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Abstract

Automated patent classification typically involves assigning labels to a patent from a taxonomy, using multi-class
multi-label classification models. However, classification-based models face challenges in scaling to large numbers
of labels, struggle with generalizing to new labels, and fail to effectively utilize the rich information and multiple views
of patents and labels. In this work, we propose a multi-view ranking-based method to address these limitations. Our
method consists of four ranking-based models that incorporate different views of patents and a meta-model that
aggregates and re-ranks the candidate labels given by the four ranking models. We compared our approach against
the state-of-the-art baselines on two publicly available patent classification datasets, USPTO-2M and CLEF-IP-2011.
We demonstrate that our approach can alleviate the aforementioned limitations and achieve a new state-of-the-art
performance.
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1. Introduction IPC/CPC taxonomy

The life cycle of a patent involves several steps
and roles: a patent attorney drafts a patent appli-
cation; a patent officer classifies the application
with a hierarchical patent classification schema
such as International Patent Classification (IPC) or
Cooperative Patent Classification (CPC); a patent
examiner assesses the patentability of the de-
scribed invention; and finally, the decision of being
granted or not is made (Krestel et al., 2021). An
important part of this procedure is the classification
of patents, which helps to allocate appropriate ex-
perts to review the patent application and minimize
the search effort. Automated patent classification
helps to reduce the classification effort. It is often
formulated as a multi-label classification task in the
current literature (Roudsari et al., 2021; Fang et al.,
2021; Lee and Hsiang, 2020).

Previous works in the realm of patent classifica-
tion have predominantly centered on refining the
subclass level of the IPC/CPC taxonomy, which en-
compasses approximately 600 labels. Most works
have a classification layer on top of their models.
However, classification-based models suffer from
several drawbacks and hinder the wide application
of these models. Firstly, classification-based mod-
els can not generalize to newly introduced labels,
due to the fixed dimension of the output probability
distributions. This is an important issue because
patent classification schemas are often changed,
by adding new labels and by removing and redefin-
ing existing labels. Secondly, the classification
layer of these models does not scale to a large
number of labels. For example, the IPC schema
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Figure 1: This figure illustrates the task of multi-
label patent classification, wherein a domain expert
is responsible for assigning multiple CPC/IPC la-
bels to a patent.

has around 600 labels at the subclass level and
around 300,000 at the subgroup level. To accom-
modate this many labels, the model size can be-
come unsustainable due to the required feature
and output space. In most of the current literature,
the main focus is therefore on the subclass level.
Thirdly, a classification-based model cannot utilize
the textual descriptions of the labels themselves.

In this work, we alleviate these drawbacks by for-
mulating the classification of patents as a ranking
problem. For this purpose, we introduce a multi-
view model to classify Patents with Aggregated
Ranking of Labels (we name it PARL). It consists
of four different component models with an aggre-
gation model on the top. Each of the component
models aims to retrieve a small number of label
candidates from the whole label set. The first two
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component models are the Bi-Encoder and Cross-

Encoder, which use the patent-label view. The third

and fourth component models BM25 and Graph-

SAGE (Hamilton et al., 2017) use the patent-patent

view. The model on top is a simple Learning-to-

Rank (L2R) model, which aggregates the retrieved

labels from the component models and ranks the

subset of labels based on the component ranking
scores.’

The combination of the individual components
results in a novel and efficient approach tailored to
the patent classification task. Our method has the
following merits. First, consistent model size
for scaling labels. The four component mod-
els including BE, CE, GS, and BM25 remain con-
stant in size regardless of the dataset’s label num-
ber. This unique feature underscores the scala-
bility of our approach without compromising on
model size. Second, efficient adaptation to tax-
onomy changes. The dynamic nature of patent
taxonomies is a challenge in the field. Unlike some
previous methods that necessitate complete model
retraining, we can simply train on newly introduced
labels, reducing the time and computational re-
sources required. Third, production-friendly ap-
proach. The BE retrieves the top 30 labels and
the CE reranks these filtered labels. This design
enhances efficiency by narrowing down the rank-
ing scope and focusing computational efforts on
the most relevant labels. Additionally, GS learns
patent embeddings with a small-size neural net-
work and retrieves similar patents by searching
local neighborhoods in the graph. Fourth, flexible
integration of customized component models.
The L2R model takes the predicted scores of mul-
tiple components as features, thus it is easy to
integrate new component models by adding extra
features to the L2R model.

