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Abstract
Recently, large language models (LLMs) have become increasingly powerful and have become capable of
solving a plethora of tasks through proper instructions in natural language. However, the vast majority of
testing suites assume that the instructions are written in English, the de facto prompting language. Code
intelligence and problem solving still remain a difficult task, even for the most advanced LLMs. Currently, there
are no datasets to measure the generalization power for code-generation models in a language other than
English. In this work, we present RoCode, a competitive programming dataset, consisting of 2,642 problems
written in Romanian, 11k solutions in C, C++ and Python and comprehensive testing suites for each problem.
The purpose of RoCode is to provide a benchmark for evaluating the code intelligence of language models
trained on Romanian / multilingual text as well as a fine-tuning set for pretrained Romanian models. Through
our results and review of related works, we argue for the need to develop code models for languages other than English.

Keywords: code intelligence, language models, dataset, code-switching, Romanian

1. Introduction

Since the development of large language models
(LLMs) (Brown et al., 2020; Hoffmann et al., 2022;
Borgeaud et al., 2022; Chowdhery et al., 2022),
few tasks have been left behind that cannot be rea-
sonably tackled with proper prompting (Guo et al.,
2023). Of particular interest in this area has been
natural language to programming language (NL-PL)
capabilities, in which models generate structured
code with a precise intent (Replit, 2023; Luo et al.,
2023; Rozière et al., 2023). LLMs have been partic-
ularly successful in this area, fueled by the massive
amounts of available code on the internet (Kocetkov
et al., 2022).

”Low-code” platforms, which enable users to de-
velop software requiring less coding knowledge,
require efficient interfacing between human oper-
ators and machine code. One of the most promi-
nent tools in this direction is Github Copilot (Chen
et al., 2021), a large language model trained to
generate code based on natural language com-
ments. In recent years, a wide array of methods
that improve upon the state of the art of code exe-
cution have been proposed (Scholak et al., 2021;
Christopoulou et al., 2022; Ni et al., 2023; Zhou
et al., 2023), including prompt manipulation meth-
ods such as chain-of-thought (Wei et al., 2022)
or similar approaches (Zhou et al., 2023) which
appear to elicit reasoning capabilities. The most
powerful commercial language model, GPT-4 (Ope-

nAI, 2023), achieves great performance in a wide
array of tasks, but its performance is still lacking in
programming puzzles. While there is no informa-
tion about the pretraining dataset composition, nor
the composition of benchmarks, GPT-4’s results
on a benchmark dubbed “Leetcode” appears to be
the worst performing, especially the hard subset,
correctly solving only 3 out of the 45 problems. It
is unclear how much the performance of GPT-4 on
programming problems is due to a high degree of
generalization, or due to data leakage from other
websites such as LeetCode1. There are several
existing datasets for semantic code search and
competitive programming (Li et al., 2022; Chen
et al., 2021; Husain et al., 2019; Iyer et al., 2018;
Zavershynskyi et al., 2018; Kulal et al., 2019), but al-
most all of them have problem statements and com-
ments written in English. Furthermore, out of the
currently available open-sourced large language
models (e.g., LLaMa (Touvron et al., 2023; Rozière
et al., 2023)), the vastly predominant pretraining
language is English.

By design, low-code systems promise the de-
mocratization of programming. In itself, coding
is independent of the native language of the pro-
grammer. However, most NL-powered low-code
platforms have a tacit requirement that the user is
fluent in English.

Even through tremendous progress, multilingual

1https://leetcode.com/

https://leetcode.com/
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CONCODE NAPS SPoC APPS RoCode (ours)
Programming Language Java UAST C++ Python C / C++ / Python
Test Cases 7 3 3 3 3
Number of Programs 104,000 17,477 18,356 232,421 11,250
Lines per Program (Avg.) 26.3 21.7 14.7 18.0 118.65
Number of Exercices 104,000 2,231 677 10,000 2,642
Text Input Docstrings Pseudocode Pseudocode Problem Descriptions Problem Descriptions

Table 1: Comparison with other existing NL-PL datasets. While RoCode has a comparable number
of problems and solutions, its problem descriptions are formulated in native Romanian. Furthermore,
solutions are written by Romanian students and can exhibit “code-code-switching”.

