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Abstract
In Spoken Question Answering (SQA), automatic speech recognition (ASR) outputs are often relayed to language
models for QA. However, constructing such a cascaded framework with large language models (LLMs) in a real-time
SQA setting involves realistic challenges, such as noise in the ASR output, the limited context length of LLMs, and
latency in processing large models. This paper proposes a novel model-agnostic framework, RT-VQ2A2, to address
these challenges. RT-VQ2A2 consists of three steps: codebook preparation, quantized semantic vector extractor, and
dual segment selector. We construct a codebook from clustering, removing outliers on a text corpus derived from ASR
to mitigate the influence of ASR error. Extracting quantized semantic vectors through a pre-built codebook shows
significant speed and performance improvements in relevant context retrieval. Dual segment selector considers
both semantic and lexical aspects to deal with ASR error. The efficacy of RT-VQ2A2 is validated on the widely used
Spoken-SQuAD dataset.
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1. Introduction

Question Answering (QA) (Rajpurkar et al., 2016;
Trischler et al., 2017; Joshi et al., 2017; Chen et al.,
2017) in text modality is called Machine Reading
Comprehension (MRC) (Si et al., 2021). It has been
studied as a fundamental Natural Language Under-
standing (NLU) (Devlin et al., 2019) task to evaluate
how well a machine understands a given context
and query. Therefore, lots of research on QA have
been conducted, and show better performance be-
yond human capabilities in several tasks and en-
vironments (Rajpurkar et al., 2016, 2018; Koivisto
and Grassini, 2023), .

Spoken Question Answering (SQA) (Lee et al.,
2018, 2019; Menevşe et al., 2019) is a more chal-
lenging task as it requires the combination of an
audio signal and natural language comprehension
to provide appropriate answers to given audio doc-
uments and queries. Due to the nature of the SQA
task, many studies have proposed multi-modal
models to improve performance (Lin et al., 2022b;
You et al., 2020; Chenyu et al., 2021). However,
these models require complex design and addi-
tional training to handle multi-modal input. Further-
more, these complicated models are challenging
to use in real-time Automatic Speech Recognition
(ASR) environments due to high computational de-
mands (Kuang et al., 2022).

In addition, errors, which occur while converting
audio signals to text, make the SQA task even more
challenging when using language model for QA. To
address this issue, QA model is trained on poorly
refined and error-prone text inputs (Sidiropoulos
et al., 2022; Ravichander et al., 2021a; Lin et al.,
2022a). (Sidiropoulos et al., 2022) analyzes the im-

pact of speech recognition errors on QA. (Ravichan-
der et al., 2021a) adopts classifying error by type
and eliminating errors through post-hoc processing.
(Lin et al., 2022a) decides to use the audio signal di-
rectly without text result for SQA. These studies are
mainly focused on minimizing ASR errors through
model finetuning and post-processing. However,
our focus is considering the efficiency where error
processing and QA are performed simultaneously
within a limited time for real-time scenarios.

Another approach to solving SQA problems is to
utilize Large Language Models (LLMs), which have
recently rapid growth of attention to their promis-
ing performance (Raffel et al., 2019; Xue et al.,
2021a; Chung et al., 2022; Ouyang et al., 2022).
LLMs have led to significant improvements in per-
formance on various Natural Language Processing
(NLP) tasks, including QA. As a result of significant
advancements in LLM, applying LLM to the audio
transcript has become an attractive option (Chuang
et al., 2019; Martínek et al., 2022; Higuchi et al.,
2022). To this end, a cascade system converts a
given audio document into text modality through the
ASR module, followed by a text QA model through
the LLM (Su and Fung, 2020).

However, serious challenges exist in directly ap-
plying a text QA model to the real-time SQA sce-
nario. First, due to the time complexity of the atten-
tion mechanism and the limitation of GPU memory,
the length of text input processed by the LLM may
be shorter than the length of the audio document
that the user wants to process. Second, the long
processing time of LLM makes it challenging to use
in real-time SQA scenarios, where QA is performed
on the audio document with ASR.
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Figure 1: The overall framework of our proposed RT-VQ2A2.