To sum up, our work introduces a novel approach
to patent classification that addresses scalability,
efficiency, and adaptability to evolving taxonomies.
The main contributions are as follows:

* Proposal of a new multi-view label ranking
model. Our model captures the diverse perspec-
tives present in patents by using different com-
ponent models. It is one of the first attempts to
address this taxonomy at a lower level, involving
a significantly larger number of labels. Moreover,
its flexibility enables easy integration of diverse
component models in a customized scenario.

» Superior performance over state-of-the-art
models. The model outperforms prior state-of-
the-art models on two public datasets USPTO-
2M and CLEF-IP-2011.

+ Comprehenstive analysis of model effective-

'Please note that we interchangeably use the abbre-
viations BE, CE, and GS to refer to Bi-Encoder, Cross-
Encoder, and GraghSAGE throughout this paper.

ness. We conduct a comprehensive analysis to
unravel the underlying mechanisms driving the
effectiveness of our model. This analysis encom-
passes the impact of different views, visualization
of the embeddings, and the difference in label
prediction from different views.

2. Related Work
2.1.

Recent works on patent classification have focused
on using deep learning techniques to improve the
efficiency and accuracy of the classification pro-
cess. Representation models such as convolu-
tional neural networks (Li et al., 2018a), recurrent
neural networks (Xiao et al., 2018), and trans-
formers (Li et al., 2022; Lee and Hsiang, 2020)
represent patent texts into embeddings and clas-
sify patents. They have shown improved perfor-
mance compared to traditional machine learning
methods, such as support vector machines and
Naive Bayes (Chu et al., 2008). Incorporating ex-
ternal knowledge sources, such as WordNet and
Wikipedia, has been shown to be effective in provid-
ing valuable contextual information that can enrich
the understanding of patent documents (Al-Shboul
and Myaeng, 2011). Additionally, attention mech-
anisms have been employed to identify the most
relevant parts of the patent document for classifi-
cation (Haghighian Roudsari et al., 2020). More-
over, graph convolutional networks and graph at-
tention networks have been utilized to model the
relationships between different patents, leading to
improved classification performance (Tang et al.,
2020). Leveraging the inherent structural informa-
tion present in patent data, these graph-based ap-
proaches enable a more comprehensive analysis
of the interconnections and dependencies among
patents.

Overall, these recent works have demonstrated
their efficiency and accuracy in patent classifica-
tion. However, more research is needed to investi-
gate the scalability and robustness of these meth-
ods in real-world scenarios.

Patent Classification

2.2. Multi-view Learning

Multi-view learning is a machine learning ap-
proach that focuses on problems where each data
instance benefits from multiple perspectives or
sources of information. A concrete example of
multi-view is a video that contains audio and vi-
sual information. Similarly, for a piece of text, one
view could be lexical representations using a bag-
of-words approach, while another view could be
semantic embeddings. Multi-view learning has
been used as an effective technique in the cases
of texts (Fang et al., 2021), images (Seeland and
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Méader, 2021), and videos (Cai et al.,
et al., 2018).

A notable application of multi-view learning in
patent classification is Patent2Vec (Fang et al.,
2021). This work leverages multi-view patent graph
analysis to enhance the classification process. By
employing techniques such as graph representa-
tion learning, view enhancement, attention-based
multi-view fusion, and view alignment, Patent2Vec
aims to improve classification accuracy and en-
hance interoperability using both metadata and
textual information. In our work, we exploit differ-
ent signals for each patent document, encompass-
ing lexical and semantic contents within individ-
ual patents, as well as inter-patent signals linking
different patents. The multi-view representation
is a means to address the challenge of data im-
balance. Specifically, a Bi-Encoder model and a
Cross-Encoder model can learn good semantic
representation for labels with sufficient samples,
while the GraphSAGE model can provide effective
representation for labels with limited samples.

2019; Cui

3. Method

3.1. Rationale behind PARL

We observe that the data (USPTO-2M & CLEF-
IP) we worked on contains patents from vari-
ous domains, each with its specific terminologies
and semantic patterns. The multi-view approach
can uncover latent patterns across different views
and capture the diverse relationships between the
patents and their labels.