systems (Wang et al., 2020; Scao et al., 2022) lag
behind specialized models, especially in languages
with fewer training resources available (Scao et al.,
2022). For instance, RoBERT (Dumitrescu et al.,
2020), the Romanian version of the popular BERT
(Devlin et al., 2019) outperforms multilingual coun-
terparts on Romanian tasks. Moreover, translation
is imperfect due to the lexical gap between lan-
guages which makes some concepts to be difficult
to translate directly and can induce a loss of mean-
ing that might be crucial in certain high-stakes sce-
narios. The current state of the art for translating
Romanian to English (Bhosale et al., 2020) has a
reported 40.3 BLEU score, which is considered ”un-
derstandable to good translation”, leaving a lot to
be desired in meaning-rich contexts such as code
generation. Other methods such as NLLB (Team
et al., 2022) provide higher quality translations, but
are not open-source.

Moreover, code from non-English speaking coun-
tries often exhibits code-code-switching: program-
ming syntax keywords are written in English, while
comments and domain-specific attributes (i.e. vari-
ables, class names) are written in the native lan-
guage. This phenomenon is, in fact, considered a
best practice and falls in line with the idea of ”ubiq-
uitous language” (Evans, 2004): domain experts
and developers need to share a single, common
vocabulary such that the meaning is exact and not
lost in translation.

Efforts to bring the power of natural language-
powered systems to other languages apart from
English are limited. For Romanian, only the
RoGPT-2 (Niculescu et al., 2021), GPTNeo-Ro(Du-
mitrescu, 2022), and RoBERT (Dumitrescu et al.,
2020) counterparts are available. These models
achieved good performance on LiRo (Dumitrescu
et al., 2021), the current Romanian benchmark-
ing suite, compared to other similar multilingual
models. However, there is no benchmark for evalu-
ating code generation models for Romanian. Fur-
thermore, small scale models (< 1B parameters)
fare poorly on coding challenges (Hendrycks et al.,
2021). Nevertheless, a feasible alternative is the
construction of code understanding / code retrieval
models adapted for Romanian, such as CodeBERT
(Feng et al., 2020).

In this work, we propose RoCode, the first com-
petitive programming dataset for measuring code
intelligence for NL-PL models. RoCode consists
of 2,642 problems written in Romanian under 3
difficulty levels, multiple associated solutions writ-
ten in C / C++ and Python, alongside a set of
test cases to evaluate the correctness and algo-
rithmic complexity. RoCode attempts to bridge the
gap between Romanian natural language and com-
puter code. RoCode is the first dataset of com-
petitive coding problems in a language different
from English. Problems, solutions and test cases
are made available through a collaboration with
infoarena.ro, the most popular Romanian com-
petitive programming platform. While problems and
solutions are publicly available to be crawled, the
test cases for each problem are not. We provide a
filtered, curated and structured dataset, containing
test cases for each problem, as well as an open-
source environment to test generated solutions.

Compared to other existing datasets for competi-
tive programming, such as APPS (Hendrycks et al.,
2021), RoCode is similar in size and scope, while
having its own particularities geared towards Roma-
nian. RoCode has problem definitions written in Ro-
manian, and solutions exhibit code-code-switching,
creating a challenging set for fine-tuning monolin-
gual models. In Table 1 we provide a comparison
with other similar datasets (Iyer et al., 2018; Zaver-
shynskyi et al., 2018; Kulal et al., 2019). Through
RoCode, we aim to facilitate the development of
NL-PL models in native Romanian, outperforming
current multilingual models. RoCode aims to be a
benchmark in neural code generation from Roma-
nian prompts as well as a fine-tuning dataset for
larger models.

This work makes the following contributions:
1. We propose RoCode, the first dataset for mea-

suring code intelligence from problem defini-
tions written in Romanian. We provide 2,642
problems under 3 difficulty levels, solutions in
C / C++ and Python, and test cases for each
problem. We release the dataset on hugging-
face for public use2.

2huggingface.co/datasets/cosmadrian/
rocode

infoarena.ro
huggingface.co/datasets/cosmadrian/rocode
huggingface.co/datasets/cosmadrian/rocode
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2. We provide the first results on NL-PL code in-
telligence performance on small open-source
models on a language different than English.
We tested all the available Romanian language
models (RoGPT-2 (Niculescu et al., 2021) and
GPT-Neo-Ro (Dumitrescu, 2022)) and a set
of open-source English models (Replit, 2023;
Geng and Liu, 2023; Luo et al., 2023; Touvron
et al., 2023). Unsurprisingly, none of the tested
models are able to obtain a reasonable perfor-
mance, proving that RoCode is a challenging
dataset. We make our code publicly available
on github3.

