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Abstract

In this paper, we introduce a new far-field speaker recognition benchmark called RoboVox. RoboVox is a French

corpus recorded by a mobile robot. The files are recorded from different distances under severe acoustical

conditions with the presence of several types of noise and reverberation. In addition to noise and reverberation,

the robot’s internal noise acts as an extra additive noise. RoboVox can be used for both single-channel and

multi-channel speaker recognition. In the evaluation protocols, we are considering both cases. The obtained results

demonstrate a significant decline in performance in far-filed speaker recognition and urge the community to further

research in this domain.
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1. Introduction

A speaker recognition system authenticates the

identity of claimed users from a speech utter-

ance (Mak and Chien, 2020). For a given speech

segment called enrollment and a speech seg-

ment from a claimed user, the speaker recogni-

tion system will determine automatically whether

both segments belong to the same speaker or not.

The state-of-the-art speaker recognition systems

mainly use Deep Neural Networks (DNN) to ex-

tract fixed-length speaker discriminant represen-

tations called speaker embeddings. The notable

speaker embedding extractors that are used in the

literature are TDNN (Snyder et al., 2018), ResNet

(He et al., 2016), ECAPA-TDNN (Desplanques

et al., 2020) and MFA-Conformer (Zhang et al.,

2022).

The DNN-based speaker verification systems per-

form well in general, but there are some chal-

lenges that reduce their performance dramatically.

Far-field speaker recognition is among the well-

known challenges facing speaker recognition sys-

tems (Zheng et al., 2022). The far-field challenge

is intertwined with other variabilities such as noise

and reverberation leading to attenuated and dis-

torted signal (Taherian et al., 2019).

Having well-designed benchmarks for challenging

situations could reveal the weaknesses of speaker

recognition systems and foster the research to ad-

dress them. In this paper, we introduce a new

single/multi-channel far-field speaker recognition

benchmark called RoboVox. The Robovox bench-

mark is concerned with doing far-field speaker ver-

ification from speech signals recorded by a mobile

robot at variable distances in the presence of noise

and reverberation.

Although there are some benchmarks in this do-

main such as VoiCes (Richey et al., 2018) and

FFSVC (Zheng et al., 2022), they have some

deficiencies that our benchmark aims to ad-

dress. A main drawback of the VoiCes is that it

was recorded from replayed signals whereas our

dataset is recorded with people speaking in real

noisy conditions.

The FFSVC is another far-field speaker recogni-

tion benchmark that is recorded for smart home

scenarios (Zheng et al., 2022). Dipco is another

far-field speaker recognition benchmark that is de-

rived from the Dipco corpus and replicates a sce-

nario where a group of people are in an interactive

conversation while having dinner in a home envi-

ronment (Rouvier and Mohammadamini, 2022).

Both FFSVC and Dipco are simulating a home

environment, we extend these scenarios to work-

place environments where having severe acousti-

cal conditions is more probable.

In the robotics domain, there are other variabilities

that have not been addressed in previous bench-

marks: the robot’s internal noise and the angle be-

tween the speaker and the robot. Furthermore, the

speech signal has been recorded for different dis-

tances between the speaker and the robot. In the

proposed challenge the following variabilities are

present:

• Ambient noise leading to low signal-to-

noise ratios (SNR): The speech signal is dis-

torted with noise from fans, air conditioners,

heaters, computers, etc.
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• Internal robot noises (robot activators):

The robot’s activator noise reverberates on

the audio sensors and degrades the SNR.

• Reverberation: The phenomena of reverber-

ation due to the configuration of the places

where the robot is located. The robot is used

in different rooms with different surface tex-

tures and different room shapes and sizes.

• Distance: The distance between the robot

and speakers is not fixed.

• Babble noise: The potential presence of sev-

eral speakers speaking simultaneously.

• Angle: The angle between speakers and the

robot’s microphones

In the evaluation part of this paper, we will show

that the mentioned variabilities facing the state-of-

the-art speaker recognition systems reduce their

performance dramatically and in comparison to

the discussed scenarios in FFSVC and Dipco, the

RoboVox is a more challenging benchmark. In the

following, the dataset description comes in Section

2. In section 3 the evaluation protocols are dis-

cussed and section 4 and 5 describe the baseline

system and the obtained results respectively.

