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Abstract

The education domain has been a popular area of collaboration with NLP researchers for decades. However, many
recent breakthroughs, such as large transformer based language models, have provided new opportunities for solving
interesting, but difficult problems. One such problem is assigning sentiment to reviews of educators’ performance.
We present EduSenti: a corpus of 1,163 Albanian and 624 English reviews of educational instructor’'s performance
reviews annotated for sentiment, emotion and educational topic. In this work, we experiment with fine-tuning several
language models on the EduSenti corpus and then compare with an Albanian masked language trained model from
the last XLM-RoBERTa checkpoint. We show promising results baseline results, which include an F1 of 71.9 in
Albanian and 73.8 in English. Our contributions are: (i) a sentiment analysis corpus in Albanian and English, (ii) a
large Albanian corpus of crawled data useful for unsupervised training of language models, and (iii) the source code
for our experiments.
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1. Introduction highlighted the importance of students’ feedback

Quality assurance is an important component in ed-
ucation. It involves the systematic review of educa-
tional processes to ensure its quality over time. Tra-
ditionally the quality evaluation of the learning pro-
cesses is done using quantitative methods, which
is typically performed automatically using metrics
such as graded assignments and test scores. How-
ever, the insight of professors and instructors and
interpretation these performance statistics are fun-
damental in assessing students’ knowledge acqui-
sition. Furthermore, an education professional’s
insights could contribute to reforming policies or
improve regulation at the institutional level, or even
national level.

Instructors’ ability to teach is also a considera-
tion, and thus, must also be included in metrics that
factor in to the overall performance of any educa-
tion program. To improve the student assessment
process and its impact on the development and
enhancement of the quality in education in gen-
eral, students should be encouraged to give their
opinions in text-based form rather than just rating
the processes. Limiting this expression, insofar as
surveys and written feedback, has the potentially
of missed opportunities to refine the education sys-
tem.

Opinions expressed by students are a valuable
source of information; not only for reforming policies
within education institutions, but also for analyzing
students’ behaviour towards a course, professors
and its environment. The recent pandemic has
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and opinions as remote learning became more per-
vasive.

The utilization of deep learning (DL) to assess
students’ feedback has been an interest of the re-
search community (Kastrati et al., 2021). A number
of sentiment analysis models have been successful
in high resource languages such as English (Talaat,
2023). However, low resource languages, such
as Albanian, continue to be challenging (Sadriu
et al., 2022; Itani et al., 2018). Albanian as an
Indo-European language and has no close relation
with any other language, and in the family of Indo-
European languages, it is positioned in a distinct
branch.

In this work we focus on automatic methods to
assess students’ emotional states and opinions
to the quality of their learning process on specific
educational topics in Albanian. We compare these
methods with English trained models to assess the
feasibility of the sentiment analysis task in a low-
resource language such as Albanian.

Specifically, our goal is to determine how pretrain-
ing low resource language models, such as Alba-
nian, affects downstream fine-tuning. Our methods
include pretraining a new Albanian large language
model (LLM) from multi-lingual checkpoints, and
then using it to train a sentiment analysis model
(Section 3). Finally we compare methods on mod-
els trained on a translated Albanian-English cor-
pus'and present our results in Section 3.

'Our pretrained corpus, sentiment corpus and code
are released at https://github.com/uic-nlp-lab/edusenti.
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2. Related Work

Students’ opinions are a valuable source of infor-
mation to assess the quality of knowledge transfer.
Sentiment analysis of these opinions have resulted
in a good deal of recent work.

In a recently systematic mapping study Kas-
trati et al. (2021), show that until 2016 —
2017 researchers used sentiment analysis in-
volving lexicon-based and dictionary-based meth-
ods (Sharma et al., 2020; Chauhan et al., 2021;
Wen et al., 2014). After 2017, researchers shifted
to analyzing sentiment deep learning-based mod-
els (Sadriu et al., 2022; Sharma et al., 2020). The
latter approaches used non-contextual word em-
bedding (Mikolov et al.; Bojanowski et al., 2017),
BiLSTM language models (Peters et al.) and trans-
former architectures (Devlin et al., 2019).