3. At the same time, this work is also a position pa-
per. Through our results and extensive review
of related works, we argue for the development
of multi-lingual and monolingual non-English
code intelligence models and provide potential
future research directions.

2. Related Work

2.1. Large Language Models for Code
Following the success of ChatGPT models to gen-
erate and understand code, multiple other very re-
cent open-source alternatives have been proposed
(Scao et al., 2022; Rozière et al., 2023; Fried et al.,
2023; Luo et al., 2023; Li et al., 2023) that make use
of publicly available data (e.g., The Stack dataset
(Kocetkov et al., 2022)), as well as synthetically
generated data (Wang et al., 2023). For instance,
StarCoder (Li et al., 2023) was trained on publicly
available data and obtained impressive results on
code benchmarks, surpassing in some cases, pro-
prietary models. WizardCoder (Luo et al., 2023) is
a subsequent improvement through instruction fine-
tuning of StarCoder with the Evol-Instruct method.

Notably, CodeLlama (Rozière et al., 2023), a
LLaMa-derived (Touvron et al., 2023) model, has
received increased attention due to its high qual-
ity, multiple model sizes and its permissive open-
source language. CodeLLaMa is trained on 500B
tokens of publicly available code. Several special-
ized variants are released, including a model tuned
specifically for Python and an instruction-following
model. The model is trained using infilling (Bavar-
ian et al., 2022) (similar to InCoder (Fried et al.,
2023)) and automatically generated instructions
from a larger model using the self-instruct method
(Wang et al., 2023).

However, almost all open-sourced LLMs are pri-
marily geared towards English (only BLOOM-176B
(Scao et al., 2022) is multilingual), and all of the
code-focused LLMs are exclusively fine-tuned on

3github.com/cosmaadrian/rocode

code having comments and documentation written
in English (Gao et al., 2021; Kocetkov et al., 2022).

2.2. Code Datasets
Large publicly available training datasets for code
intelligence have made heavy use of codebases
hosted on GitHub with permissive licenses (Gao
et al., 2021; Kocetkov et al., 2022; Husain et al.,
2019). More notably, the Pile (Gao et al., 2021)
is an open 800GB dataset of text having a consid-
erable fraction comprised of code in various lan-
guages. Similarly, the Stack (Kocetkov et al., 2022)
is a 3TB dataset of code from 30 programming lan-
guages, used to train StarCoder (Li et al., 2023).
Some works such as Codex (Chen et al., 2021) use
GitHub to compile a dataset, but do not disclose
the repository details or licensing.

For benchmarking problem solving capabilities
of LLMs, one predominant dataset used across
approaches is APPS (Hendrycks et al., 2021), a
dataset of leetcode-style problems organised into
difficulty ranges. The APPS dataset withstood the
test of time and has proven to be a hard bench-
mark even for the most sophisticated models. Other
benchmarking datasets have been proposed in the
past (Iyer et al., 2018; Zavershynskyi et al., 2018;
Kulal et al., 2019), but they are geared towards
code generation from some text input (docstrings
or pseudocode) rather than solving a specific pro-
gramming problem.

3. RoCode: Romanian Competitive
Programming

For the data collection, we collaborated with In-
foArena4, one of the most popular Romanian com-
petitive programming websites. The platform hosts
a total of 3,072 coding problems, with difficulty
ranging from simple to high school International
Olympiad level. The problems have a problem de-
scription written in Romanian, alongside descrip-
tions of input and output requirements and several
easy test cases for users to evaluate the solution.
Users can submit solutions written in C / C++, which
are automatically evaluated in a sandbox environ-
ment. Solutions are stored alongside the number
of passed test cases. Test cases evaluate both
the logical correctness of the solutions and their
algorithmic complexity (i.e., sub-optimal solutions
are given a lower score).

