?

Changes in the allocation of annotations (more
prompts or more responses) appear to have no
impact on the outcome. We hereby plot the BLEU
distribution generated by the OPT-1.3B model fine-
tuned with PRO and 24000 samples in Figure 2,
where the distribution does not present a consis-
tent pattern but fluctuates randomly across different
configurations. The variations observed may be
explained by the fact that LLMs possess robust
language modeling abilities, consequently not re-
quiring too many samples. It underscores the im-
portance of allocating more annotation resources
to prepare responses when a certain number of
prompts have been guaranteed.

RQ3: How Many Samples Are Sufficient for
Human Alignment Fine-tuning?

Intuitively, the more samples for fine-tuning, the
more diverse they are, leading to potentially greater
improvements for the tuned LLMs. However, deter-
mining the adequate quantity is a complex task, as
it depends on factors like the algorithms, base mod-
els, and the number of responses. For instance,
while LLaMA-7B demonstrates notably high scores
with 3000 samples, surpassing OPT-1.3B with an
equal amount of training data, it shows a slower
increase in performance compared to OPT-1.3B
when more samples are included. Moreover, the
degree of improvement achieved by increasing the
dataset size usually decreases. This is because the
dataset is more likely to contain duplicate or similar
content as the number of samples grows, making
it less efficient to continually invest resources in
comparison to potential performance gains.

3.7. GPT-4 Evaluation
Apart from the automatic evaluation above with
RMtest, we also take GPT-4-as-a-judge into con-
sideration, since it has been widely recognized as
an efficiently human-like tool to give fair judgment,
especially for abstract concepts like human pref-
erence (Zheng et al., 2023; Song et al., 2023a;
Dubois et al., 2023). It further validates the statis-
tical findings in Table 1 by directly comparing the
three settings as described below:

https:github.com/F2-song/ScalingAlignment
https:github.com/F2-song/ScalingAlignment


14363

SFT PRO
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Figure 3: GPT-4 Evaluation

Setting 1: N prompts, i.e., a total of N samples,
each with 2 responses.
Setting 2: 2N/3 prompts, each with 3 responses.
Setting 3: N/2 prompts, each with 4 responses.
All three settings have a total of 2N annotations for
fine-tuning.

We use LLaMA-7B for fine-tuning under these
three settings since it can yield high-quality outputs.
We randomly select prompts from the test sets of
Harmlessbase and Helpfulbase for evaluation. The
outputs of each tuned LLaMA are compared with
those under other settings, scored directly by GPT-
4 through bi-directional comparisons to enhance
fairness (Wang et al., 2023b), and the win-lose
rates of each comparison are depicted in Figure 3.
In each matrix M , each row i (or column j) corre-
sponds to Setting i (or Setting j), with the element
Mi,j indicating the win rate of LLM outputs tuned
with Setting i against those with Setting j. The di-
agonal elements in M are uniformly set at 33.33
for comparisons between two identical contents,
distributed evenly among [Win, Lose, Tie].

Figure 3 illustrates that Mi,j always surpasses
Mj,i along the main diagonal. This implies that
the win rate of Setting i against Setting j is always
higher than its loss rate, consistent with the results
in Table 1. This also proves that RMtest can be a
reliable evaluator. In general, it reaffirms the con-
clusion that increasing annotations for responses
improves LLMs to better align with human prefer-
ence than prompts.

4. The Scaling Law between Prompt
Diversity and LLMs Preference

While the diversity of prompts or responses can
both be beneficial to LLMs fine-tuning, increasing
prompts is less effective compared to increasing
responses. This difference can be attributed to
the inefficiency of using quantity alone to measure
prompt diversity. In this section, we explore the con-
cept of prompt diversity. We first discuss the impor-

tance of controlling prompt diversity and then pro-
pose a new empirical formulation for it. Additionally,
assuming all other factors remain constant (such
as base models, fine-tuning algorithms, annotation
sources, and lengths of response rankings), a lin-
ear correlation between the final performances of
fine-tuned LLMs and the calculated diversity from
various subsets can be illustrated.

4.1. Diversity Formulation
Utilizing quantity to control response diversity ap-
pears to be rational. Given that new responses
typically originate from various sources, and the
range of response rankings is relatively limited, aug-
menting the number of responses can lead to sig-
nificant variations. The quantitative experiments
also demonstrate that expanding response rank-
ings contributes to improvements for LLMs.