Sabri et al. (2021) and Acikalin et al. (2020) tack-
led the sentiment analysis problem in low resource
languages with pretrained BERT embeddings and
translation models. The first paper applied the tech-
nique in movie and hotel reviews, whereas the sec-
ond one in the social media (Tweets). The authors
used a BERT fine-tuned multilingual model and
compared with a the English-only BERT after ma-
chine translation.

Subsequently,  Selvakumar and Laksh-
manan (2022) proposed BERT based sentiment
classification on two datasets: IMDB Movie Review
and Amazon Fine Food Review. The author
compared the BERT experimental results with
eleven other commonly used ML and DL models.
The accuracy of sentiment classification using
BERT model reached 94% compared to common
ML and DL models.

Biba and Mane (2014) used Weka (Russell and
Markov, 2017), for classifying the sentiment of a
political news dataset. This dataset is composed
of five topics, each containing 40 positive and 40
negative sentiments. The classification was per-
formed by using logistic regression, naive, among
other algorithms.

While the of majority interest has been in English,
German, Chinese, relatively little has been found in
low resource languages until recently. Specifically,
Albanian is found in few publications, but to the
best of our knowledge, none have used sentiment
analysis for students’ feedback in the education
domain.

Given the dearth of Albanian public datasets,
Vasili et al. (2021) used an annotated Twitter
dataset (Mozeti¢ and Gr¢€ar) and sentimental lex-
icons dictionary by Chen and Skiena (2014) for
predicting the sentiment of tweets. The authors
reached the best results using LSTM based on RNN
model with a F1 of 87.8 and accuracy of 79.2%.

While our work is similar, our work differs in that

we created an Albanian-English annotated dataset
of educational instructors’ performance reviews that
was annotated for sentiment, emotion and educa-
tional topic. We also experimented with fine-tuning
several models on our sentiment dataset using
Albanian pretrained embeddings we trained our-
selves.

2.1.

Two datasets were created: one for pretraining Al-
banian embeddings and another for fine-tuning a
model for the sentiment analysis task.

Dataset

2.2. Sentiment Dataset

The sentiment dataset was collected from second
and third year computer science students as during
two semesters. The data was gathered from reflec-
tive papers, which included feedback of the course,
professor and institution. The sentiment corpus
includes 1,163 students’ feedback in Albanian and
624 students feedback in Albanian and English,
which were annotated by two different students as
three classes: sentiment, emotion, and aspect of
reviews. Each review was human translated from
Albanian to English. Table 1 gives an example of
the review and their annotations.
The dataset annotations include:

sentiment: positive, neutral, and negative

emotion: fear, sadness, anger, surprise, joy,
and love
aspect: course, professor, project, evalua-

tion, institution, online learning, and
general purposes

The annotation process consisted of several iter-
ation processes; initially the data was preprocessed
by and cleaning the text using regular expressions.
Initially the Google translation API was used to
translate 624 English reviews from Albanian to En-
glish. The translations were validated and revised
by two annotators. The standardizing across anno-
tators was iterative during the annotation process.
Krippendorff's « coefficient (Krippendorff, 2011),
was used to compute inter-annotator agreement
(IAA) between the two annotators, which resulted
in 0.6 for sentiment, 0.64 for emotion and 0.22 for
aspect.

2.3. Albanian Large Aggregated Corpus

Because Albanian contains unique morphological
and lexical characteristics, a large alphabet with 36
letters, and rich of polysemantic terms, developing
linguistic resources that that aid in the classification
of sentiment and emotions is challenging (Vasili
et al., 2021). The intricacy increases when one
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Aspect | Emotion | Sentiment | Text Lang
Overall, | am very pleased with the way this course was conducted
; : : en
. . . and | hope to continue at this pace in the other semesters as well.
subject joy positive

tjeré

Né pérgjithési, jam shumé | kénaqur me ményrén gé ishte zhvilluar
ky kurs dhe shpresoj qé té vazhdoj me kété rittm edhe né semestrat sq

Table 1: Dataset example of an annotated instructor’s review for aspect, emotion, sentiment.

comes across the Tosk and Gheg dialects, as well
as the regional variations in accent and cultural
expression (Karahoda et al., 2016; Coretta et al.,
2022).