3.1. Problem Statements
InfoArena is a “wiki”, in which volunteers can submit
problems and discuss about solutions. The website
is primarily addressed to Romanian students, and

4infoarena.ro

github.com/cosmaadrian/rocode
infoarena.ro
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all problem statements are written in native Roma-
nian. Problems usually follow a common format,
containing an initial preamble, providing context,
followed by the requirements and input/output data
specification. Most problems also have concrete
examples for the input and output data for a cor-
rect solution. However, not all hosted problems are
valid. Out of the 3,072 problems, we filtered out
problems that have no submitted solutions, contain
no examples, or do not follow the suggested prob-
lem template. After filtering, we obtain a total of
2,642 problem statements. Originally, each prob-
lem statement was written using markdown. We
cleaned any markdown formatting and left only the
problem text in the same format for all problems.
Figure 1 showcases the common problem format
in RoCode. In all problems, input data is given in a
file and programs must output the correct solution
in an output file. This is different from, for instance,
APPS (Hendrycks et al., 2021), in which input and
output are served from standard input / output.

3.2. Solutions
Each problem contains an average of 260.92 so-
lutions, with easier problems such as “greatest
common divisor” containing the most submissions,
while Olympiad-level problems contain just a few
solutions. Originally, solutions were written in C /
C++ or Pascal. We kept only C / C++ solutions,
removed redundant comments and formatted ev-
ery solution to a common code style using a public
tool5. We provide all 653, 094 solutions, and also
a curated set of 11k solutions, which correspond
to the top-3 highest-scoring, shortest solutions for
each problem. Moreover, for the same author, we
filtered similar solutions that obtained the same
score for a source problem using the standard Lev-
enshtein distance.

Other datasets (Hendrycks et al., 2021; Chen
et al., 2021) and code-generation models (Husain
et al., 2019; Chen et al., 2021) are less focused on
low-level C / C++, but more on high-level languages
such as PHP, JavaScript and Python. Since Python
has gained massive popularity in recent years, and
is considered the de facto standard high-level pro-
gramming language for machine learning, we also
provide transpiled solutions in Python, using the
OpenAI API. We used the “gpt-3.5-turbo” model
variant, which is a language model based on In-
structGPT (Ouyang et al., 2022). We used the
following prompt to transpile solutions: “Translate
the following C / C++ code to Python. Output only
code, without any explanation or comments. Omit
type hinting in the Python code: {code}”. Transpiled
solutions are automatically checked for correctness.

5https://github.com/dawnbeen/c_
formatter_42

Code-Code-Switching in Solutions
int main(void)
{

// a.k.a. "read"
citire();
nr = 0;
// a.k.a "number of steps"
max = nr_pasi(max);
radx(max, w, n);

// a.k.a. "solve"
rezolvare();

// a.k.a. "print"
printare();
return 0;

}

Table 2: Example of a snippet from a C / C++ so-
lution that exhibits code-code-switching: function
names / variables are written in Romanian, whereas
language keywords are written in English. Com-
ments added by the paper authors.

Table 3 showcases an example of a solution au-
tomatically transpiled into Python. The transpiled
solution is more concise and preserves functionality.

Different from other English-oriented datasets,
RoCode contains code that exhibits code-code-
switching: some function and variable names are
written in Romanian, while others (e.g. language-
specific keywords) are written in English. Table 2
showcases a real snippet found in RoCode that
has all function names written in Romanian, or ab-
breviated forms of Romanian words6. For instance,
some problem solvers write “rezolva()” instead of
“solve()”, “afisare()” instead of “print()”. This as-
pect provides additional complexity for adapting
pretrained models to RoCode solutions. In Figure
2, we show the proportion of variable names and
function names that contain Romanian words. We
parsed the abstract syntax tree using ClangCheck
LLVM (Lattner and Adve, 2004) and uniformized all
declarations to snake_case format, since program-
mers use both camelCase, snake_case or Pascal-
Case. If any of the strings separated by underscore
is found to be Romanian, we count that name as
a Romanian variable / function. We used the Ro-
manian WordNet (RoWordNet) (Dumitrescu et al.,
2018) to check if a word belongs to the Romanian
language. We obtained that around 9% of function
names and around 14% of variable names have ex-
plicit Romanian words. This approach counts only
properly written words with only a subset of declen-
sions, and omits abbreviations, which makes the
actual counts higher than shown here. Examples
of composite function names are: ”acopera_tot()”
(cover_everything()), ”descompunereNumar()” (de-

6“nr” is the abbreviation for “număr”, equivalent to
“no.” for “number” in English

https://github.com/dawnbeen/c_formatter_42
https://github.com/dawnbeen/c_formatter_42
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Figure 1: Example Romanian problem statement from RoCode. Problems specify a story-like description
followed by input and output data specifications and restrictions. Finally, an example of an output from a
correct solution is provided. We also show the English translation for non-Romanian readers.

