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Abstract
Data-to-text (D2T) generation describes the task of verbalizing data, often given as attribute-value pairs. While
this task is relevant for many different data domains beyond the traditionally well-explored tasks of weather
forecasting, restaurant recommendations, and sports reporting, a major challenge to the applicability of data-to-text
generation methods is typically data sparsity. For many applications, there is extremely little training data in terms of
attribute-value inputs and target language outputs available for training a model. Given the sparse data setting,
recently developed prompting methods seem most suitable for addressing D2T tasks since they do not require
substantial amounts of training data, unlike finetuning approaches. However, prompt-based approaches are also
challenging, as a) the design and search of prompts are non-trivial; and b) hallucination problems may occur because
of the strong inductive bias of these models. In this paper, we propose a retrieval-augmented modular prompt tuning
(RAMP) method, which constructs prompts that fit the input data closely, thereby bridging the domain gap between
the large-scale language model and the structured input data. Experiments show that our RAMP method generates
texts with few hallucinations and achieves state-of-the-art performance on a dataset for drone handover message
generation. Code and data are available at https://github.com/tony-hong/ramp.
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1. Introduction

In data-to-text (D2T) generation, the goal is to gen-
erate natural language descriptions such as y from
structured data inputs like x in Table 1. Recent
methods leverage large-scale pretrained language
models (PLMs) like GPT-3 (Brown et al., 2020)
and T5 (Raffel et al., 2020) and perform in-context
learning through prompting to adapt to different
D2T tasks (Cao and Wang, 2022; Luo et al., 2022),
showing impressive performance. In-context learn-
ing needs no or very few labelled instances and
is therefore particularly attractive for low-resource
tasks, as is the case for many D2T tasks which lack
in-domain corpora.

Prompt-based generation exhibits one major
challenge when employed on the low-resource D2T
task: hallucinations are relatively frequent due to
the strong inductive bias of PLMs (Ji et al., 2023;
McKenna et al., 2023), especially when in-domain
data is not readily part of the pretraining data (Key-
manesh et al., 2022). For example, prompting
the state-of-the-art PLM Vicuna-13B (Chiang et al.,
2023) with the input data x in Table 1 generates a
phrase has collided with (see y0 in Table 1) that is
contradicting the input data.

To tackle this challenge, one can employ few-
shot prompting (Brown et al., 2020) by including
examples in the prompt. However, the choice of
examples is non-trivial because only examples that
are similar to the input data are effective (Shuster
et al., 2021).

To demonstrate the importance of prompt aug-

mentation in low-resource D2T tasks, We propose
a novel method named Retrieval-Augmented Modu-
lar Prompt Tuning (RAMP). We make the following
contributions: a) We apply retrieval augmentation
to select examples that are semantically similar to
the input in terms of attributes in the input data;
b) We employ modular prompts where we use the
attributes to route the trainable continuous prompts
into an augmented prompt x′ such that it matches
the input better; c) We conduct experiments on
a low-resource D2T task with automatic and hu-
man evaluations to show the effectiveness of our
approach.

2. Related Work

PLMs have demonstrated remarkable performance
on D2T tasks. To enable prompting, PLMs are pre-
trained using curated texts {p, x, y} that are found in
the web-content (Radford et al., 2019) or manually
constructed (Sanh et al., 2022; Wei et al., 2022). At
test time, PLMs are prompted to generate y given
{p, x}. Zero-shot prompting only adds task-specific
instruction to the prompt p, while few-shot prompt-
ing uses several input-output pairs from the training
examples like {p, xr, yr, ..., x, y} and has repeat-
edly been found to outperform zero-shot prompting
approaches (Brown et al., 2020).

However, the prompt-based approach raises the
question of what an optimal prompt should look like.
When some training data is available, it is possi-
ble to optimize the prompt using the training data.

https://github.com/tony-hong/ramp


Name Notation Example
Input
data

x { "time_stamp": "0:05", "name": "cas-
tle", "Distance": 2.5 }

Gold out-
put

y The drone is facing the risk of physi-
cal damage. There is a castle in the
drone’s flight path at a distance of
2.5m

Prompt p Here is the raw sensor data from a
drone: x. Write the handover mes-
sages that only includes crucial situa-
tion for this data.

Prompting
output

y0 The drone is facing the risk of physical
damage. The drone has collided with
a castle.

DL ex-
pression

E [Distance : 2.5 ⊑ [Distance ≤
3.0m] ⊑ VeryClose] [Time_stamp
: "0:05" ∧ Name : "castle" ∧
VeryClose] ⊑ [VeryClose.Object] [∃
VeryClose.Object] ⊑ RiskOfPhysical-
Damage

Retrieved
input

xr { "time_stamp": "0:01", "name":
"gravestone 1", "Distance": 3.0 }

Retrieved
output

yr (0:01) The drone is facing the risk of
physical damage. There is a grave-
stone in the drone’s flight path at a
distance of 3.0m.

