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Abstract
Stacking non-linear layers allows deep neural networks to model complicated functions, and including residual
connections in Transformer layers is beneficial for convergence and performance. However, residual connections
may make the model “forget” distant layers and fail to fuse information from previous layers effectively. Selectively
managing the representation aggregation of Transformer layers may lead to better performance. In this paper, we
present a Transformer with depth-wise LSTMs connecting cascading Transformer layers and sub-layers. We show
that layer normalization and feed-forward computation within a Transformer layer can be absorbed into depth-wise
LSTMs connecting pure Transformer attention layers. Our experiments with the 6-layer Transformer show significant
BLEU improvements in both WMT 14 English-German / French tasks and the OPUS-100 many-to-many multilingual
NMT task, and our deep Transformer experiments demonstrate the effectiveness of depth-wise LSTM on the
convergence and performance of deep Transformers.
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1. Introduction

The multi-layer structure together with non-linear
activation functions allow neural networks to model
complicated functions. Increasing the depth of mod-
els can increase their capacity and benefit their per-
formance if optimization difficulties (Mhaskar et al.,
2017; Telgarsky, 2016; Eldan and Shamir, 2016;
He et al., 2016; Bapna et al., 2018) can be properly
addressed.

For machine translation, the performance of
the Transformer translation model (Vaswani et al.,
2017) benefits from including residual connections
(He et al., 2016) in stacked layers and sub-layers
(Bapna et al., 2018; Wu et al., 2019b; Wei et al.,
2020; Zhang et al., 2019; Xu et al., 2020a; Li et al.,
2020; Huang et al., 2020; Xiong et al., 2020; Mehta
et al., 2021; Li et al., 2021; Xu et al., 2021d). How-
ever, the residual connections within each layer only
fuse information through simple, one-step opera-
tions (Yu et al., 2018), which may make the model
“forget” distant layers, and aggregating layers is of
profound value to better fuse linguistic information
at different levels of representation (Peters et al.,
2018; Shen et al., 2018; Wang et al., 2018, 2019;
Dou et al., 2018, 2019). Selectively aggregating
different layer representations of the Transformer
may further improve the performance.

In this paper, we propose to train Transformers
with depth-wise LSTMs which regard outputs of
stacked Transformer layers as steps in a time se-
ries and manage representation aggregation in and
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across layers. Our general motivation is that com-
plex cross-layer information management offered
by depth-wise LSTMs may bring about additional
benefits over simple residual connections: LSTMs
(Hochreiter and Schmidhuber, 1997) have been
shown to (i) avoid gradient explosion and vanish-
ing, (ii) selectively learn what to remember and
what to forget while ensuring convergence.

We explore the use of LSTMs to connect layers
in stacked deep architectures for Transformers: we
show how residual connections can be replaced by
LSTMs connecting self-, cross- and masked self-
attention layers. In contrast to standard LSTMs
that process token sequences, we refer to the use
of LSTMs in connecting stacked layers of deep
architectures as “depth-wise LSTMs”.

Our contributions are as follows:

• We suggest that selectively aggregating differ-
ent layer representations of the Transformer
may improve the performance, and propose
to use depth-wise LSTMs to connect stacked
(sub-) layers of Transformers. We show
how Transformer layer normalization and feed-
forward sub-layers can be absorbed by depth-
wise LSTMs, while connecting pure Trans-
former attention layers by depth-wise LSTMs
(for Transformer encoder and decoder blocks),
replacing residual connections.

• We show that the 6-layer Transformer using
depth-wise LSTM can bring significant im-
provements in both WMT tasks and the chal-
lenging OPUS-100 multilingual NMT task. We
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Figure 1: Depth-wise LSTM computation.

show that depth-wise LSTM also has the abil-
ity to support deep Transformers with up to 24
layers, and that the 12-layer Transformer using
depth-wise LSTM already performs at the level
of the 24-layer vanilla Transformer.