To address these issues, it is necessary to ex-
tract relevant parts of the audio document to an-
swer the question for a given query, similar to a
search engine. Due to time constraints, search-
ing is mainly done through lexical matching, which
checks the degree of match between words or to-
kens. However, relying solely on lexical matching
to find relevant parts is ineffective due to spelling
or grammar errors in the ASR output. Therefore,
conducting a semantics-reflecting search, called
Dense Passage Retrieval (DPR) (Chen and Ren,
2020; Tang et al., 2022) based approach, is neces-
sary. DPR utilizes the similarity of embeddings of
documents. However, DPR assumes all documents
are stored offline and calculates embeddings for
all documents in advance. This makes DPR chal-
lenging to apply to real-time SQA scenarios where
users request audio documents on the fly. (Kim
et al., 2021) tries to reduce search time through
query generation, but documents still need to be
preprocessed in advance.

This paper proposes a novel framework called
Real-Time Vector Quantized Question Answering
(RT-VQ2A2) that enables fast semantic search
through context quantization. Our research is
model-agnostic and is orthogonal to developments
in generative QA. Existing QA models can employ
RT-VQ2A2 for fast and accurate context retrieval. In
addition our proposed framework RT-VQ2A2 con-
sists of three main steps. The first step is preparing
a codebook in advance to enable real-time seman-
tic vector extraction. In the second step, the code-
book is utilized to obtain quantized semantic vec-

tors for each segment, which is formed by splitting
a document into multiple parts, in real-time. The
final step takes both lexical and semantic aspects
into account and extracts the audio segment most
suitable for a given query.

As mentioned above, errors in ASR results and
time-consuming semantic vector extraction are the
biggest challenges in real-time SQA scenarios. To
address this, we perform clustering on a text cor-
pus consisting of ASR results from multiple audio
documents when creating the codebook. By group-
ing similar topics, we expect that the influence of
ASR error in individual documents would be mit-
igated in a larger text set which is composed of
more data. Additionally, we experimentally discover
that a clustering algorithm (Schubert and Gertz,
2018; Ankerst et al., 1999) that can remove out-
lier itself shows the best performance as evidence
to support this approach. Furthermore, RT-VQ2A2

does not directly extract semantic vectors with an
LM for all possible subsets of the given document.
Instead, our approach returns quantized semantic
vectors for each segment of the document through
a pre-constructed codebook. The process of ex-
tracting quantized semantic vectors using both lex-
ical matching and key-value matching of the code-
book, as employed by RT-VQ2A2, shows a speed
improvement of more than 10 times compared to
directly extracting dense vectors using an LLM. The
efficiency of our proposed method is demonstrated
by the Spoken-SQuAD dataset (Lee et al., 2018),
which is widely used in SQA. In particular, when the
Word Error Rate (WER) is 22, our proposed quan-
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tized semantic vector shows better performance
and speed rather than using dense vectors.

In summary, our main contributions can be sum-
marized as follows:

• We propose a novel framework, RT-VQ2A2,
to address the challenges of applying LLM to
SQA with ASR in real-time scenarios.

• We construct the codebook by clustering on
a text corpus consisting of ASR results from
multiple audio documents. It mitigates the influ-
ence of ASR error and experimentally demon-
strates the importance of clustering to remove
outliers.

• We design the process of extracting the quan-
tized semantic vector using only the tradi-
tional lexical matching with the codebook to
enable real-time semantic vector extraction for
SQA task. It is faster and more efficient than
directly extracting dense vectors by LLM.

• We introduce the dual segment extractor to
get the small portion of an audio document,
which is related to the given query, by consid-
ering both lexical and semantic aspects.

2. Preliminary

2.1. Spoken Question Answering
We represent the SQA dataset as a collection of N
triplets D = {Si, Qi, Ai}Ni=1, where each triplet con-
sists of spoken audio document Si ∈ S, question
Qi ∈ Q, and answer Ai ∈ A. The objective of the
SQA task is to predict the gold answer distribution
A with a given spoken audio document S and ques-
tion Q. A cascade system is built to achieve the
goal by combining an ASR with a text-based QA
model. A cascade system extracts the transcribed
text results Ti for each audio document Si by ASR
and then inputs the text-question pair into the text
QA model to obtain the final answer. This can be
represented as follows:

Ti = fasr(Si),

P (Ai|Ti, Qi) = fqa(Ti, Qi)
(1)

where fasr and fqa refer to the ASR model and the
text QA model, respectively.