Given that Albanian is considered a low resource
language, the authors set out to compile a large
corpus for the purpose of training a LLM (see Sec-
tion 3) for the purpose of fine-tuning the sentiment
corpus. Table 3 provides the corpus statistics with
almost four million sentences (647MB).

Corpus Count Source

Oscar 1,340,766 | Suarez et al.
WikiMatrix 640,955 Schwenk et al.
OpenSubtitles | 222,757 Lison and Tiedemann
CCAligned 200,525 El-Kishky et al.
SETIMES 194,059 Tiedemann

QED 11,333 Abdelali et al.
TED2020 7,546 Reimers and Gurevych
GNOME 4,995 Tiedemann

Ubuntu 1,051 Tiedemann

Tatoeba 990 Tiedemann
GlobalVoices 491 Tiedemann

Table 2: Sources of the Albanian corpus with the
sentence count of each.

The corpus was first constructed from multiple
sources such as CCAligned dataset (El-Kishky
et al., 2020) as reported in Table 2. However,
the largest source was Oscar (El-Kishky et al.,
2020; Suarez et al., 2020; Abadji et al., 2021, 2022;
Kreutzer et al., 2022), as it provides metadata in-
dicating language detection probabilities and the
quality and level of noise in the data. Some cor-
pora were already sentence chunked, but those
that were not chunked using regular expressions
on punctuation and then tokenized on white space.

This corpus is much smaller than the source as
it was heavily filtered for quality. Corpora that did
not include language identification was automat-
ically tagged for language using the Python port
of the well-known langdetect? library. Corpus
documents containing a high portion of Albanian
detected language were kept. Of those documents,
only sentences detected as Albanian with token
lengths between 5 and 450 were added to our cor-
pus. Table 3 provides corpus statistics and Figure 1

2https://github.com/Mimino666/langdetect

shows the distribution of sentences by token length
for sentences with fewer than 100 tokens.

Description | Count
Sentences 3,984,705
Tokens 121,794,474
Characters 647,922,859

Table 3: Pretrained Albanian corpus size given in
number of sentences, tokens and characters.

500000
400000

300000

Count

200000

100000

20 40 60 80 100
Tokens

Figure 1: Albanian language corpus sentence
counts by token length for sentences with fewer
than 100 tokens.

3. Methods

Our methods fall into to two phases to create two
kinds of models: pretraining embeddings and fine-
tuned sentiment models. We first create new check-
points from existing BERT (Devlin et al., 2019) base
models on a Albanian-only language training set
(Section 2.3). After these are trained, we train addi-
tional fine-tuned models on these new embeddings,
but also on the same checkpoints to analyze the
performance based on their trained trajectory.
More specifically, these two phases consist of:

1. Pretraining: (i) curation of Albanian corpus of
text for pretraining embeddings, (ii) pretrain-
ing Albanian embeddings from existing multi-
language checkpoints
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Language | Model mF1 mP mR MF1 MP MR WF1 WP WR

English BERT ML 68.75 | 68.75 | 68.75 | 47.29 | 50.32 | 48.52 | 66.60 | 66.36 | 68.75
English BERT ML+E+T 70.31 | 70.31 | 70.31 | 27.52 | 23.44 | 33.33 | 58.06 | 49.44 | 70.31
English fastText 300D 75.00 | 75.00 | 75.00 | 53.58 | 61.65 | 54.07 | 71.54 | 72.08 | 75.00
English GLoVE 50D 76.56 | 76.56 | 76.56 | 57.52 | 67.66 | 55.19 | 73.80 | 74.85 | 76.56
Albanian XLM-R ALB+E+T 57.63 | 57.63 | 57.63 | 26.79 | 28.64 | 31.98 | 46.75 | 42.77 | 57.63
Albanian XLM-R ALB 60.17 | 60.17 | 60.17 | 25.04 | 20.40 | 32.42 | 46.48 | 37.87 | 60.17
Albanian BERT ML 68.64 | 68.64 | 68.64 | 53.90 | 63.91 | 51.23 | 65.06 | 66.90 | 68.64
Albanian XLM-RoBERTa Base | 73.73 | 73.73 | 73.73 | 61.07 | 64.57 | 60.49 | 71.90 | 71.85 | 73.73