2. Transformer with Depth-Wise
LSTM

2.1. Depth-Wise LSTM
The computation of depth-wise LSTM is the same
as the conventional LSTM except that depth-wise
LSTM connects stacked Transformer layers instead
of tokens in a token sequence as in conventional
LSTMs. The gate mechanisms in the original
LSTM are to enhance its ability in capturing long-
distance relations and to address the gradient van-
ishing/exploding issue in sequence modeling. In
our work, we regard the outputs of stacked lay-
ers as a “vertical” sequence, and utilize the same
gate mechanisms to selectively aggregate informa-
tion from stacked Transformer layer outputs and to
address the gradient vanishing issue of deep Trans-
formers. LSTMs are able to capture long-distance
relationships: they can learn to selectively use the
representations of distant tokens in the process-
ing of a current input token in a sequence. In a
sense, the layer-by-layer computations in Trans-
former encoder and decoder stacks are just such
sequences where information from a Transformer
layer n− 1 is passed on to layer n. Our depth-wise
LSTMs connect layers of multi-head attention in-
formation instead of token embeddings. Because
of the different types of attention (self, cross and
masked), we develop tailored ways of connecting
(sub-) layers in encoder stacks and decoder stacks
with depth-wise LSTMs.

We equip our depth-wise LSTM with layer nor-

malization. This has shown better performance as
an LSTM-based NMT decoder (Chen et al., 2018;
Xu et al., 2021b) than vanilla LSTM. The compu-
tation graph of our depth-wise LSTM is shown in
Figure 1.

The depth-wise LSTM concatenates the input
from the current Transformer layer LSTMInput to
the LSTM with the output of the LSTM from the
previous layer Outputi−1:

c = Outputi−1|LSTMInput (1)
where “|” indicates concatenation.

Next, the depth-wise LSTM computes three gates
(input gate igate, forget gate fgate and output gate
ogate) and the hidden representation h from the
concatenated representation c:

igate = σ(LN(Wic+ bi)) (2)

fgate = σ(LN(Wfc+ bf )) (3)

ogate = σ(LN(Woc+ bo)) (4)

h = GeLU(LN(Whc+ bh)) (5)
where W∗ and b∗ are weight and bias parameters,
σ is the sigmoid activation function, LN is the layer
normalization.

We consider the role of the computation of the
hidden state (Equation 5) similar to the position-
wise feed-forward sub-layer in each of the original
Transformer encoder and decoder layers, and re-
move the feed-forward sub-layer from the original
encoder and decoder layers when we connect them
by our depth-wise LSTMs. The original Transformer
uses a 2-layer feed-forward network. In an addi-
tional set of experiments we model these two layers
in the hidden state of the depth-wise LSTM in terms
of two weight matrices Wh1 and Wh2 but use the
GLU activation function (Shazeer, 2020) for param-
eter efficiency, as shown in Equation 6 (compare
Equation 5):

h = Wh2GLU(LN(Wh1c+ bh1)) + bh2 (6)

After the computation of the hidden state, the cell
state and the output of the LSTM unit are computed
as:

Celli = Celli−1 ∗ fgate + h ∗ igate (7)

Outputi = Celli ∗ ogate (8)
where ∗ indicates element-wise multiplication.

As the depth-wise LSTM is computed across
stacked Transformer layers and the token embed-
dings are already produced before computing the
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Figure 2: Encoder layer with depth-wise LSTM.

first encoder/decoder layer, we use the token em-
beddings as Cell0 and Output0.

The gate mechanisms (Equations 2, 3, 4) of the
depth-wise LSTM can selectively learn to treat rep-
resentations from different Transformer levels dif-
ferently while guarding against vanishing and ex-
ploding gradients (Table 2).

We use depth-wise LSTM rather than a depth-
wise multi-head attention network (Dou et al., 2018)
with which we can build the NMT model solely
based on the attention mechanism for two reasons:
1) we have to compute the stacking of Transformer
layers sequentially as in sequential token-by-token
decoding, and compared to the use of depth-wise
LSTM of O(n) complexity, depth-wise multi-head at-
tention networks suffer from O(n2) complexity and
they cannot be parallelized at the depth level. 2)
the attention mechanism linearly combines repre-
sentations with attention weights. Thus, it lacks the
ability to provide the non-linearity compared to the
LSTM, which we suggest is important.