Original C / C++ Solution Transpiled into Python
#include <bits/stdc++.h>
#define all(cont) cont.begin(), cont.end()
#define pb push_back
using namespace std;
ifstream f("benzina.in");
ofstream g("benzina.out");
int main(void)
{

int n; long long ans = 0;
f >> n; n *= 2;
vector<int> a(n);
priority_queue<int> heap;
for (int i = 0; i < n; ++i)

f >> a[i];
for (int i = 0; i < n; ++i)
{ int cost; f >> cost; ans += cost; a[i] -= cost; }
for (int i = 0; i < n; ++i)
{

heap.push(a[i]);
if (i % 2 == 0)
{ ans += heap.top(); heap.pop(); }

}
g << ans << '\n';
f.close(); g.close();

}

import heapq
with open('benzina.in') as f, open('benzina.out', 'w') as g:

n = int(f.readline().strip())
n *= 2
a = [int(x) for x in f.readline().split()]
ans = 0
for i in range(n):

cost = int(f.readline())
ans += cost
a[i] -= cost

heap = []
for x in a:

heapq.heappush(heap, x)
if len(heap) % 2 == 1:

continue
ans += heapq.heappop(heap)

g.write(str(ans) + '\n')

Table 3: Example of transpiled solution into Python, using “gpt-3.5-turbo”. The Python code preserves
functionality, while being comparatively smaller. For the C / C++ version, we formatted the code to be
more concise for display purposes.

composeNumber()), ”RezolvareDistantaMinima-
Coborare()” (SolveMinimalDistanceDown()). Exam-
ples of composite variable names are: ”AdaugaVal-
oare” (AddValue), ”viziteazaTraseu” (visitRoute),
deja_castigat (already_won).

3.3. Test Cases

Each solution is accompanied by a series of tests
which are used to measure the correctness and
computational complexity of the provided solution.
The tests consist of an input file containing input
data and an output file containing the desired out-
put. There are a total of 35, 758 tests, and each
problem has an average of 13 tests, while some
problems have upwards of 100 tests. Since some
tests are upwards of 100MB, we provide the small-
est 5 tests for each problem, as well as an en-
vironment that automatically scores the provided
generated solution. Similar to other works, prob-

lems are graded using accuracy, strict accuracy
and ”pass@k” metric (Chen et al., 2021).

3.4. Estimating Problem Difficulty

Following similar code datasets (Hendrycks et al.,
2021; Chen et al., 2021) which provide different
difficulty splits, we compute a difficulty score for
each problem. For each problem, we computed
the average score for the submitted user solutions,
divided by the number of unique users. Since the
publication date for problems ranges from the year
2006 up to 2022, we divided this score by the re-
cency. We subsequently split RoCode into ”easy”,
”medium” and ”hard” problems, by splitting the dif-
ficulty distribution into tertiles. Consequently, we
obtain a total of 790, 922 and 934 easy, medium
and hard problems, respectively. Figure 3 show-
cases the distribution of problem difficulties across
RoCode. Furthermore, Figure 4 showcases the
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Figure 2: Percentage of Romanian variable names
and function names that contain explicit Romanian
words in submitted human C / C++ solutions. Ab-
breviations are omitted, making the actual propor-
tion larger than shown here.

correlation between problem lengths and average
solution lengths for each difficulty label - we found
no significant correlation between lengths of prob-
lems and solutions, but consistently harder prob-
lems require longer solutions. Regarding code-
code-switching, perhaps surprisingly, we found the
same distribution of Romanian variable names and
function names across difficulty labels.

Figure 3: Distribution of problem difficulties in
RoCode. Problem difficulty is estimated automat-
ically based on the number of correct solutions,
unique users, and the date of the problem.

3.5. Dataset Splits

We split the dataset into training, validation and test
subsets, to enable researchers to fine-tune code
generation models and to also provide a common
testing split to compare approaches. The training,
validation and test splits contain 2112, 264 and 266
problems, respectively. We sampled problems uni-
formly across problem difficulty for each data split.

Figure 4: Correlation between problem statement
length and solution lengths across problem diffi-
culties. Harder problems require longer solutions,
and problem statement length is not correlated with
solution length.