2.2. Dense Passage Retrieval
Dense Pass Retrieval (DPR) is designed for the
efficient retrieval of relevant information consider-
ing semantic information. It works by embeddings
of text documents using neural network models,
where similar vectors represent similar semantic

meanings. This allows for more accurate and effi-
cient retrieval of relevant passages or documents
with a given query. It can be denoted as follows:

P = argmax
pi

sim(E(q), E(pi)) (2)

where P denotes the passage recording the highest
similarity among the given passages pi for a given
query q, and E denotes embedding from an LM.

However, DPR assumes that all documents are
stored offline, and embeddings of documents are
calculated in advance. This means that DPR may
not be suitable for situations where new documents
are constantly added, and high-speed calculation
is required, such as real-time ASR.

2.3. Efficient QA
There exist studies aimed at improving the effi-
ciency of Question Answering models, allowing for
faster processing or operation on documents with
longer contexts. DeQA (Cao et al., 2019) proposes
a method for making QA models workable on mo-
bile devices or in the cloud through neural encoding
offloading and memory optimization. However, it fo-
cuses on small LMs, unlike the popular LLMs nowa-
days. The most similar aspects between our paper
and DeQA are the use of a key-value database
when extracting sentence semantic embeddings.
In DeQA, static word embeddings are stored in
a key-value database and the sentence embed-
ding is obtained by averaging the embeddings of
the words for memory optimization. However, in
our real-time SQA scenario, directly extracting se-
mantic vector by exact matching of lexical is im-
possible due to the possibility of words being mis-
spelled by ASR errors. (Choi et al., 2017) aims to
apply the QA model to long documents by select-
ing appropriate sentences using a reinforcement
learning-based Bag-Of-Words(BOW) model. How-
ever, this model-based approach inevitably suffers
from increased latency. Moreover, additional mod-
ules must be trained in comparison to conventional
QA models. In contrast, our proposed method re-
lies on the embeddings of LLMs, which are rapidly
evolving and can be used off-the-shelf. Finally, we
suggest an efficient SQA framework that considers
ASR error, long context, and real-time constraints
despite using LLMs.

3. Model

In this section, we introduce our architecture to uti-
lize LLM with ASR model for real-time question
answering. Figure 1 presents an overview of our
approach, which introduces codebook preparation
(Section 3.1), which is processed in advance, quan-
tized semantic vector (Section 3.2) and dual seg-
ment extractor (Section 3.3) for real-time reaction.
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3.1. Codebook Preparation
As shown in the green (left) block of Figure 1, we
prepare a codebook using a collection of audio
documents we possess in advance. Algorithm 1
presents the process of preparing the codebook as
pseudo-code. First, ASR is performed for all audio
documents to convert them into text. Then, we di-
vide the resulting text into segments of appropriate
size using the sliding window technique, which sat-
isfies the input length limit of the model and enables
fast processing by the language model. For each
segment, a vector embedding reflecting seman-
tic information is extracted by the encoder of LM.
We conduct clustering on the embeddings to group
segments with similar semantic meanings into one
cluster. The average embedding of the segments in
a cluster is used as the value of cluster in the code-
book. The ASR results of all segments that make
up a cluster are concatenated to form the key of the
cluster in the codebook as text modality. The result-
ing codebook consists of key-value pairs, where
each cluster corresponding to one key-value pair.
During real-time question answering, the prepared
codebook is used to obtain the semantic vector that
matches the given segment quickly. The detail is
described in the below Section 3.2.