Table 4: Sentiment model results with (m)icro, (M)acro and (W)eighted F1, precision and recall. (E)motion
and (T)opic are features added to some models. Models include BERT (M)ulti(L)ingual, our trained
(XML-R)oBERTa (ALB)anian embeddings, and the last XLM-RoBERTa Base checkpoint.

2. Fine-tuning: (i) train new English and Alba-
nian classification models on the annotated
EduSenti sentiment dataset, (ii) compare fine-
tuned model across embeddings

After procuring the Albanian corpus, the cased
multilingual and BERT XLM-RoBERTa base (Con-
neau et al., 2020) checkpoints were used to train
the model as they were natural choices given their
training set already included Albanian. Both mod-
els used masked model training for 4 epochs with
a learning rate of 3e-5.

Fine-tuned models were trained from the last
checkpoints of multilingual BERT, XLM-RoBERTa
and our own Albanian pretrained embeddings. The
pooler output ([CLS]) was connected to a fully con-
nected linear layer, which was in turn connected to
the three way sentiment output (positive, negative
and neutral). All were trained for 20 epochs with a
learning rate of 102 that decreased a schedule of
5 epochs of no improvement.

For comparison, we also trained models us-
ing the non-contextual word vector embeddings
GloVE (Pennington et al., 2014) and fastText (Bo-
janowski et al., 2017). As with the transformer mod-
els, a fully connected linear layer connected to the
output layer, but a BILSTM was used in place of
the transformer. The Zensols Deep NLP frame-
work (Landes et al., 2023) was used for fine-tuning
model development, training, and evaluation.

4. Results

Table 4 presents the results of the fine-tuned mod-
els on the sentiment analysis task using our En-
glish and Albanian datasets. The results clearly
show English favors the GloVE and fastText non-
contextual word embeddings, which suggests the
mixed language transformer models still do not
keep up with English-only embeddings. However,
the Albanian language models show competitive
performance with multi-language XLM-RoBERTa
model (Conneau et al., 2020). This performance
is somewhat surprising given the uniqueness of

Albanian and its limited representation (0.22%) in
the XLM-RoBERTa training data. This contrasts
with the lackluster performance of low resource
languages (Catalan) with high resource language
(Spanish) families (Armengol-Estapé et al.).

Surprisingly the Albanian pretrained models
shows lower performance on downstream fine-
tuned models. We speculate that the pretrained
models performed poorly because of the small mini-
batch size given GPU memory constraints. We
believe additional pretraining embedding hyperpa-
rameter tuning and including next sentence training
would yield significantly better results, which we
leave as future work. Regardless of this model
task, the fine-tuned model trained from the XLM-
RoBERTa checkpoint speak to the feasibility of
modeling the Albanian language.

5. Conclusion and Future Work

We have presented EduSenti, a large aggregated
Albanian text corpus and an Albanian-English senti-
ment corpus that includes aspect, emotion and sen-
timent annotations. We compared multilingual mod-
els’ original checkpoints with Albanian pretrained
embeddings, trained fine-tuned sentiment analysis
models, and reported their performance.

As far as we know, we are the first to train Alba-
nian models for the sentiment analysis task. We
believe our results motivates further work in this
language with our results on the fine-tuned mod-
els. However, the fine-tuned models trained from
Albanian-only embeddings clearly show there is
much room for growth. Not only in terms of avail-
able datasets, but essential upstream pipeline com-
ponents, such as tokenizers, still do not exist for
this low-resource language.
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