4. Results

4.1. Experimental Setup
For benchmarking existing language models on
RoCode, we follow the evaluation procedure pro-
posed by Hendrycks et al. (2021). We used the
following prompt7 for all models:
Se dă urmatoarea problemă de
programare:
<PROBLEM STATEMENT>
<INPUT / OUTPUT SPEFICIATIONS>
<EXAMPLES>
Codul în Python3 care rezolvă
problema, fără comentarii sau
explicații, este:

In our experiments, we generated 10 solutions
per problem. We computed accuracy, strict accu-
racy and pass@k (Chen et al., 2021) metrics. For
accuracy, we counted the average maximum num-
ber of tests passed per problem. For strict accuracy,
we counted the average number of times a prob-
lem has passed all tests. Additionally, we used the
”pass@k” metric for evaluation. We generate 10
samples per problem and count the number of cor-
rect samples c. In particular, due to computational
constraints, we chose k ∈ {1, 10}. The metric is
defined as:

pass@k := E

[
1−

(
n−c
k

)(
n
k

) ]
(1)

All models in this work were executed with a tem-
perature of 0.2 and top-p sampling of 0.90. We

7English Translation: ”The following programming
problem is given. The code in Python3 that solves the
problem, without comments or explanations, is:”
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used a timeout of 4 seconds for solution run time.
Models are run on a machine with 2x NVIDIA RTX
3060 with 12GB of VRAM each. Bigger models that
did not fit a single GPU were parallelized across the
two GPUs. All models’ performance is measured
in zero-shot settings (no fine-tuning, no additional
examples or solution peaking (Hendrycks et al.,
2021)). We used publicly available models from
HuggingFace in all instances. In case the gener-
ated solution does not write to a file (as required by
the problem statement), and instead expects the
input and output to be managed through standard
input and output, we obliged and provided the test
data accordingly.

4.2. Benchmarking Romanian Language
Models

We evaluated existing Romanian language models:
Ro-GPT2 (Niculescu et al., 2021) in three model
sizes (124M, 354M and 774M parameters) and
GPT-Neo-Ro (Dumitrescu, 2022). Unsurprisingly,
None of the currently available Romanian language
models are able to understand the problem defi-
nition or to produce code, and all generated code
could not be compiled. Performance in terms of
accuracy, strict accuracy, pass@1 and pass@10
is exactly 0 for all metrics. This performance can
be partially explained by model size, as similar
English-based models (e.g. GPT-Neo (Gao et al.,
2021)) also have below 3% pass rate on easy En-
glish problems (Hendrycks et al., 2021), but have a
comparatively larger pretraining dataset. We point
out that RoGPT-2’s corpus (for example) contains
around 3,400M tokens, but contains little to no
code tokens, which explains the poor performance.
We provide a more detailed discussion below.

4.3. Benchmarking English Models

In Table 4, we showcased results for 4 open-source
models with a relatively small number of parame-
ters (maximum 7B). We chose a selection of small
and efficient models due to computational limita-
tions. We leave more extensive evaluations, as well
as different fine-tuning schemes (Hu et al., 2021),
as future work. Similar to the Romanian models,
all models’ performance is measured in zero-shot
settings. We evaluated replit-code-v1-3b (Replit,
2023), a small but capable model trained on the
Stack 3T (Kocetkov et al., 2022), that outperforms
bigger models on code intelligence tasks. Further-
more, we also evaluated LLaMA-7b (Touvron et al.,
2023) and OpenLLaMA-7b (Geng and Liu, 2023),
which are trained on 1T and 300B tokens, respec-
tively, of both English and code. Finally, we evalu-
ated WizardCoder-Python-7b (Luo et al., 2023), an
instruction fine-tuned variant of LLaMA-7b, through

automatically generated instructions, which show-
cases very good performance on code intelligence
tasks, surpassing in some cases commercial mod-
els. English models we included in our study are
pretrained on some Romanian data – for example,
for LLaMA-2 (Touvron et al., 2023), the pretraining
dataset contains 0.03% Romanian tokens out of
a total of 2T tokens (∼ 600M Romanian tokens)
– a very small proportion of the pretraining data,
smaller than, for instance RoGPT-2s’s corpus, but
not a small number of Romanian words in absolute
terms. It is assumed that performance is improved
by the model’s ability to exploit cross-lingual com-
monalities. Evidently, the English-oriented models
have poor performance, only solving a handful of
easy problems. It is clear that more recent, larger
models with code in the training set output plausi-
ble code solutions, which most of the time compile
properly: on average, around 18% of solutions re-
sult in compilation errors across models. In Table 5,
we showcased selected model outputs for 2 Roma-
nian models and 2 English-oriented models. We
further provide some insights to the unsatisfactory
performance of existing models.