However, the approach becomes oversimplified
when applied to prompt diversity. Here the diversity
is based on all prompts, and minor adjustments in
quantity may not have a noticeable impact, as evi-
denced by the marginal improvement from N/2 to
2N/3 (for N=3000) in the quantitative experiments,
while potential duplication in prompts can be an-
other factor. Furthermore, fine-grained features
within utterances, such as semantics, contexts, and
even syntax, are crucial to prevalent LLMs that de-
pend on tokenization followed by causal modeling.
They should also be taken into consideration.

Moreover, the redundant prompts mentioned ear-
lier do not contribute significantly to enhancing over-
all diversity and should be initially removed. This
can be measured by assessing the proportion of
distinct N-grams within the dataset.

Different from Kaplan et al. (2020) and Muen-
nighoff et al. (2023), we leverage N-grams instead
of individual tokens as the basic element for calcu-
lation, because N-grams inherently capture contex-
tual details beyond the meaning of single tokens.
In addition, the aforementioned duplicated data es-
sentially do not provide any extra advantages in



14364

(c)

(b)(a)

(d)

Figure 4: (a) Linear fitting from different sample amounts to finally acquired rewards of LLMs tuned with
PRO. (b) The trend of diversity with the increasing sample amount. (c) Linear fitting from the proposed
diversity metric to finally acquired rewards of LLMs tuned with PRO. (d) Linear fitting from the proposed
diversity metric to finally acquired rewards of LLMs tuned with SFT.

terms of overall diversity and should be filtered out
initially. We define it as the rate of unique N-grams
present in the dataset,

runique =
|Filter(G)|

|G|
(6)

where G is the collection of all N-grams derived
from the tokenized corpus and Filter(G) denotes
the removal of repeated elements. Subsequently,
the diversity metric d can be formulated as product
of runique and the total number of prompts m,

d = runique ∗m (7)

Empirically, as the number of prompts increases,
the marginal effect decreases gradually, and the
diversity should follow the same pattern. Therefore,
we introduced a decay index p to the sample quan-
tity m to incorporate decay into its growth rate. The
concept of prompt diversity is formulated as,

d = runique ∗mp (8)

4.2. Analysis
To examine the connection between the pre-defined
diversity metric and the final performance of fine-
tuned LLMs, we use 2-grams for calculation and
collect {1500, 2000, 3000, 6000, 12000, 16000,
24000, 36000} samples from the original dataset

with rankings of lengths 2/3/4. This resulted in
24 subsets for LLMs fine-tuning. In this part, we
empirically set the value of p to 0.5 for HH-RLHF,
although it could also be found using grid search.

We start our analysis by visualizing the results of
above 24 subsets in Figure 4(a). A discernible pos-
itive correlation between enhanced performance
and the increasing quantity is observed. Further-
more, improved scores can also be achieved with
longer response sequences. Nevertheless, the
growth in reward scores and quantity of prompts
is not synchronized. The former shows a grad-
ual decline in speed, while the latter maintains a
consistent pace. More precisely, the performance
experiences a sharp increase with a rising number
of samples at the beginning, yet tends to plateau
with a larger volume of samples. Even when we
convert the X-axis from sample quantity to token
quantity, this conclusion still holds.

A commonly accepted concept is that the diver-
sity of a dataset may not continue to increase indefi-
nitely. As the size of the dataset expands, new con-
tent often contains complete or partial duplications
of earlier material. By analyzing actual datasets, we
have graphed in Figure 4(b) the evolution of diver-
sity outlined in Equation 8 as the sample size grows.
This graph aligns with the idea that the rate of diver-
sity growth should gradually decrease. Based on
the similar patterns observed in performance and
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Algorithm 1: Determining the decay index
with grid search.
Input: Fine-tuning algorithm FT,

Datasets {Di} of ascending sizes,
Language Model π, Step Length l

Output: Decay Index p
// Fine-tuning and evaluation

1 Let S be an empty set
2 for Di ∈ {D1, ..., Dn} do
3 Let πi = FT(π,Di)
4 Evaluate πi

5 Let si be the performance of πi

6 Add si to S

7 end for
// Searching the decay index

8 Let p = 0, p̂ = 0, L = inf
9 while p̂ < 1 do

10 Let p̂ = p̂+ l
11 Compute diversity degrees {di} based

on p̂, {Di} and Equation 8
12 Compute the MSE L̂ using linear fitting

on {di} and S
13 if {di} is ascending && L̂ < L then
14 Let L = L̂, p = p̂
15 end if
16 end while
17 return p

diversity trends, a linear correlation between these
them may exist,

r = α ∗ d+ β + ϵ (9)

where α and β are coefficients, while r and ϵ denote
the reward score and error term, respectively.