2. Dataset description

Robovox is a French corpus recorded by a mo-

bile robot (E4) in the framework of the ANR project

RoboVox. The robot is equipped with a speaker

recognition system in noisy environments. There

are three microphones on the angles of the robot

(Micro #1, Micro #2, Micro #3). The fourth micro-

phone is embedded inside the robot (Micro #4).

Another microphone serves as a ground truth mi-

crophone (Micro #5). The ground truth micro-

phone is close to the mouth of the speaker. The

microphones are depicted in Figure 1. The speech

files are recorded from conversations between the

robot and the speakers. The robot utilizes a loud-

speaker positioned beneath the robot to articulate

its utterances.

The dataset includes 78 speakers. The number of

conversations between the robot and the speakers

is between 24 and 36 which results in 2221 con-

versations. In each conversation, there are 5 dia-

logues (speaker turns) on average. Therefore, the

total number of recorded dialogues is ' 11, 000.
The average length of each dialog is 3.6 seconds.

Each recording has 8 channels. The channel in-

formation is as follows:

• Channel 1 to 3: The microphones on the an-

gels of the robot;

• Channel 4: The microphone embedded in-

side the robot;

• Channel 5: The ground truth microphone

which is close to the speaker;

• Channel 6: This is an unused channel;

• Channel 7 and channel 8: These channels

include the robot’s turns.

It is worth noting that having a clean signal

recorded by Channel 5, enables us to have the

best-expected baseline system and allows us to

know the amount of performance degradation for

far-field microphones.

The files are recorded from different distances in

different acoustical environments with themain fol-

lowing settings:

• 1m, 2m and 3m: The distance between the

speaker and the robot in meters.

• hall, open space, small room (open/close)

and medium room (open/close): The ses-

sions are recorded in the different rooms/en-

vironments with the door open or closed in

meeting rooms.

• wall, center, and corner: The robot placed

close to a wall (or window), in the center of the

room, or in the corner respectively. Severe

reverberation can be spotted.

• calm or noisy: Level of noise in the environ-

ment.

The percentage of recorded conversations in

terms of the distance, the environment, the loca-

tion of the robot, and the noise is shown in Figure

2.

3. Evaluation Protocol

In this section, the details of protocols for both

single-channel and multi-channel tracks are de-

scribed.

3.1. Single-channel track

In the far-field single-channel, the best channel

(i.e. channel 5) will be used for enrollment. For

each speaker, three dialogues are used as enroll-

ment. If a dialogue in a session is chosen as en-

rollment, the remaining dialogues in that session

will not be used in the test. The microphones lo-

cated on the angles of the robot and the embedded

microphone inside the robot are evaluated sepa-

rately.

3.2. Multi-channel track

In this track, the best channel (i.e. channel 5) is

used for enrollment. All channels except the best

channel (i.e. channel 5) are used for the test. The

test and enrollment dialogues are the same as the

single-channel track.
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Figure 1: Robovox (E4): a mobile robot

Figure 2: RoboVox dataset specifications

Firstly the dialogues extracted from the conversa-

tion between the robot and the speaker using the

annotation provided for each conversation. First of

all, the dialogues shorter than 2 seconds are dis-

carded. Three dialogues longer than 4 seconds

are chosen randomly per speaker as enrollment.

The remaining dialogues from the chosen session

for enrollment are filtered out in order to not be

used in the test. The remaining part of the dia-

logues are used as a test. From these test and en-

rollment files, 2.47 million trials were generated. In

order to have a 90/10% target/non-target, 30k tar-

get trials are merged with 270k non-targets. The

details of the protocol are shown in Table 1.

Test Enrollment Trials Target

10,332 225 300k 30k

Table 1: RoboVox evaluation protocol

4. Baseline system

The speaker embedding extractor used in this pa-

per is a variant based on ResNet-34 (Rouvier and

Bousquet, 2021). In the first and second blocks,

we used the squeeze and excitation mechanism.

The loss function is the angular additive margin

with a margin equal to 0.4. The size of the feature

maps are 32, 64, 128, and 256 for the 4 ResNet

blocks (Table 2). We use stochastic gradient de-

scent with a momentum equal to 0.9, a weight de-

cay equal to 2.10−4, and an initial learning rate

equal to 0.2. The batch size was set to 128.