2.2. Encoder Layers Connected via
Depth-Wise LSTMs

Directly replacing residual connections with LSTM
units will introduce a large amount of additional pa-
rameters and computation. Given that the task of
computing the LSTM hidden state is similar to the
feed-forward sub-layer in the original Transformer
layers, we propose to replace the feed-forward sub-
layer with the newly introduced LSTM unit, which
only introduces one LSTM unit per layer, and the
parameters of the LSTM can be shared across lay-
ers.

The original Transformer encoder layer only con-
tains two sub-layers: the self-attention sub-layer
based on the multi-head attention network and the
2-layer feed-forward network sub-layer.

The encoder layer with the depth-wise LSTM
unit, as shown in Figure 2, first performs the self-
attention computation, then the depth-wise LSTM
unit takes the self-attention results and the output
and the cell state of the previous layer to compute
the output and the cell state of the current layer.
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Figure 3: Decoder layer with depth-wise LSTM.

2.3. Decoder Layers Connected via
Depth-Wise LSTMs

Different from encoder layers, decoder layers
involve two multi-head attention sub-layers: a
masked self-attention sub-layer to attend the de-
coding history and a cross-attention sub-layer to
attend information from the source side. Given that
the depth-wise LSTM unit only takes one input, we
introduce a merging layer to merge the outputs of
these two sub-layers into one as the input to the
LSTM unit. The architecture is shown in Figure 3
(a).

Specifically, the decoder layer with depth-wise
LSTM first computes the masked self-attention sub-
layer and the cross-attention sub-layer as in the
original decoder layer, then it merges the outputs
of these two sub-layers and feeds the merged rep-
resentation into the depth-wise LSTM unit which
also takes the cell and the output of the previous
layer to compute the output of the current decoder
layer and the cell state of the LSTM. We examine
both element-wise addition and concatenation as
merging operation.

Another way to take care of the outputs of these
two sub-layers in the decoder layer is to replace
their residual connections with two depth-wise
LSTM sub-layers, as shown in Figure 3 (b). This
leads to better performance (as shown in Table 4),
but at the costs of more parameters and decoder
depth in terms of sub-layers.

3. Experiments

We implemented our approach based on the Neu-
tron implementation of the Transformer (Xu and Liu,
2019). To show the effects of depth-wise LSTMs on
the 6-layer Transformer, we first conducted experi-
ments on the WMT 14 English to German and En-
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glish to French news translation tasks to compare
with the Transformer baseline Vaswani et al. (2017).
Additionally, we also examined the impact of our
approach on deep Transformers and in a multilin-
gual NMT task. The deep Transformer experiments
were conducted on the WMT 14 English to German
task and the WMT 15 Czech to English task follow-
ing Bapna et al. (2018); Xu et al. (2020a), and the
multilingual NMT experiments were performed on
the challenging OPUS-100 dataset following Zhang
et al. (2020). The concatenation of newstest 2012
and newstest 2013 was used for validation and
newstest 2014 as test set for the WMT 14 English
to German and English to French news translation
tasks, and newstest 2013 as validation set for the
WMT 15 Czech to English task. Newstest 2014
provided the test sets for both the WMT 14 English
to German and the English to French task, and
newstest 2015 was the test set for the Czech to
English task.

3.1. Settings
We applied joint Byte-Pair Encoding (Sennrich et al.,
2016) with 32k merging operations on all data sets
to address the unknown word issue. We only kept
sentences with a maximum of 256 subword tokens
for training. For fair comparison, we did not tune
any hyperparameters but followed Vaswani et al.
(2017) for all experiment settings.

Though Zhang et al. (2019); Xu et al. (2020b)
suggest using a large batch size which may lead to
improved performance, we only used a batch size
of 25k target tokens (through gradient accumulation
of small batches) to fairly compare with previous
work (Vaswani et al., 2017; Xu et al., 2020a).

We used a beam size of 4 for decoding, and
evaluated tokenized case-sensitive BLEU with the
averaged model of the last 5 checkpoints for the
Transformer Base setting and 20 checkpoints for
the Transformer Big setting saved at intervals of
1, 500 training steps. We also conducted signifi-
cance tests (Koehn, 2004). To measure the effi-
ciency of different settings, we sorted the WMT 14
En-De test set of 3003 sentences by the number of
tokens of the input sentence to reduce the number
of padding tokens during batching, and tested the
inference speed on a single RTX 4090 GPU (matrix
multiplications were computed in FP16 precision for
faster decoding), and reported the beam decoding
speed (number of sentences per second).