Augmented
prompt

x′ [A1, A2..., p, xr, yr, x]

Table 1: A sample data point of D2T task. The
phrase has collided with is an example of intrinsic
hallucination. The retrieved input-output pair (xr,
yr) has the same attribute Distance with the input
x. The continuous prompt A1 is activated because
it corresponds to the attribute Distance.

This is referred to as prompt tuning. It differs from
fine-tuning in that it selectively optimizes specific
prompts, keeping the bulk of the PLM parameters
frozen (Lester et al., 2021; Keymanesh et al., 2022).
Furthermore, modular prompt (Chen et al., 2022b)
uses a sequence of trainable prompts, each encod-
ing knowledge related to a corresponding class of
the data. Another way to create better prompts is
to add semantically similar examples to them (Liu
et al., 2022, 2023). Our approach leverages an
attribute-based retriever to find relevant examples
from structured data.

Our approach aims to combine the beneficial
properties of different approaches – the fluency
and grammaticality achieved by PLMs, with the re-
liability of few-shot prompt-based approaches, in
a setting where very little data is available. To the
best of our knowledge, our investigation represents
the first exploration to combine retrieval augmenta-
tion and modular prompt for prompt augmentation.

2.1. Dataset

To demonstrate the effectiveness of our method on
a low-resource dataset, we use a Drone dataset
consisting of drone sensor data and handover

messages to the human pilot in critical situations
(Chang et al., 2022). This dataset only comprises
1654 data points, each manually annotated with
realistic data records, capturing the dynamics of sur-
rounding objects and 25 types of drone attributes
such as altitude, flying speed, and battery level.
Besides the full set of measurements, the dataset
also contains a set of attribute-value pairs that are
relevant to the handover situation (e.g., low battery
or high winds). These critical attribute-value pairs
represent the input to the D2T generation step. The
input data has an average token count of 540.79,
with token numbers ranging from 274 to 2481. The
handover messages contain 148.54 tokens on av-
erage. The message lengths range from 29 tokens
to 1263 tokens. We split the data into training, val-
idation and test sets as described in Chang et al.
(2022). A sample data point is shown in Table 1.

3. Methodology

We aim to improve low-resource data-to-text gen-
eration by making the prompt optimally relevant to
the input data. We achieve this by 1) retrieving the
most similar examples from the training data and
2_a) learning a continuous prompt that optimally
fits our task and 2_b) applying a modular method to
replace continuous prompts with attribute-specific
modular prompts. The overall architecture of our
system is shown in Figure 1.

3.1. Retrieval Augmentation
We propose a Retrieval Augmentation method to
retrieve training instances with similar activated log-
ical expressions and combinations of attributes.

Firstly, we retrieve training instances with similar
combinations of attributes. To do this, we obtain
the activated logical expressions E from the current
input data based on description logic defined in
Chang et al. (2022). For example, the description
logic expression E in Table 1 describes a critical
situation of a drone flying very close to an object.
Then we construct a mapping from E to the most
representative data point (xr, yr) in the training data
that has similar attributes. All selected examples
are in Appendix A.2. These retrieved examples are
added to the input prompt, effectively serving as a
template specifically for the input.

3.2. Modular Prompt Tuning
Prompt tuning We use a parameter-efficient
transfer learning method named prompt tuning
(Lester et al., 2021) for adapting PLMs to our do-
main and task. Prompt tuning freezes all the pa-
rameters of the PLM and incorporates a trainable
continuous prompt, facilitating seamless integra-
tion of structured data into the model’s input. The



Input Data

Retriever

Input: {… “Distance”: 3.0, …
Output: There is a gravestone …

Retrieved Example

Token Embedding

… risk of physical damage. There is a castle in the drone’s flight path at a distance of 2.5m

{'Time': 0:05, 'Object': 
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Current Input Data

Pre-trained Language Model

Prompt Embedding
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A1 A2 …
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Time Object Distance

0:05 castle 2.5

Modular Prompts

Figure 1: The architecture of RAMP. It consists of an attribute-based router and an attribute-based retriever,
continuous prompt tokens, and a frozen large language model. RAMP only requires training the modular
prompt to align latent distributions of the data to the PLM.

prompt embedding matrix is initialized randomly
and trained end-to-end to generate context-aligned
output texts. We use 20 continuous prompt to-
kens in our main experiments. We also experiment
with other numbers and report the results in Ap-
pendix A.3.

Modular Prompt with Attribute Routing To aug-
ment the effectiveness of the continuous prompt,
we incorporate modular prompts which use a sep-
arate prompt for different input data types (Chen
et al., 2022b). We develop a collection of modular
prompts, each aligned with distinct sets of attributes
that underpin specific critical scenarios. This mod-
ular framework helps in injecting domain-specific
knowledge, allowing PLMs to comprehend the aug-
mented prompt.