The speaker embedding extractor is trained on the

development partition of the VoxCeleb2 dataset

which contains speech utterances from 5,994

speakers (Nagrani et al., 2020). The extractor

is trained with 4-second chunks of training sam-

ples and their augmented version with noise and

reverberation as described in (Snyder et al., 2015).

As input, we used 60-dimensional filter-banks. In

order to remove silence, a simple energy-based

VAD is applied to the acoustic features (Povey
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Layer name Structure Output

Input – 60 × 400 × 1
Conv2D-1 3 × 3, Stride 1 60 × 400 × 32

SE-Block-1

[
3 × 3, 32
3 × 3, 32

]
× 3 , Stride 1 60 × 400 × 32

SE-Block-2

[
3 × 3, 64
3 × 3, 64

]
× 4, Stride 2 30 × 200 × 64

ResNetBlock-3

[
3 × 3, 128
3 × 3, 128

]
× 6, Stride 2 15×100×128

ResNetBlock-4

[
3 × 3, 256
3 × 3, 256

]
× 3, Stride 2 8 × 50 × 256

Pooling – 8 × 256
Flatten – 2048
Dense1 – 256
Dense2 (Soft-
max)

– N

Total – –

Table 2: The baseline ResNet-34 architecture.

et al., 2011).

We report results in terms of Equal Error Rate

(EER) and the detection cost function (DCT)(Sad-

jadi et al., 2021). The DCT is defined as Equation

4:

CDET (θ) = CMiss × PMiss|Target(θ)× PTarget+

CFA × PFA|NonTarget(θ)× (1− PTarget)

(1)

where: θ is a decision threshold, CMiss is the

cost of false rejection, CFA is the cost of false

acceptance, PTarget is the prior probability of tar-

get speakers. The parameters for DCT are de-

fined in Table 3. The first scenario is for using the

robot during the day when the probability of target

speakers is high and the second scenario is for

using it during the night with a low probability for

target speakers and high CFA. The average of the

two scenarios will be the final DCT score.

CDET (θ) PTarget CMiss CFA

1 0.8 1 20

2 0.01 10 100

Table 3: CDET parameters

5. Results

Firstly the trained speaker embedding extractor is

evaluated on standard Voxceleb-E cleaned pro-

tocol. In this case, we achieved 1.12 in terms

of EER. These results show the efficiency of the

baseline system. In Table 4, the obtained results

for both single-channel and multi-channel tracks

are reported. For channel 5 which is the best chan-

nel the EER is equal to 9.29. The main possible

reason for these results can be the short duration

of the test files. In channel 4, which is the worst

case the EER is equal to 18.22. The same behav-

ior is observed for the rest of the channels. If we

compare the results with the baseline results re-

ported for DipCo (Rouvier and Mohammadamini,

2022) and FFSVC (Zheng et al., 2022) corpus, we

can see that RoboVox is a more challenging sit-

uation which makes it a rigorous benchmark for

the evaluation of speaker embedding extractors.

For example, the EER in the Dipco single-channel

track is 5.84 while in the RoboVox is 18.22. In the

multi-channel case, the EER and DCT are calcu-

lated based on the average cosine score of four

far channels (i.e. Channel 1-4).

Channel EER DCT

Channel 1 15.79 0.92

Channel 2 15.63 0.87

Channel 3 15.74 0.88

Channel 4 18.22 0.91

Channel 5 9.29 0.73

Multi-channel 15.06 0.86

Table 4: EER and DCT

6. Copyrights

This audio database is made available under

the terms of the Creative Commons Attribution

NonCommercial-ShareAlike 4.0 International Li-

cense 1. The dataset will be available for re-

searchers by asking the providers from this link 2.
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8. Conclusion

In this paper, we introduced a new benchmark for

far-field single-channel and multi-channel speaker

recognition for a Mobile Robot. We did an eval-

uation for both single-channel and multi-channel

cases leveraging a competitive state-of-the-art

ResNet speaker embedding extractor. The signif-

icant performance reduction of the speaker recog-

nition systems in real far-filed applications could

foster the researchers to address the far-field

recognition in the presence of noise and reverber-

ation.
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