3.2. Main Results
We first examine the effects of our approach on
the 6-layer Transformer on the WMT 14 English-
German and English-French task to compare with
Vaswani et al. (2017), and results are shown in
Table 1.

Models En-De En-Fr
Transformer Base 27.55 39.54
with depth-wise LSTM 28.53† 40.10†

Transformer Big 28.83 41.92
with depth-wise LSTM 29.58† 43.11†

Table 1: Results on WMT 14 En-De and En-Fr. †

indicates p < 0.01 in the significance test.

Approaches BLEU Para.(M) Speed
Transformer 27.55 62.37 750.58
Depth-wise RNN 23.24 68.67 737.60
Depth-wise LSTM 28.53 70.25 674.96

Table 2: Ablation study of depth-wise approaches
on WMT 14 En-De.

In our approach (“with depth-wise LSTM”), we
used the 2-layer neural network for the computa-
tion of the LSTM hidden state (Equation 6) and
shared LSTM parameters across stacked encoder
layers and different shared parameters across de-
coder layers for computing the LSTM gates (Equa-
tions 2, 3, 4). Details are provided in our ablation
study.

Table 1 shows that our approach based on the
depth-wise LSTM can obtain significant improve-
ments on both tasks over the original Transformer
with both the Transformer Base setting and the
Transformer Big setting. In particular, significant
improvements (+1.19 BLEU) obtained by our ap-
proach on the En-Fr task (trained on ∼36M sen-
tence pairs) with the Transformer Big support the
effectiveness of our approach in large-scale and
challenging settings.

Our approach with the Transformer base setting
brings about more improvements on the English-
German task than that on the English-French task.
We conjecture that maybe because the perfor-
mance on the English-French task using a large
dataset (∼36M sentence pairs) may rely more on
the capacity of the model (i.e. the number of param-
eters) than on the complexity of the modeling func-
tion (i.e. depth of the model, non-linearity strength
per-layer, etc.). With the Transformer Big model
which contains more parameters than the Trans-
former Base, the improvement on En-Fr (+1.19)
is larger than that on En-De (+0.75), with ∼4.5M
sentence pairs.

3.3. Ablation Study
We conducted ablation studies on the WMT 14 En-
De task with the Base setting.

Considering that the layer stacks of the 6-layer
Transformer are not that deep and vanilla RNNs
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LSTM FFN Hidden size BLEU Para.(M) Speed
1-layer (Eq. 5) 512 27.84 45.05 742.19

2-layer (Eq. 6) 2048 28.53 70.25 674.96
1586 28.20 62.37 683.67

Table 3: Ablation study of LSTM hidden computation on WMT 14 En-De.

Merging BLEU Para.(M) Speed
Concat 28.26 78.90 649.27
Add 28.53 70.25 674.96
2 Depth-wise LSTMs 28.81 100.18 581.13

Table 4: Results of merging operations for decoder
layer on WMT 14 En-De.

Sharing BLEU Para.(M)
All 26.94 44.00
Gate 28.53 70.25
None 28.25 87.59

Table 5: Results of sharing LSTM parameters on
WMT 14 En-De.

can play a similar role as LSTMs, is it possible to
train the model with a depth-wise RNN rather than
the depth-wise LSTM? We first study using different
approaches (Transformer, the depth-wise RNN and
the depth-wise LSTM) for the 6-layer Transformer,
and results are shown in Table 2.

When using the depth-wise RNN, the architec-
ture is quite similar to the standard Transformer
layer without residual connections but using the
concatenation of the input to the encoder/decoder
layer with the output(s) of attention layer(s) as the
input to the last FFN sub-layer. Table 2 shows that
the 6-layer Transformer with the depth-wise RNN
is able to converge, but its performance is much
worse than the model with the depth-wise LSTM
(and also much worse than the vanilla Transformer)
with depth-wise LSTM outperforming the vanilla
Transformer, suggesting the importance of the gat-
ing mechanisms of the depth-wise LSTM. The de-
coding speed of our baseline vanilla Transformer
implementation (750.58 sentences/s) is quite fast,
and is 1.12 times as fast as the depth-wise LSTM
approach, but our approach leads to a higher BLEU
score than the baseline, and as shown in Table 6,
our approach indeed requires fewer parameters
and brings about faster decoding speed than the
vanilla Transformer for a comparable BLEU score.