In the realm of capturing semantic signals be-
tween queries and documents, both Bi-Encoder
and Cross-Encoder models have achieved remark-
able success(Wang et al., 2022). However, an
alternative approach utilizing graph-based net-
works, such as Text Graph Convolutional Network
(Yao et al., 2018), has shown promise by exploit-
ing word co-occurrence and document-word re-
lationships to construct informative embeddings
for words and documents. This technique has
demonstrated effectiveness in showing the rela-
tionship between word-word, word-document, and
document-document in the latent space. Addition-
ally, empirical evidence has indicated that BM25 as
a lexical retrieval method can surpass Bi-Encoder
models in the cases of zero-shot scenarios and
instances where an exact match is essential, such
as keyword or entity retrieval (Zhao et al., 2022).
These distinct types of signals can be leveraged ef-
fectively to capture patent-label and patent-patent
relationships.

Figure 2 shows the multi-view approach we pro-
posed. It consists of a Bi-Encoder and Cross-
Encoder for semantic matching of patents and

labels, BM25 and GraphSAGE for label retrieval
through patent matching, and a L2R model that
employs input vectors comprising scores of labels
retrieved from the four aforementioned models, and
handcrafted features for the label.

3.2. Bi-Encoder

Following (Karpukhin et al., 2020), the Bi-Encoder
model consists of a patent encoder and a label
encoder, which are used to encode the patent text
and the label text separately. The two encoders
share the same parameters. We use msmarco-
distilbert-dot-v5° as the starting encoder model
to be finetuned. Each training batch contains
only positive text pairs, i.e. B = {(p;,l;) | i =
0,...,|B|}, where [; is a correct label of patent
p;i. To allow better negative sampling, we use the
MultipleNegativesRanking loss (Oord et al., 2018;
Henderson et al., 2017).

|B| o(vp,v1,)

" B & Zlog I ) M
where () is the dot product, v,, and v;, are the
embeddings of patent p; and label ;.

The Bi-Encoder model is beneficial for high re-
call and low computational cost. For training, the
attention of the Transformer is within short texts of
the patent or label and thus fast; for inference, the
label embeddings are computed offline and only
the embedding of the target patent needs to be
computed online.

3.3. Cross-Encoder

Cross-Encoder (Craswell et al., 2021), a variant of
the Bert classification model (Vaswani et al., 2017),
has demonstrated state-of-the-art effectiveness in
various IR tasks. However, it does not scale well for
a large number of documents and is often applied
after a Bi-Encoder.

The input of the Cross-Encoder is the concate-
nated text “[CLS] label text [SEP] patent text”. It
is fed into the encoder for modeling the semantic
interaction between any two tokens of the input
sequence. The representation of “[CLS]” is then
input to a linear classifier to output a single score
between 0 and 1 indicating how relevant the label
is for the given patent. We use ms-marco-MiniLM-
L-6-v23 as the starting model to be finetuned. For
training examples, we create positive ones by using
the ground truth labels of a patent, and we create
negative ones by randomly sampling 3 labels from
the ranked list of Bi-Encoder’s top 30 labels.

2https://huggingface.co/sentence-
transformers/msmarco-distilbert-dot-v5

Shttps://huggingface.co/cross-encoder/ms-marco-
MiniLM-L-6-v2
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Figure 2: The architecture of the PARL model. It comprises Bi-Encoder and Cross-Encoder to capture
the patent-label view, BM25 and GraphSAGE to capture the patent-patent view, and an L2R model to
aggregate the retrieved labels from the component models and rank these labels based on the component

ranking scores.
3.4. BM25

BM25 (Robertson et al., 2009) is a widely used
model for lexical retrieval. We use it to discover
lexically similar patents of a given patent.

For a given patent p, we take it as a query and
use the BM25 algorithm to retrieve patents in the
training data. For a retrieved patent, denote a tuple
(pi, si, L;) as the patent, the BM25 score, and the
set of ground truth labels. Thus, the relevant score
of any label [ to a given patent p is defined as

s(l,p) = s; - I(l € Ly) (2)

Mw

=1

For BM25 it is not guaranteed to get & unique la-
bels, since the top matching patents might have
duplicate labels. Therefore, we take the top 50
matching patents to ensure that enough nhumber of
labels are present.