Algorithm 1 Codebook Preparation
Input: audio set A
Output: codebook C

▷ make codebook with pre-collected audio set
1: text← ASR(A)
2: segments← sliding window(text)
3: embeddings← encoder(segments)
4: clusters← clustering(embeddings)
5: C ← {}
6: for cluster in clusters do

▷ create key-value pair for each cluster
7: key ← []
8: value← []
9: for segment in cluster do

10: key ← key + text of segment
11: value← value+ emb. of segment
12: end for
13: value← average(value)
14: C[key]← value
15: end for
16: return C ▷ return codebook

3.2. Quantized Semantic Vector Extractor
As shown in the orange (middle) block of Figure 1,
this module is designed to enable real-time re-
sponse by quickly obtaining the semantic vector
of each segment that makes up the audio docu-
ment when a user requests audio documents and
question answering. To achieve this purpose, the
offline-prepared codebook is used. As mentioned

above, the codebook consists of key-value pairs,
where the key is the text modality and the value
is a high-dimensional vector embedding modality
that can contain semantic information. In addition,
text modality has the feature of performing retrieval
at high speed through lexical matching. From this
point of view, lexical matching is performed be-
tween the key of the codebook and the ASR result
of each audio document segment to find the most
similar codebook block for each segment. Then,
through key-value matching of the codebook, the
value of the codebook block is considered as the se-
mantic vector of the corresponding segment. The
kind of semantic vectors obtained for each seg-
ment is limited to the number of key-value pairs in
the codebook. Therefore, we call this module the
quantized semantic vector extractor. The formal
representation of the above process is as follows:

K = argmax
Ckey

flex(fasr(s), Ckey),

V = C[K]
(3)

where flex refers the score of lexical matching that
represents relevance of given text, s refers to seg-
ment of audio document, C refers to codebook,
and V means the value of codebook block, which
is treated as a quantized semantic vector of the
corresponding segment.

3.3. Dual Segment Extractor
In the blue (right) block of Figure 1, we select one
segment from multiple segments that make up
an audio document, which has the best matching
score with the query, considering both the lexical
matching score and the semantic matching score.
The semantic vector of the segment used in the
semantic matching process is extracted from the
quantized semantic vector extractor. Also, since
the score ranges of lexical and semantic matching
are different, each score is normalized and passed
through a softmax layer. The final score is calcu-
lated by a linear combination of lexical matching
score and semantic matching score. Finally, we
select the top 1 segment, based on the final score
along with the query, as input of the QA model
to generate the final answer. This process can be
expressed as follows:

Scorelex = Softmax(Norm(flex(fasr(s), q))),

Scoresem = Softmax(Norm(fsem(V,E(q)))
(4)

where q refers the question, and fsem is the score
of semantic matching obtained from the similarity
of semantic vector.

The final score can be denoted as follows:

Scorefin = α ∗ Scorelex + (1− α) ∗ Scoresem (5)
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where α ∈ [0, 1] is a hyper-parameter that controls
the weight between the lexical and semantic match-
ing scores.

4. Experiment

Dataset # Trainset # Devset # Cluster
WER 54 4069 1282 27
WER 44 3581 1770 51
WER 22 4067 1284 1151

Table 1: The statistic of each dataset on Spoken-
SQuAD.

4.1. Dataset
To demonstrate the performance of our proposed
framework, we conduct experiments using the
Spoken-SQuAD dataset Lee et al. (2018). Spoken-
SQuAD is a dataset created by converting the ex-
isting SQuAD QA dataset Rajpurkar et al. (2016)
through text-to-speech and then transcribing it back
into text using ASR. The test set of the Spoken-
SQuAD dataset consists of three versions, each
composed of a different Word Error Rate (WER).
Spoken-SQuAD obtains two different WERs by
adding two different levels of white noise add into
the audio files of testing set. In order to maintain
consistency about WER between the codebook
preparation and inference step, we split the given
test set into a train and dev set. The train set is
used for codebook preparation, while the dev set
is used for performance evaluation. In other words,
our experiment is the same as using three ASR
models with the same speech document but differ-
ent performances.