Next, we study the effects of two types of com-
putations for the LSTM hidden state in Equations 5
and 6 on the performance on the WMT 14 En-De
task. Results are shown in Table 3.

Table 3 shows that a 2-layer feed-forward neu-

ral network (Equation 6) in the depth-wise LSTM
outperforms the original computation of the LSTM
hidden state which uses only one layer (Equation 5),
which is consistent with intuition. However, even
with only one layer for the hidden state compu-
tation and with 27.77% fewer parameters (45.05M
against 62.37M), depth-wise LSTM (Equation 5) still
slightly outperforms the vanilla Transformer base-
line in BLEU (27.84 against 27.55), suggesting that
the improvements from using depth-wise LSTMs
are not just due to the increased amount of param-
eters. The 1-layer LSTM FFN model also archieves
a comparable decoding speed compared to the
baseline (742.19 v.s. 750.58). When we reduce
the hidden dimension of Equation 6 to 1586, which
results in approximately the same number of pa-
rameters as the standard Transformer, depth-wise
LSTM still outperforms the baseline by +0.65 BLEU.

We also study the merging operations, con-
catenation, element-wise addition, and the use of
2 depth-wise LSTM sub-layers, to combine the
masked self-attention sub-layer output and the
cross-attention sub-layer output in decoder layers.
Results are shown in Table 4.

Table 4 shows that, even though this is counter-
intuitive, element-wise addition (with fewer parame-
ters) empirically results in slightly higher BLEU than
the concatenation operation. Furthermore, even
though using 2 depth-wise LSTM sub-layers con-
necting cross- and masked self-attention sub-layers
leads to the highest BLEU score, showing the ad-
vantage of fully replacing residual connections with
depth-wise LSTMs, it also introduces more param-
eters and increases the decoder depth in terms of
sub-layers. For fair comparison, we use the simpler
element-wise addition operation in our experiments
by default.

As the number of Transformer layers is pre-
specified, the parameters of the depth-wise LSTM
can either be shared across layers or be indepen-
dent. Table 3 documents the importance of the
capacity of the module for the hidden state compu-
tation, and sharing the module is likely to hurt its
capacity. We additionally study to share only pa-
rameters for gate computation (Equations 2, 3, 4)
and to share all parameters (i.e. parameters for
both the computation of gates and of the hidden
state). Results are shown in Table 5.

Table 5 shows that: 1) Sharing parameters for the
computation (Equation 6) of the depth-wise LSTM
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Models Layers En-De Cs-En Para.(M) SpeedEncoder Decoder
Transformer Base
TA (Bapna et al., 2018)∗ 16

6
28.39 29.36 93.87 711.78

DLCL (Wang et al., 2019) 30 29.3

None

137.97 577.30
ODE (Li et al., 2022a) 24 30.29 119.17 565.86
Layer Aggregation (Dou et al., 2018) 6 28.63 111.10 667.57
EM Routing (Dou et al., 2019) 6 28.81 144.80 561.28
SDU (Chai et al., 2020)∗ 6 28.22 78.13 664.20
Luna (Ma et al., 2021) 6 27.8 77.60 None
DSI (Zhang et al., 2019) 20 28.67 149.54 298.50
LCPI (Xu et al., 2020a) 24 29.20 29.88 194.66 229.90
Transformer Big
Layer Aggregation (Dou et al., 2018) 6 29.21

None

356.38 264.55
EM Routing (Dou et al., 2019) 6 28.97 490.38 221.70
MC (Wei et al., 2020) 18 30.56 798.23 70.37
ODE (Li et al., 2022a) 12 6 30.77 288.46 315.91

Transformer Base

3 26.36 27.91 40.33 1209.62
6 27.55 28.40 62.37 750.58

12 28.12 29.38 106.47 429.00
18 28.60 29.61 150.57 299.81
24 29.02 29.73 194.66 229.90