3.5. GraphSAGE

GraphSAGE (Hamilton et al., 2017) is an induc-
tive model, which generates node embeddings by
leveraging the structural information between dif-
ferent nodes, represented as a graph. The node
embeddings are generated by learning a function
that aggregates feature embeddings provided by
the neighborhood for a given node.

Here we create a graph G representing an indi-
rect patent-to-patent relationship. The nodes in the

graph are patents and words. We only keep con-
tent words (nouns, verbs, and adjective words) for
each patent. The structure of G is identical to the
semantic graph used in Fang et al. (2021), where
two words are connected if they have a positive
Point-wise Mutual Information (PMI) score. Patent
and word nodes have an unweighted connection if
the word is present in the patent.

First, we generate word embeddings using Fast-
Text (Bojanowski et al., 2016) and represent the
patent nodes as the average of the word embed-
dings. Then we train the GraphSAGE model on
only the patent nodes with the same loss as Eq.(1).
Lastly, we calculate the dot product between a
given patent and all the patents to retrieve the top-
k unique labels. The score of a label is calculated
the same as Eq.(2).

3.6. Learning to Rank Labels

After each component model has ranked the top
k labels for patent p, the set of chosen labels will
be denoted as L = {l, ..., l,n }, where m denotes
the total number of chosen labels. For each label
l; € L we create a corresponding feature vector,

BE SCE SBM25

GS
Jg %3 %3 ]

xzj=s

Here sPF s§F sBM25 and ¢ are the scores
given by Bi-Encoder, Cross- Encoder BM25 and
GraphSAGE respectively. If a component model

did not rank a label in its top &, its score is set to 0.
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Our L2R model is a generic linear network,
which takes the feature z; as input and outputs a
score s;. The training loss is the sped-up RankNet
loss (Burges, 2010), calculated as

£ = S (1= )b~ log(1 €] (4)
7,9€|B|

where B, 4 is the batch data; §;, = s; — s, and
sjq € {1,0,—1}, such that s;;, = 1 or 0 or —1
means label [; should be ranked higher or equally
or lower than [, according to the true rank order.
Using the s; scores we create our aggregated rank-
ing of labels.

4. Experimental Setup

4.1.

We aim to examine the potential of our label rank-
ing model in addressing the inherent limitations of
classification-based models, as well as exploring
the multi-views on label prediction. We formulate
the following research questions. (RQ1) To what
extent does the proposed model outperform the
baseline models? (RQ2) How effective is the pro-
posed model when faced with a large number of
labels? (RQ3) How effective is the proposed model
when faced with zero-shot labels? (RQ4) What
is the impact of different views on model perfor-
mance?

Research Questions

4.2. Datasets

USPTO-2M. The dataset (Li et al., 2018b) con-
tains 2 million granted patents from the online web-
site of the United States Patent and Trademark
Office (USPTQO). Each patent comprises a title, an
abstract, and a set of class labels from the sub-
class level of IPC. As the Bi-Encoder component
model needs label text as the input, we extract the
definitions of the subclass levels from patentview*,
where each label has a keywords-like definition
describing the most important technical part.
USPTO-1K/5K/10K. To evaluate our model on
large-scale labels, we create three new datasets by
extending USPTO-2M with subgroup labels. The
subgroup labels are from patentview, which is an
open-sourced and pre-processed version of the
official USPTO patent bulk data. We restrict the
labels under the G class (Physics) and select one
thousand, five thousand, and ten thousand most
frequent labels for the three datasets, respectively.
The selection of the G class was made for the
following consideration. There are 9 sections in the
CPC taxonomy, including 'G’, each mirrors the hier-
archical structure in the complete taxonomy (sec-
tion, class, subclass, main group, and subgroup).

*https://patentsview.org/download/data-download-
tables

By sampling from a single section, we ensured that
our dataset encompasses labels from all five hier-
archical levels, thereby maintaining a distribution
analogous to the full CPC taxonomy. Furthermore,
a single section presents a more challenging task
due to the similarity of labels within this specific
domain, thereby testing our model’s efficacy in a
more difficult classification scenario.

USPTO-5K-zeroshot. To mimic the zero-shot
setting, we use USPTO-1K as the training data to
train the model and evaluate it trained on a sub-
set of USPTO-5K. This new test set has removed
the overlapped labels with USPTO-1K, so that the
labels in the test set do not appear in the training
set.