We then gather the performance (i.e., average
reward) achieved by OPT-1.3B under the supervi-
sion of PRO and SFT, respectively, and then apply
linear fitting to correlate each final score with the
computed diversity of the specific subset used. The
outcomes are presented in Figure 4(c) and (d). Ad-
ditionally, we compare these results with the linear
fitting between performance and the sample quan-
tity, as shown in Figure 4(a), while it leads to a
significantly higher mean squared error (MSE) of
1.2e-4 compared to 2.8e-5 and 8.8e-6 correspond-
ing to Figure 4(c) and (d), respectively. This vali-
dates the linear correlation between our proposed
d and the final performance. We also compute the
MSE values with LLaMA-7B, which are marginally
higher than those with OPT-1.3B, possibly due to
fluctuations in a single seed (4.6e-5 for PRO and
1.7e-5 for SFT).

5. Sampling with Diversity Check

In this section, we present a technique for data
augmentation using the existing samples. Fresh
samples are first collected and then selected to en-
rich the overall variety of prompts. This selection is
aimed to optimize the local diversity between the
new and existing samples. We initially demonstrate
the effectiveness of this technique in enhancing
prompt diversity. By fine-tuning LLMs on the aug-
mented datasets, there is also a slight performance
enhancement along with increased diversity.

5.1. Augmentation
We design the data augmentation as where there
are existing samples that constitute a seed set. In
this setting, n samples are randomly selected to
support each augmentation iteration. To simplify
the experiment, we reuse one subset D in the last
section as the aforementioned seed set, and select
new samples from the original HH-RLHF to sim-
ulate the process of augmentation. It is ensured
that each new sample is selected from the non-
overlapping portion of HH-RLHF concerning D.

5.2. Filtering with Diversity
We start by revisiting the concept of prompt diver-
sity. The proposed metric above can be affected
by two factors: runique, representing the ratio of
unique N-grams, and the total number of prompts,
which rises with decreased speed. Consequently,
by simultaneously increasing runique during data
augmentation, the diversity metric can experience
a more rapid growth.

However, identifying a batch of new samples that
maximizes the diversity of the total D can be chal-
lenging. Therefore, we introduce a locally greedy
search process to filter new samples based on the
supporting samples. Specifically, by computing the
Jaccard Index between the set X of supporting
samples and the i-th element Yi of set Y ,

Jaccardi =
Filter(GX) ∩ Filter(GYi

)

Filter(GX) ∪ Filter(GYi
)

(10)

where Yk with the lowest Jaccardi can be selected
to enhance the local runique, thereby boosting the
overall diversity.

5.3. Results
We set n as 2 and utilize the subset D6000 con-
taining 6000 samples (for all versions with 2/3/4
rankings), to which 6000 new samples are then
added, forming D̂12000. Meanwhile, we treat the
subset D12000 as its counterpart, comprising 12000
randomly sampled samples without filtration and
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Method # Responses D12000 ➩ D̂12000

PRO
2 52.78 52.85
3 53.91 ➩ 54.55
4 55.30 55.50

SFT
2 52.25 51.81
3 53.60 ➩ 54.47
4 55.06 55.20

Diversity d of Prompts 18.86 ➩ 19.75

Table 2: Results of Data Augmentation.

covering D6000. We apply PRO and SFT on OPT-
1.3B using these subsets and present the outcomes
in Table 2. The diversity of prompts increases from
18.86 to 19.75, and slight enhancements are shown
with few exceptions, which can be normal fluctu-
ations. This primarily demonstrates the impact of
the proposed filtering method. It may potentially
be amplified with larger n, a direction we leave for
future research.

6. Conclusion

This study focuses on the impact of data diver-
sity on human alignment fine-tuning. Given the
common limitation of available annotations in most
scenarios, we investigate the effect of distributing
them to enhance diversity in different ways, such
as increasing prompts or responses. Our exten-
sive experiments show that increasing the number
of responses generally leads to greater enhance-
ments in human alignment compared to expanding
prompts. Additionally, we design an empirical met-
ric to measure prompt diversity and reveal a linear
correlation between it and the final performance
of LLMs. Finally, we propose a straightforward
method to boost diversity in data augmentation, re-
sulting in better performance of fine-tuned LLMs.
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