Transformer Base with depth-wise LSTM

3 27.38 28.26 46.63 1121.16
6 28.53 29.15 70.25 674.96

12 29.26 29.64 122.23 379.83
18 29.41 30.27 172.63 277.21
24 29.18 30.02 223.02 202.40

Transformer Big with depth-wise LSTM 12 30.69 30.57 452.04 181.58
+ experiment settings of Li et al. (2022a) 12 6 31.12 31.25 338.75 316.15

+ 1-layer LSTM FFN (Eq. 5) 30.83 30.96 288.41 363.60

Table 6: Results of Deep Transformers. “*” indicates reproduction of the approach.

hidden state significantly hampers performance,
which is consistent with our conjecture. 2) Sharing
parameters for the computation of gates (Equa-
tions 2, 3, 4) leads to slightly higher BLEU with
fewer parameters introduced than without sharing
them (“None” in Table 5). Thus, in the other experi-
ments, we bind parameters for the computation of
LSTM gates across stacked layers by default.

3.4. Deep Transformers

We examine whether depth-wise LSTM has the
ability to ensure the convergence of deep Trans-
formers and measure performance on the WMT 14
English to German task and the WMT 15 Czech to
English task following Bapna et al. (2018); Xu et al.
(2020a), and compare our approach with the pre-
norm Transformer in which residual connections are
not normalized by layer normalization. To compare
with the previous studies, we replace the English
to French task with the Czech to English task with
∼15M sentence pairs. The 4.5M dataset of the En-
De task is not small, and the Cs-En data that has
more than 15M sentence pairs is even larger, and
can be considered a large-scale dataset. Together

with the English-French experiment (Table 1), this
allows us to assess the effectiveness of our ap-
proach with large datasets and deep Transformers.
For fairness and reliable comparisons across all
our experiments, we strictly followed the experi-
ment settings of Vaswani et al. (2017) by default,
without using relative positional encoding (Shaw
et al., 2018), dense connections, larger number of
warm up steps, and larger batch sizes, although
several previous studies (Wang et al., 2019; Zhang
et al., 2019; Li et al., 2020, 2022a) employ some
or all of these different settings for higher BLEU
scores. Results are shown in Table 6.

Table 6 shows that though the BLEU improve-
ments start saturating with deep depth-wise LSTM
Transformers of more than 12 layers, depth-wise
LSTM is able to ensure convergence of up to 24
layer Transformers. The experiments also show
that the size differences between these datasets
did not lead to differences in optimization.

Notably, on the En-De task, the 12-layer Trans-
former with depth-wise LSTM already outperforms
the 24-layer vanilla Transformer, suggesting effi-
cient use of layer parameters. On the Cs-En task,
the 12-layer model with depth-wise LSTM performs
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on a par with the 24-layer baseline. Unlike in the En-
De task, increasing depth over the 12-layer Trans-
former can still achieve some BLEU improvements,
with the 18-layer model resulting in the best per-
formance. We conjecture that this is probably be-
cause the data set of the Cs-En task (∼15M) is
larger than that of the En-De task (∼4.5M), and
increasing the depth of the model for the Cs-En
task also increases its number of parameters and
capacity. For the En-De task, the 12-layer Trans-
former with depth-wise LSTM may already provide
both sufficient complexity and capacity for the data
set.

It is a common problem that increasing the
depth does not always lead to better performance,
whether with residual connections (Li et al., 2022b)
or other previous studies on deep Transformers
(Bapna et al., 2018; Wang et al., 2019; Li et al.,
2022a), and the use of wider models is the usual
method of choice for further improvements. Al-
though for the Base Transformer model our ap-
proach does not lead to significant improvements
for models deeper than 18 layers, we argue that the
18-layer Transformer Base is not the performance
limit of our approach, because we may increase
the width of the model in addition to the depth. As
shown in Table 6, the 12-layer Transformer Big with
depth-wise LSTM is able to achieve further improve-
ments over Transformer Base models, and using
fewer layers and parameters achieves performance
on par with Wei et al. (2020). Using relative posi-
tional encoding, larger batch sizes, etc., following
the experiment settings of Li et al. (2022a) can also
lead to better performance with our approach.