CLEF-IP-2011. The dataset (Piroi et al., 2011)
contains a mix of patents in English, French, and
German. Not all patents include citation data.
Therefore, we only select patents that are in En-
glish and include the necessary data fields. This
resulted in a total of 187,812 patents.

4.3. Baselines

FastText We selected FastText as a baseline for its
ability to serve as a label ranking benchmark, the
same as our method’s focus. FastText is a dense
retrieval model with a different encoding approach
than our BiEncoder component, providing a useful
comparison. Empirically, FastText not only demon-
strates robust performance but, in some scenarios,
surpasses PatentBert in smaller datasets (USPTO-
1K, USPTO-10K), establishing it as a strong base-
line. The inclusion of FastText is not arbitrary but
provides a strong baseline and ensures a compre-
hensive evaluation against varied approaches. We
use the FastText library® to produce the embed-
dings for labels and patents, then for each patent,
we rank the labels based on the cosine similar-
ity between the label embedding and the patent
embedding.

PatentBert (Lee and Hsiang, 2020). PatentBert
is a Bert-based multi-label classification model. It
has shown better performance than many patent
classification models such as DeepPatent (Li et al.,
2018b) and thus we compare our model with it.
It fine-tunes the pre-trained bert-base-uncased
model using the binary cross entropy loss. We
implemented the model ourselves. The batch size
is 32 and the maximum sequence length is 512.
We train the model for 5 epochs.

Patent2Vec (Fang et al., 2021). Patent2Vec
is a multi-view multi-label classification model.
Patent2Vec uses three different views. The first
one is the semantic view, which is identical to our
GraphSAGE component model. The second and
third views create a graph using patent citations

Shttps://github.com/facebookresearch/fastText
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Name Training Test Level Taxonomy
# Example # Label # Example # Label

USPTO-2M 1,600,117 631 200,015 618 subclass IPC
CLEF-1P-2011 150,249 609 28,172 589 subclass IPC
USPTO-1K 116,935 971 14,520 971 subgroup CPC
USPTO-5K 331,470 4,990 40,888 4,895  subgroup CPC
USPTO-10K 466,340 9,988 57,670 9,696  subgroup CPC
USPTO-5K-zeroshot - 11,803 3,248  subgroup CPC

Table 1: Statistics of the datasets used throughout the paper. USPTO-2M and CLEF-IP-2011 are widely
used datasets on the subclass labels of IPC. USPTO-1K/5K/10K and USPTO-5K-zeroshot are datasets
created by us for experiments on large-scale and zero-shot labels.

Method

‘ R@1 R@3 R@5 R@10 ‘ P@1 P@3 P@5 P@10 ‘ NDCG@1 NDCG@3 NDCG@5 NDCG@10
USPTO-2M dataset
FastText 049 0.74 0.82 0.89 | 066 033 022 0.12| 049 058 059 0.61
PatentBert | 0.58 0.81 087 093 |0.68 034 022 0.12| 068 0.75 0.78 0.80
Patent2Vec | 0.56 0.79 0.87 093 | 065 0.33 0.22 0.12 | 0.65 0.73 0.77 0.79
LightXML 055 075 082 089|064 031 021 0.12 | 0.64 0.70 0.73 0.76
PARL (ours) | 0.61 0.84 091 095|071 036 024 0.13| 0.72 0.78 0.81 0.83
CLEF-IP-2011 dataset
FastText 045 069 077 085|071 041 029 0.16 | 0.70 0.69 0.72 0.75
PatentBert | 0.56 0.81 0.89 093 | 086 048 0.33 0.18 | 0.86 0.83 0.85 0.87
Patent2Vec | 0.50 0.75 0.83 0.90 | 0.76 0.45 0.31 0.18 | 0.76 0.75 0.78 0.81
LightXML 052 075 082 089|079 044 030 0.17 | 0.79 0.76 0.78 0.81
PARL (ours) | 0.55 0.82 089 094 | 0.84 048 033 0.18 | 0.84 0.83 0.85 0.87
USPTO-1K dataset
FastText 0.31 053 0.63 0.75|046 029 022 0.13| 046 050 054 0.59
PatentBert | 0.29 051 061 0.73 | 043 028 021 0.13 | 043 048 052 0.57
Patent2Vec | 0.30 0.52 0.61 073|048 0.32 023 0.15| 0.48 0.51 054 0.59
LightXxML | 0.19 036 047 062 | 03 0.2 0.16 0.11| 0.30 0.34 0.38 043
PARL (ours) | 0.39 0.63 0.71 0.79 | 058 035 0.25 0.14 | 0.58 0.61 0.64 0.67
USPTO-5K dataset
FastText 022 040 049 0.61 | 042 029 022 0.15| 012 0.16 0.17 0.18
PatentBert | 0.24 043 052 065|045 031 024 0.16 | 045 045 0.48 0.53
Patent2Vec | 0.20 0.37 046 059 | 042 0.29 023 0.16 | 042 041 044 048
LightXML | 0.20 036 045 057|037 025 0.2 0.13]| 037 0.38 040 045
PARL (ours) | 0.30 053 0.61 069 | 0.56 039 0.29 0.17 | 0.56 0.57 0.55 0.59
USPTO-10K dataset
FastText 0.19 036 045 057|042 029 022 0.15| 010 0.13 0.14 0.15
PatentBert | 0.20 0.37 046 058|043 030 023 0.16 | 043 042 0.44 0.48
Patent2Vec | 0.18 0.35 044 056 | 042 030 024 0.17 | 042 0.41 0.43 0.47
LightXML | 0.18 0.32 040 051|036 025 0.19 013 | 0.36 0.36 0.37 0.41
PARL (ours) | 0.26 0.47 057 0.69 | 054 038 0.30 0.19 | 0.54 0.53 0.55 0.59