The criteria for splitting the dataset is set based
on the characteristics of the QA model and the ASR
result. Since the generation-based LM heavily re-
lies on the context of the input document In other
words, the documents, which do not contain the
exact answer words due to ASR error, do not ade-
quately measure the performance. Therefore, we
decide to use those documents, lacking correct an-
swer words, for code preparation. However, in WER
22 version, all answer words existed accurately in
the documents. In this case, to maintain consis-
tency in our experiments, we adjust the number
of train and dev sets used in WER 22 to a similar
level as in WER 54 with specific random seed to
reproducibility. Additionally, the number of clusters
is automatically selected by the algorithm. Table 1
shows the statistics of the datasets used in our ex-
periments. One thing to note is that the number
of clusters varies greatly for each dataset. This is
because we set the different minimum number of

samples which is required to configure the cluster
for each data set. This will be analyzed in Section
6.1 and Section 6.3.

4.2. Backbone Model
FLAN-T5-Large (Chung et al., 2022) is utilized
as the LLM to extract semantic vectors and per-
form question answering. There are several rea-
sons why we use FLAN-T5 1 as our backbone
instead of existing SQA models. First, the sce-
narios that existing SQA models consider are dif-
ferent from the scenario that our model aims to
achieve. Existing SQA models, such as Speech-
BERT (Chuang et al., 2019), use audio signals in
conjunction with ASR results. However, the scope
of this research is focused on QA soley in the text
modality, and concerns scenarios where QA model
is applied cascade manner from the ASR. Second,
widely known SpeechBERT or distilation-based
models (You et al., 2022) are not publicly available,
which would make it difficult to reproduce our re-
sults. Third, although SpeechBERT and FLAN-T5
target different main scenario, FLAN-T5 shows sim-
ilar results (or slightly better results) in all WERs in
the cascade setting. For these reasons, we select
FLAN-T5 as our backbone model.

4.3. Experiment Detail
The experiment is conducted using a single NVIDIA
RTX A6000 GPU. For sliding window, both window
size and stride are set to 256 to slice the document
into multiple windows. To perform QA using FLAN-
T5 without fine-tuning, the prompt is set to “answer
question”, and during the process of extracting se-
mantic vectors, only the text of the given segment
is used as input without any prompt. In DPR, FLAN-
T5 with same settings is utilized to extract dense
semantic vector.

The lexical matcher is set to BM25 (Robertson
and Zaragoza, 2009), which is widely used as
a ranking function in search engines that calcu-
lates the relevance score between a query and
a document based on term frequency, document
length, and inverse document frequency. The se-
mantic matching score is calculated by the cosine
similarity of two given vectors. For clustering, OP-
TICS (Ankerst et al., 1999), an algorithm that is
capable of outlier removal, is used with the default
setting of scikit-learn (Pedregosa et al., 2011), ex-
cept for setting xi to 0.03 and p to 1 to use noise
robust L1 distance. In all processes, the random
seed is set to 10. α, which determines the reflection
ratio of the lexical and semantic scores, is set to 0.7.
The minimum number of samples a cluster must

1https://huggingface.co/google/flan-t5-large
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Extractor
Dataset (WER)

Time (s) ∆ Time (s)54 44 22
F1 EM F1 EM F1 EM

BM25 (lexical) 46.51 36.66 49.29 37.63 52.31 39.95 17.98 -
RT-VQ2A2 (semantic) 35.19 26.60 33.20 24.93 37.27 27.88 18.79 0.81
BM25 + RT-VQ2A2 (dual) 46.60 36.58 49.84 38.19 53.12 40.58 19.38 1.4

DPR (semantic) 40.87 31.83 43.75 33.22 46.89 34.81 40.48 22.50
BM25 + DPR (dual) 47.30 37.05 50.54 38.64 53.08 40.34 40.76 22.78

Oracle Segment (upper bound) 61.56 48.28 62.59 48.36 67.63 52.10 - -

Table 2: The evaluation result of QA on Spoken-SQuAD. Bold indicates the best performance in each
separate environment separated by double line. Underline means the best performance among all methods,
excluding the upper bound performance of the oracle segment.

Module DPR RT-VQ2A2

Window Extractor 0.94 1.37
Semantic Vector Extractor 29.12 6.80
Question Embedding Extractor 27.21 39.11
Semantic Matcher 4.24 0.47
Lexical Matcher 0.77 0.56
Answer Extractor (QA) 37.72 51.69
Total 100 (%) 100 (%)

Table 3: Percentage of time spent on each compo-
nent in the entire pipeline when performing QA for
DPR and RT-VQ2A2.