As for the costs, the decoder depth has a strong
impact on inference speed, as the decoder has to
be computed once for each decoding step during
auto-regressive decoding (Kasai et al., 2021; Xu
et al., 2021c), and the use of only deep encoders
(Bapna et al., 2018; Wang et al., 2019; Li et al.,
2022a; Chai et al., 2020) normally leads to faster in-
ference speed than using both a deep encoder and
a deep decoder. But in general, Table 6 shows that
our approach uses fewer parameters and leads to
faster decoding speed than the baselines to obtain
a comparable BLEU score, showing the efficiency
of our method.

3.5. Multilingual NMT
Multilingual translation uses a single model to
translate between multiple language pairs (Firat
et al., 2016; Johnson et al., 2017; Aharoni et al.,
2019). Model capacity has been found crucial
for massively multilingual NMT to support lan-
guage pairs with varying typological characteristics
(Zhang et al., 2020; Xu et al., 2021a). Using model
layers efficiently with depth-wise LSTMs is likely to
benefit multilingual NMT.

To test the effectiveness of depth-wise LSTMs in
the multilingual setting, we conducted experiments
on the challenging massively many-to-many trans-
lation task on the OPUS-100 corpus (Tiedemann,
2012; Aharoni et al., 2019; Zhang et al., 2020). We
tested the performance of 6-layer models following
the experiment settings of Zhang et al. (2020) for
fair comparison. We adopted BLEU (Papineni et al.,
2002) for translation evaluation with the SacreBLEU
toolkit (Post, 2018). 1 We report average BLEU
over 94 language pairs BLEU94, win ratio WR (%)
compared to Zhang et al. (2020), average BLEU
over 4 selected typologically different target lan-
guages with varied training data sizes (de, zh, br,
te) BLEU4. Results are shown in Table 7.

Compared to the baseline (Zhang et al., 2020),
Table 7 shows that: 1) our approach can lead to
+3.02 and +3.38 BLEU improvements on average
in the En→xx and xx→En directions respectively
in the evaluation over 4 typologically different lan-
guages, and 2) using depth-wise LSTM is able
to bring about +2.57 and +1.19 BLEU improve-
ments on average when translating English to 94
languages and translating them into English re-
spectively. Given that the one-to-many transla-
tion task requires more model capacity than the
many-to-one translation task (Arivazhagan et al.,
2019), the larger average BLEU improvements and
a higher win ratio of 98.94% (93 of 94 languages)
in the En→xx direction than in the xx→En direction
demonstrate the effectiveness of our approach es-
pecially when model capacity is crucial, suggesting
the more effective use of model parameters with
depth-wise LSTMs than vanilla Transformer.

3.6. Efficiency Discussion
Despite the depth-wise LSTM Transformers hav-
ing more non-linear operations than the standard
Transformer, we suggest that it is more efficient.

In our deep Transformer experiments, Table 6
shows that our depth-wise LSTM Transformer with
fewer layers, parameters and computations can
lead to competitive/better performance and faster
decoding speed than vanilla Transformers with
more layers but a similar BLEU score, and the
depth-wise LSTM Transformer is in fact more effi-
cient as we need fewer layers to achieve compara-
ble performance.

In the multilingual NMT task which relies heavily
on the model capacity, Table 7 shows that the use
of depth-wise LSTM can bring about +2.52 BLEU
improvements on average when translating English
to 94 languages.

In Table 3, we reduce the 2-layer FFN of the
Transformer with depth-wise LSTM to only one layer

1BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.4.1
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Models Direction BLEU94 WR BLEU4

Transformer En→xx 18.75 - 14.73
xx→En 27.02 22.50

Transformer + LALN + LALT (Zhang et al., 2020) En→xx 20.81 - 17.45
xx→En 27.22 23.30

Depth-wise LSTM En→xx 23.38 98.94 20.47
xx→En 28.41 79.79 26.68

Table 7: Results of multilingual NMT.

with significantly fewer hidden units (2048 → 512),
this saves a large number of parameters and com-
putations, and our approach with 45.05M parame-
ters still slightly outperforms the baseline residual
Transformer with 62.37M parameters (Table 2).