Table 2: Performance comparison of our PARL model with baselines on USPTO-2M and CLEF-IP-2011
(IPC subclass labels), USPTO-1K/5K/10K (CPC subgroup labels) datasets. PARL achieves superior
results on USPTO-2M, USPTO-1K/5K/10K and performs comparably to PatentBert on CLEF-IP-2011.

and assignees, or citations and inventors as link
relations. These two views are both trained using
metapath2vec (Dong et al., 2017). Finally, a multi-
label classification model is trained such that, each
view is first enhanced by adding features from the
different views combined, and then the three views
are combined using an attention mechanism.

LightXML (Jiang et al., 2021). Since the pro-
posed approach was also tested on a large number
of labels we wanted to evaluate its effectiveness

when compared to extreme classification models.
We use LightXML as a representative baseline for
extreme multi-label text classification models. It
uses a transformer model to represent patents and
TF-IDF vectors to represent labels and proposes a
generative cooperative network that first retrieves
a small set of labels and then reranks those la-
bels. We tuned the hyperparameters on the valida-
tion set to search for the best performance of the
model.
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4.4. Evaluation Metrics

Since we model the multi-label patent classification
problem as a label ranking task, we use ranking-
oriented metrics. We report P/R/NDCG@*,
k=1,3,5,10. Note that P@1 is more informative
than P@3/5/7 because, in our datasets, patents
have on average 1 to 2 labels.

4.5.

We use the title and abstract as the text of a patent
and set the text sequence length to 512 WordPiece
tokens for the Bi-Encoder and Cross-Encoder. For
each component model, we take the top k£ = 10 pre-
dicted labels for the aggregated ranking performed
by L2R. The training batch size is 32, 16, and 128
for Bi-Encoder, Cross-Encoder, and GraphSAGE.

Note that the training of every model is per-
formed on a single Nvidia Tesla V100 GPU with 16
GB of memory and 61 GB of memory on the CPU
(p3.2 instance on AWS). We intentionally make the
models light so that they can be applied across a
wide range of tasks. The code for our model and
experiments is publicly available®.

Implementation Detail

5. Results

5.1.

This experiment aims to answer RQ 1. Following
the same setting as previous works, we evaluate
our model on two public datasets, USPTO-2M and
CLEF-IP-2011. These two datasets have subclass-
level labels. The results are presented in Table 2.
Our PARL model achieves the best performance
among the baselines by a large margin on USPTO-
2M. On CLEF-IP-2011, our model performs simi-
larly to PatentBert and better than the other mod-
els.