Extractor Precision@1
WER54 WER44 WER22

BM25 (lexical) 0.630 0.661 0.657
RT-VQ2A2 (semantic) 0.449 0.404 0.439
Ours (dual) 0.631 0.668 0.664

Table 4: Window-level retrieval performance mea-
sured by precision@1 for WER 54, WER 44, and
WER 22.

have is set to 14 for WER 54, 10 for WER 44, and
4 for WER 22.

5. Result

5.1. QA Performance Evaluation

In Table 2, we compare the performance of each
extractor on questing answering task by F1 and
EM (exact matching) metrics, using the Spoken-
SQuAD dataset. Our proposed matching approach,
leveraging both RT-VQ2A2, which utilizes quantized
vectors obtained through a codebook, and BM25 as
a lexical matching method, shows the best perfor-
mance. Additionally, even when only the quantized
semantic vector is utilized, it still produces some
level of performance, indicating that the required in-
formation for QA has been appropriately captured.
Furthermore, we include the results of the DPR
approach, which directly extracts semantic vectors

using LM for all document segments to compare
performance.

Note that, as previously mentioned, the DPR
approach is not practical for scenarios where the
model processes requested audio documents and
queries in real-time. This can be confirmed by the
fact that it takes more than twice as long when using
DPR together than lexical matching only. In con-
trast, our proposed method is more efficient without
GPU support, as it shows little difference in pro-
cessing time from the lexical matching with higher
performance and is more than 10 times faster than
DPR when excluding the time for lexical matching.
In order to compare only the time taken to process
the semantic matcher, we conduct the comparison
based on the difference value obtained by subtract-
ing the time taken to process the lexical matching
method, involving the load of a model or preparing
data, from each methodology. One noteworthy ob-
servation is that, when WER is 22, the proposed
quantized semantic vector outperforms the use of
DPR. This indicates that our proposed method is
very fast, robust to error, and preserves semantic
information well. In addition, as the WER increases,
the performance gain decreases when using our
proposed method. This is because it becomes diffi-
cult to filter out noise and group documents accu-
rately when the WER increases.

5.2. Profiling the Execution Time
Table 3 shows the execution time of each module
in running the SQA system with semantic vectors
generated by DPR and RT-VQ2A2. The QA model
accounts for the highest proportion of the overall
execution time, as it utilizes a deep neural network
that employs both an encoder and a decoder. The
second most time-consuming modules are the se-
mantic vector extractor and question embedding
extractor, which use the encoder of the language
model to extract embeddings with semantic infor-
mation. In this step, we propose RT-VQ2A2, which
utilizes a codebook to obtain a quantized semantic
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Figure 2: The graph showing the performance change of precision@1 on three different WERs, according
to the minimum number of samples a cluster must have, only indicates cases where retrieval performance
increased compared to BM25.

vector and reduces the proportion of time taken
by the semantic vector extractor to a single-digit
percentage of the overall execution time.

5.3. Retrieval Performance Evaluation

In Table 4, we report the window-level retrieval per-
formance of different systems on three SQA dataset
settings in terms of precision@1, measured as the
percentage of top 1 retrieved window that contain
the answer. The retrieval performance of the pro-
posed method, using a quantized semantic vector
with BM25, outperforms all WER settings, showing
the clear advantage of using our, which can better
handle the ASR error. Also, the performance im-
provement shows a similar tendency to that of the
QA results.

6. Analysis

6.1. Relation between WER and Cluster

Figure 2 shows the results of performing three set-
tings on how search performance changes based
on precision according to the change in the mini-
mum number of samples a cluster should have. The
graph only indicates the cases where the perfor-
mance increased compared to using BM25. As the
WER increases , it can be observed that raising the
minimum number of samples is necessary to obtain
better retrieval performance. In other words, this
result aligns with our intuition that clustering, where
a large number of similar samples are grouped,
can mitigate the impact of ASR errors when ex-
tracting semantic vectors. Additionally, the experi-
mental result indicates that the number of clusters
is crucial, as too many clusters cannot effectively
remove ASR errors, while too few clusters can re-
sult in significant information loss. Based on these
results, we utilize different minimum sample sizes
for each WER in our experiments. The variation in
the minimum samples for cluster results in each

WER having a distinct cluster count, as shown in
Table 1.