Our depth-wise LSTM Transformer Base per-
forms on a par with the previous layer aggrega-
tion work (Dou et al., 2018) on the WMT 14 En-De
task. However, our model only contains 70.25M
parameters while Dou et al. (2018) involves 111M
parameters.

4. Related Work

He et al. (2016) present the residual learning frame-
work to ease the training of deep neural networks.
Srivastava et al. (2015) propose the highway net-
work which contains a transform gate and a carry
gate to control the produced output and the input.
Chai et al. (2020) propose a highway Transformer
with a self-gating mechanism for language mod-
els. However, our work is significantly different
from theirs in two aspects. First, residual connec-
tions are still kept in their model. Second, their
architecture does not use any mechanisms to track
long-distance dependencies between stacked lay-
ers compared to depth-wise LSTM in our work.

Layer Aggregation Yu et al. (2018) suggest that
skip connections are “shallow” themselves, and
only fuse by simple, one-step operations, and there-
fore Yu et al. (2018) augment standard architec-
tures with deeper aggregation to better fuse infor-
mation across layers to improve recognition and
resolution. Shen et al. (2018) propose a densely
connected NMT architecture to create new features
with dense connections. Wang et al. (2018) pro-
pose a multi-layer representation fusion approach
to learning a better representation from the layer
stack. Dou et al. (2018) simultaneously expose all
layer representations with layer aggregation. Dou
et al. (2019) propose to use routing-by-agreement
strategies to aggregate layers dynamically.

Deep NMT Zhou et al. (2016) introduce fast-
forward connections and an interleaved bi-

directional architecture for stacking LSTM layers.
Wang et al. (2017) propose a Linear Associative
Unit to reduce the gradient propagation path inside
the recurrent unit.

Deep Transformers For the convergence of
deep Transformers, Bapna et al. (2018) propose
the Transparent Attention mechanism which allows
each decoder layer to attend weighted combina-
tions of all encoder layer outputs. Wang et al.
(2019) present the Dynamic Linear Combination
of Layers approach that additionally aggregates
shallow layers’ outputs for each encoder layer. Wu
et al. (2019b) propose a two-stage approach. Wei
et al. (2020) introduce a depth-wise GRU to addi-
tionally aggregate outputs of all encoder layers for
the top decoder layer, but residual connections are
still kept. Zhang et al. (2019) and Xu et al. (2020a)
propose the layer-wise Depth-Scaled Initialization
approach and the Lipschitz constrained parame-
ter initialization approach, respectively, to reduce
the standard deviation of layer normalization inputs
and to ensure the functionality of residual connec-
tion. Kasai et al. (2021); Xu et al. (2021c) propose
to accelerate decoding by using deep encoders
and shallower decoders. Li et al. (2022a) design
an ODE Transformer which is analogous to the
Runge-Kutta method. Hao et al. (2022) present
approaches to exploring hyperparameters of deep
Transformers for low-resource NMT with shallow
Transformers.

Regarding parameter efficiency for NMT, Wu et al.
(2019a) present lightweight and dynamic convolu-
tions. Ma et al. (2021) approximate softmax at-
tention with two nested linear attention functions.
These methods are orthogonal to our work and it
should be possible to combine them with our ap-
proach.

5. Conclusion

In this paper, we replace residual connections of
the Transformer with depth-wise LSTMs, to selec-
tively manage the representation aggregation of
layers benefiting performance while ensuring con-
vergence of the Transformer. Specifically, we show
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how to integrate the computation of multi-head at-
tention networks and feed-forward networks with
the depth-wise LSTM for the Transformer.

Our experiments with the 6-layer Transformer
show that our approach using depth-wise LSTM
can achieve significant BLEU improvements in both
WMT news translation tasks and the very challeng-
ing OPUS-100 many-to-many multilingual transla-
tion task over baselines. Our deep Transformer
experiments demonstrate that: 1) the depth-wise
LSTM approach ensures that deep Transformers
with up to 24 layers converge, 2) the 12-layer Trans-
former using depth-wise LSTM already performs on
a par with the 24-layer vanilla Transformer, suggest-
ing more efficient usage of per-layer parameters
with our depth-wise LSTM approach than the base-
line.
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