An important observation is that our baselines
and our own model all are capable of running
on an AWS p3.2xlarge instance (a single GPU
with 16 GB memory and 61 GB of CPU mem-
ory) and we did not consider any baseline that
could not run on this system. For example, XR
Transformer(Zhang et al., 2021) is a state-of-the-
art extreme multi-classification model, however, it
requires a p3.16xlarge AWS instance (64 CPUs
with 488 GB memory and 8 GPUs with 128 mem-
ory) for training. XR Transformer can beat most of
our baselines when using a larger system. How-
ever, if we compare XR Transformer with LightXML
in Zhang et al. (2021), then XR Transformer only
outperforms LightXML by a few points on various
datasets, whereas our PARL model outperforms
LightXML more significantly on the patent datasets.

Main Results

6https://github.com/dl:ﬂ /parl

5.2. Large-scale Labels

To our best knowledge, the existing literature on
patent classification has been mainly focused on
the subclass labels from IPC/CPC. With only a
few works reporting on main group labels (Zuo
et al., 2022) and none on the subgroup labels. This
experiment aims to see if our proposed model is
able to scale towards the subgroup labels (RQ2).

Results are presented in Table 2. PARL performs
the best on the USPTO-1K/5K/10K dataset. The
performance for all models decreases worse as
the number of labels increases and the baseline
model decreases faster. The loss of performance
for PatentBert is the worst, as its performance be-
comes worse than that of the component models
from PARL. This indicates that the number of fea-
tures becomes too small to discriminate between
large labels. To accommodate, it is possible to in-
crease the number of parameters. However, this is
infeasible as there can be 100,000 or more labels.
Patent2Vec does not seem to suffer as much from
this issue. This is likely due to the unsupervised
trained embeddings. Creating a well-defined fea-
ture space, such that the burden of discriminating
between labels becomes less for the classification
head.

5.3. Zero-shot Labels

We conducted this experiment to understand
how well the component model Bi&Cross-Encoder
adapts to new labels (RQ 3). We did not report the
baselines or BM25 and GraphSAGE as they are
not applicable in this scenario.

Table 3 shows that Bi&Cross-Encoder is able
to achieve an R@10 of 0.41 and NDCG@10 of
0.26. It is quite impressive given that the label
set consists of more than 3000 labels the model
has never seen. It is a common practice to collect
data for new labels, and the model can be used to
collect potential positive patents to save annotation
costs, or to serve as the initial model for an active
learning loop for data collection.

5.4. Multi-view Impact

In this experiment, we conducted an ablation study
of PARL to gain insights into the contributions from
different views. This is achieved by excluding one
and two component models and evaluating the
performance impact on the USPTO-2M dataset.
The results are illustrated in Figure 3.

Our first important observation is that removing
any individual component model from PARL results
in a performance loss. This shows that the different
component models provide different views that pos-
itively impact the performance of the L2R model.
However, not each model contributes equally. For
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NDCG@1 -0.81 -1.195 -0.657 7
6
NDCG@3 -0.9 -0.837 -1.166 -0.486 5
4
NDCG@5 4 -0.774 -0.988 -0.95 -0.525
3
2
NDCG@10 | -0.888 -1.336 -1.068 -0.729
1
BE CE BM25 GS BE+CE BE+BM25 BE+GS CE+BM25 CE+GS BM25+GS

Figure 3: The significance of each model in PARL, by evaluating the performance impact of excluding
one or two component models NDCG (x 100) on the USPTO-2M dataset. Notably, the omission of the
CE and BM25 models leads to the most substantial performance drop, indicating their crucial contribution
towards PARL.

Method R@10 NDCG@3 NDCG@5 NDCG@10

Bi&Cross-Encoder  0.41 0.19 0.22 0.26
Table 3: Performance on zero-shot labels (USPTO-5K-zeroshot dataset). BiEncoder combined with

CrossEncoder achieves R@10 of 0.41 on approximately 3000 new labels.

example, the Bi-Encoder plays a more significant
role in ranking the correct label into the top three,
and when excluding the Cross-Encoder there is a
large drop at NDCG@10, this behavior is expected
as it is trained to rerank the top 30 predicted labels
from the Bi-Encoder. For BM25 and GraphSage
the performance drop at each level is about equal,
however, for GraphSage the performance contribu-
tion is the least significant out of the four models.