Model # Params Acc. % Strict Acc. % pass@1 pass@10
llama-2-7b 7B 0.55 0.0 0.02 0.98
open-llama-2-7b 7B 1.50 0.0 0.05 2.37
replit-code-v1-3b 3B 1.81 0.39 0.1 7.74
wizard-coder-7b 7B 3.86 0.79 0.27 3.83

Table 4: Performance on RoCode for open-sourced
English-oriented code models. While performance
is different then zero, current models struggle to
solve the problems expressed in Romanian.

4.4. Discussion
There are several reasons for the bad performance
of Romanian models, which also provide future
research directions for specialized monolingual and
general-purpose models on languages other than
English:

No code data present in the pre-training
dataset. Romanian models have been trained on
datasets derived from OSCAR corpus (Ortiz Suárez
et al., 2019), Wikipedia and books, and do not
have dedicated code splits annotated with Roma-
nian text. Even if code is present in the dataset
(from Common Crawl), it is described in English
and comments and documentation are in English.
The same argument can be made for mathematics
and other scientific disciplines. A large, highly cu-
rated and dedicated Romanian dataset containing
scientific data, mathematics and coding splits is
needed.

Current Romanian models are small and pre-
training dataset is too noisy. Small language
models are prone to hallucinations and cannot fol-
low instructions reliably without a high-quality cu-
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RoGPT2-large
(Niculescu
et al., 2021)

GPT-Neo-Ro
(Dumitrescu,
2022)

replit-code-v1-3b
(Replit, 2023)

Open-LLaMa-7b (Geng
and Liu, 2023)

”Votul este acordat(x) din

X/C(n).Se presupune ca

ambii(X,n) este numărul de

X% pentru care Tony are

dreptul%(y,j,k,o) voturi de

votat.JPGPunctul (y) xq voturi

din 1/3.pdfqq.Este numarulq

voturile Xq pe votul fanilor

ingustequale.��Poses(q) Q(sq(t)

voturile de votati inqual pentru

votul lui.qualitatiunilor pentru al

X(z(Z(k)z-ului).pdfPseud.p(m).

……”

”Python 3 Rezolvă această prob-

lemă, nu sunt necesare nici un

fel de comentarii. Doar faceți

click pe această pagină, și veri-

ficați codul. Există și o variantă

pentru limba română: Pyyp4. În

ea se scrie următorul cod: -y

Un exemplu clasic este prezen-

tat în continuare. O mașină

de măsurat cu trei axe dispune

de un sistem de operare care

rulează într-o bază de date, nu-

mit ”TANNO”, în care pot ex-

ista fișiere cu datele măsurate

de cele trei modele ale mașinii

……”

n = int(input())
candidates = list(map(

str, input().split())
)
candidates.sort()
votes = list(map(

int,
input().split())

)
votes.sort()
Q = int(input())
for q in range(Q):

L, R = map(int, input().split())
print(votes.count(L) +\

votes.count(R))

#include <stdio.h>
#include <stdlib.h>
#define MAX_N 1000000
#define MAX_S 1000000
int main()
{

int n, q;
scanf("%d %d", &n, &q);
char *votes[MAX_N];
for (int i = 0; i < n; i++){

votes[i] = (char *)malloc(MAX_S);
scanf("%s", votes[i]);}

int ans = 0;
for (int i = 0; i < q; i++)
{

int l, r;
scanf("%d %d", &l, &r);
int cnt = 0;
for (int j = l; j <= r; j++)

if (votes[j][0] == 'C')
cnt++;

if (cnt < r - l + 1){
for (int j = l; j <= r; j++)

if (votes[j][0] == 'C')
votes[j][0] = 'T';

ans++;}
}
printf("%d\n", ans);
return 0;

}

Table 5: Selected outputs of open-source language models for an easy problem from RoCode. Romanian
models are not able to output code, and instead hallucinate text vaguely similar to the problem description.
We truncated the output for display purposes, as the quality degrades severely. The replit-code-v1-3b
model outputs plausible Python3 code, but it does not correctly address the problem. Open-LLaMa-7b
outputs C / C++ code instead of the required Python.

rated dataset. Recently, models such as Mistral-7b
(Jiang et al., 2023) have shown that a relatively
small model (< 7B parameters) can obtain compa-
rable performance to much larger models by train-
ing for longer on a highly curated dataset. In the
work by Eldan and Li (2023), the authors show that
a small language model can still produce coherent
text while only being trained on a small, easy to
understand and curated dataset, raising questions
whether model scale is the principal factor in model
performance. Furthermore, the use of augmenta-
tion through retrieval (similar to RETRO (Borgeaud
et al., 2022)) has been shown to increase model
performance without increasing its size - such tech-
niques have not been explored in monolingual mod-
els, for instance, retrieving tokens from translated
English text during training.