Clustering # Cluster F1 EM
K-means 32 52.28 39.80
K-means 64 51.95 39.80
K-means 512 51.83 39.49
K-means 1024 51.27 38.79

DBSCAN 971 52.23 39.64
OPTICS 1151 53.12 40.58

Table 5: The ablation study with different cluster
algorithms and the number of cluster. Bold indicates
the best performance for each cluster algorithm
separated by double line. The underline represents
the best performance among all methods when
varying the clustering algorithms and the number
of clusters.

6.2. Clustering Algorithm
To investigate the impact of cluster algorithm for
codebook preparation, we perform an ablation
study on WER 22 dataset. The setting, except for
the clustering algorithm, is the same as in the all
experiment. As we can see from Table 5, when we
change the cluster algorithm to others, the perfor-
mance drops in both the F1 and EM. In particular,
when selecting a method vulnerable to outliers such
as K-means (Sculley, 2010) cluster algorithm, the
performance dramatically decreased. This means
that filtering the text embedding outliers created
by ASR error is necessary. Therefore, cluster al-
gorithms capable of outlier removal, such as DB-
SCAN (Ester et al., 1996) and OPTICS, show better
performance. These clustering algorithms have the
advantage that users do not need to specify the
number of clusters in advance, and do not need
to have prior knowledge about the data being an-
alyzed. However, a limitation of these algorithms
is that when the text corpus used for clustering be-
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comes too large, the number of resulting clusters
can become excessively high.

6.3. The number of Cluster

In Table 5, we conduct the experiments by vary-
ing the number of clusters in the K-means clus-
tering algorithm. The Table 5 represents the top
two cases that achieve similar performance to OP-
TICS with significantly fewer clusters and the bot-
tom two cases with a similar number of clusters to
OPTICS but much worse performance. As men-
tioned in Section 6.2, OPTICS, which can remove
outliers by itself, achieves much better results than
K-means when both algorithms have the same num-
ber of clusters. Another noteworthy finding is that
the performance of K-means clustering improves as
the number of clusters decreases. This is because
even though K-means cannot remove outliers, hav-
ing a large number of samples in each cluster can
reduce the influence of error. Furthermore, this dis-
covery is consistent with the trends observed in
Section 6.1 and Section 6.2.

7. Conclusion

In this work, we build an RT-VQ2A2 framework con-
sisting of three steps: codebook preparation, quan-
tized semantic vector extractor, and dual segment
selector. The proposed RT-VQ2A2 is designed to
perform real-time QA based on LLMs, within the
audio document requested for ASR. In addition,
we first pioneer the study of obtaining quantized
semantic vectors at high speed through cluster-
ing and the pre-prepared codebook, rather than di-
rectly getting semantic vectors calculated through
an LLM. Furthermore, we found that as ASR er-
ror increases, larger clusters consisting of more
samples are needed to reduce the impact of noise.
Moreover, we empirically demonstrate the impor-
tance of dealing with outliers in text corpus envi-
ronments with ASR error. Our proposed model is
validated on the Spoken-SQuAD dataset achiev-
ing higher scores across all environments rather
than lexical matching only. Our framework achieves
comparable QA performance compared to using
authentic semantic vectors directly extracted from
LLMs, with significantly better time efficiency and
lower latency for inference.

8. Limitations

We shed the light on a method for extracting noise-
agnostic semantic vectors for real-time QA on the
text results of ASR. However, there are still some
areas where this experiment can be improved. First,
we conduct the research with the framework where

QA is performed with ASR results on audio docu-
ments. It can be expanded to perform ASR on user
queries as well as audio documents, which allow
for completely audio-based QA. Second, the clus-
tering method used to create the codebook can be
improved by reflecting the intuition of the researcher
about words that ASR does not do well, such as
proper nouns. Finally, we empirically prove that
clustering methods that can automatically exclude
outliers are effective. However, there is a lack of se-
mantic analysis of the information in outliers, such
as what ASR errors mostly correspond to outliers.
Our next research will focus on complementing
these points.
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