Our second important observation is that in gen-
eral removing pairs of models has a higher loss
of performance, compared to the summation of
losses when excluding the models individually, as
observed in Figure 3. To investigate this result,
we analyze the performance of each model de-
composed on a subset of 600 classes from the
USPTO-2M dataset. We do this by looking at the
absolute difference between the pairs (BE, GS)
and (CE, BM25) for each class, as can be viewed
in Figure 4. Here we observe that both pairs have
a high differential in class performance. This di-
chotomy in performance causes some uncertainty
when the L2R model is only provided two models,
which is caused by the label-agnostic nature of the
aggregated ranking process. This effect is most
noticeable when removing the Cross-Encoder and
BM25, where the loss is most substantial. This loss
is, however, exacerbated due to these two models
contributing the most individually.

This issue is alleviated by the flexibility of our
PARL model since it can easily integrate diverse
component models into its process. So, it is im-
portant to have more than two models that pro-
vide different views, where the additional models

can be viewed as tiebreakers in a voting mech-
anism, therefore lowering the uncertainty for the
L2R model.

5.5. Embedding Visualization

Patent-label embeddings. Figure 5 shows the
Bi-Encoder embeddings of patents and labels. We
randomly sample five labels, A22C, B41J, E04B,
F15B, and GO3G, from the test set of USPTO-2M.
The embeddings of these labels and the patents
belonging to these labels are generated by the Bi-
Encoder model trained on USPTO-2M, and then
compressed to a 2-dimensional space using the
t-SNE (Van der Maaten and Hinton, 2008) model.
We can see that label embeddings are distributed
closely to the embeddings of the patents of that
type, indicating that the Bi-Encoder can represent
semantically similar patents and labels close in the
vector space, thus being able to retrieve correct
labels for patents.

Patent-patent embeddings. Similarly, Figure
6 shows the GraphSAGE embeddings of patents
from training and test sets. We use the same 5
labels as Figure 5, and for each label, we sampled
patents from both the training and test sets. We
find that patents from both training and testing for
the same label type are distributed closely, indicat-
ing that the GraphSAGE embeddings are able to
well capture patent-patent similarity.
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Figure 4: Absolute performance difference for 600 classes (sorted by frequency from top to bottom)
between two component models for NDCG@5 and the USPTO-2M dataset. The difference between BE,

GS (left) and between CE, BM25 (right).
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Figure 5: Embeddings of 5 labels and their asso-
ciated patents. Each color represents one label
type. The trained Bi-Encoder captures the close
relationship between patents and their associated
labels.
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Figure 6: Embeddlngs of patents from both the
training and test sets, categorized into 5 label
types. Each label type is visually distinguished
by a unique color. The GraphSAGE model demon-
strates its ability to capture the close proximity of
patents belonging to the same label.

6. Conclusion

In this work, we propose a multi-view ranking-
based method for the task of multi-label patent
classification. Our method consists of four ranking-
based models that incorporate different views of
patents and a meta-model that aggregates and re-
ranks the candidate labels given by the four ranking
models. The method is able to capture patent-label
and patent-patent information, scale to large-scale
labels, and adapt to new labels it has not seen be-
fore. Our method achieves a new state-of-the-art
performance on public datasets.

7. Limitation

The datasets we constructed at the subgroup level
only include the most frequently occurring top 1000,
5000, and 10,000 labels, which do not encompass
the entire set of 300,000 labels. We encountered
a lack of open-sourced data to augment all the
patents in the USPTO-2M dataset with subgroup-
level labels. Consequently, to fully evaluate the
scalability of our model, the construction of a com-
prehensive subgroup-level dataset remains a task
for future research.

The patents in both USPTO-2M and CLEF-IP
have the title and abstract as their texts, without
claims. The claim is to protect the inventors’ rights
without detailed technical information; the title, ab-
stract, and claim are generally considered the most
informative sections of a patent (Benzineb and
Guyot, 2011). Similarly, a more comprehensive
description of the labels is necessary. To fully har-
ness the information present in a patent, we intend
to augment the dataset with additional textual infor-
mation. This will further introduce a new challenge
of dealing with long texts for the representation
modules in our method.

Another limitation of PARL is that it is label-
agnostic, which can cause some uncertainty for
the L2R model. This is partially alleviated by hav-
ing four different views, each of which can act as a
tiebreaker. However, to fully alleviate the confusion
problem the aggregated ranking process should
be label-aware. This improvement we also leave
for future research.
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