There is no post-training refinement for code.
Post-training techniques such as instruction-tuning
(Mishra et al., 2022) is a proven method for better
performance and controllability of LLM output by
following natural language instructions. A Roma-
nian dataset of instructions has not yet been com-
piled outside of automatically translated versions
(Dac Lai et al., 2023).

These negative results have not been addressed
so far in the literature, and our hope is that it in-
spires future directions in training general-purpose
Romanian or otherwise low-resourced language
models. Further, we discuss the performance of
English-oriented models.

The pre-training set for English-oriented mod-
els might have data leakage from RoCode. It is
surprising that English-oriented models can some-
what follow the Romanian text description, essen-
tially performing translation from Romanian text
to Python code with symbols in English. How-
ever, it is unclear if correct model outputs can be
attributed to proper text understanding or if it is
a form of data leakage from larger corpora. By
manually investigating the problems with high pass
rate, the problems with the most tests passed are
easy problems describing, for example, the edit
distance, computing graph diameter (maximal dis-
tance between leafs), and detecting repeating sub-
sequences. These are classic programming prob-
lems, and it is very likely that they appeared in
other contexts in the pre-training sets, for instance
in some parts of Common Crawl (Kúdela et al.,
2017), since the problem definitions are publicly
available and are likely discussed on other web-
sites. Moreover, as shown in Table 5 the output
from open-llama-7b is in C / C++ even though the
prompt explicitly mentioned Python3. This is a fur-
ther indication of data leakage.

English models exhibit even more code-code-
switching compared to human solutions. Fur-
thermore, code generated from the language mod-
els exhibits even more code-code-switching when
generating Python code (see Figure 5). The mod-
els we tested tend to use many more Romanian
variable names and slightly more Romanian func-
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tions compared to the human-submitted solutions
(see Figure 2): we found around 35% of variable
names and 12% of function names contain explicit
Romanian words in the generated Python solutions.
The larger amount of code-code-switching is pre-
sumably an artifact of the next token prediction
objective, and the models usually follow the termi-
nology present in the problem text and in the output
examples. This leads the model to adopt a similar
style of Romanian variable naming in further code
blocks.

Translating the problem definitions in En-
glish worsened results. Evaluating a replit-v1-3b
(Replit, 2023) on translated problem definitions re-
sulted in 1.26% accuracy, down from 1.81% using
original Romanian descriptions. This is due both
to imprecise translation and obfuscating exact for-
mulations that might be present in the pretraining
set. Translation is not a long-term solution to mul-
tilingual code intelligence models and it does not
substitute proper language and code understand-
ing of specialized monolingual models.

Figure 5: Percentage of Romanian variable and
function names that contain explicit Romanian
words in model-generated Python solutions. Gen-
erated solutions tend to have more explicit Roma-
nian names.

5. Conclusions

In this work, we presented RoCode, a benchmark-
ing dataset for code intelligence systems that mea-
sures the understanding of problem definitions in
Romanian to provide algorithms that correctly solve
the problems. Competitive programming bench-
marks (Hendrycks et al., 2021) are still a challeng-
ing task, even for current state-of-the-art commer-
cial models. However, all training sets containing
code and benchmarks are implicitly geared towards
English, with documentation, comments and prob-
lem definitions written solely in English. RoCode
fills the gap in the benchmarking suite for Roma-
nian NLP systems such as LiRo (Dumitrescu et al.,
2021), which do not have any tasks for code gen-
eration for Romanian. Our dataset is challenging:

several Romanian and English-oriented language
models that we tested have poor performance, man-
aging to correctly solve only a handful of problems
from the test set. This work paves the way for fur-
ther research of large language models for code
intelligence in non-English languages and is a pre-
liminary step in the democratization of program-
ming for non-English speakers.
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