3.3. Choice of PLMs
We choose three prominent PLMs to demonstrate
our RAMP method and use their checkpoints from
the Hugging Face hub for our experiments.
T5: We utilize T5 (Raffel et al., 2020) due to the
fact that it is the standard model for D2T in most
previous work (Kale and Rastogi, 2020).
Flan-T5: We use Flan-T5 (Chung et al., 2022), an
instruction fine-tuned variant of the T5 model pre-
trained on many tasks. We anticipate it to align
better with our prompted input given that it was
fine-tuned with instructions.
LED: We further include LED (Longformer-Encoder-
Decoder; Beltagy et al., 2020), a transformer-based
encoder-decoder PLM based on Longformer, which
performs strongly on long documents.

For all our experiments, the maximal length of our
input prompt is 3744 tokens, which is way longer
than the context window size of T5 and Flan-T5

Models BLEU ROUGE METEOR PARENT
Prompting

Vicuna-13B 0-shot 1.34 14.58 21.99 8.72
Vicuna-13B 1-shot 17.88 23.98 34.87 11.51

Ours
T5RAMP 78.92 89.82 90.30 67.45
Flan-T5RAMP 85.12 92.37 92.48 70.99
LEDRAMP 91.76 96.07 94.92 74.92

Table 2: Performance comparison of various mod-
els on the test split of the Drone dataset.

(i.e., 512 tokens). The primary reason for adding
the LED model to our experiment is its ability to
handle a larger context length (i.e., 16K tokens).

We also experimented with Vicuna-13B (Chiang
et al., 2023), LLaMA-2-7B (Touvron et al., 2023)
and Mistral 7B (Jiang et al., 2023), but we could not
achieve satisfactory results using the same prompt
settings. We speculate this was due to the prompt
formatting issues discussed by Sclar et al. (2023).
Or it could be that larger language models have
stronger inductive biases which can not be easily
altered with prompt-tuning on a limited amount of
data (Chen et al., 2022a). We will further explore
these models in our future work.

For zero-shot and one-shot baseline models, we
use Vicuna (Chiang et al., 2023), an approxima-
tion to the current state-of-the-art PLM ChatGPT,
which is a fine-tuned LLaMA model (Touvron et al.,
2023) trained on 70K user-shared ChatGPT conver-
sations. We aim to assess its performance in our
specific context of drone data-to-text generation.

4. Result and Analysis

In this section, we present our experimental results
for both automatic and human evaluation. Our goal
is to provide a fair comparison study of different



Methods BLEU ROUGE METEOR PARENT
Flan-T5
no example 47.28 ± 0.09 63.88 ± 0.09 63.01 ± 0.13 29.47 ± 0.04
fixed 62.66 ± 0.08 71.26 ± 0.02 71.56 ± 0.07 34.59 ± 0.01
retrieved 71.22 ± 0.10 81.13 ± 0.04 79.36 ± 0.10 46.27 ± 0.02
RAMP 85.12 ± 0.05 92.40 ± 0.03 92.48 ± 0.11 70.99 ± 0.02
LED
no example 31.09 ± 0.28 54.43 ± 0.21 51.30 ± 0.26 36.46 ± 0.03
fixed 63.27 ± 0.16 77.80 ± 0.32 76.05 ± 0.11 47.60 ± 0.03
retrieved 72.84 ± 0.05 83.45 ± 0.20 80.39 ± 0.05 69.09 ± 0.00†

RAMP 93.47 ± 0.02 96.66 ± 0.04 95.43 ± 0.03 74.92 ± 0.02

Table 3: Effectiveness study of different prompting strategies, with a specific focus on the best performing
models, Flan-T5 and LED. †The standard deviation is 0.003.

prompting methods along with RAMP. We also lay
out a study comparing different models to test the
consistency of the RAMP method.

4.1. Automatic Evaluation
We use classical NLG automatic metrics including
BLEU-4 (BLEU; Papineni et al., 2002), ROUGE-L
F1 (ROUGE; Lin, 2004), METEOR (Banerjee and
Lavie, 2005) for overall quality. In addition, we also
use the PARENT (Dhingra et al., 2019) metric to
identify hallucinations by evaluating the generated
text against both references and the input data.

We first compare our RAMP method with prompt-
ing as the baseline method for low-resource D2T.
For the prompting method, we employ 0-shot and
1-shot prompting approaches with one of the state-
of-the-art PLMs, Vicuna-13B (Chiang et al., 2023).
We follow Occam’s razor for prompt engineering
and use a fixed example for all input.1 Table 2
shows that our RAMP method outperforms both 0-
shot and 1-shot prompting by a large margin, (the
difference is statistically significant according to
a Welch’s t-test on three repeating experiments,
p < 0.01). We see that although Vicuna models
are bigger and better performing on various bench-
marks, they perform poorly on our task. We notice
that since Vicuna is fine-tuned as a chat assistant,
it tends to generate longer outputs. Vicuna also
achieves very low PARENT scores indicating se-
vere hallucinations in its output. In addition, we
also find that Flan-T5 significantly outperforms T5
on all metrics, Welch’s t-test on three repeating
experiments, p < 0.01.

We then compare different prompting strategies
on the two best models Flan-T5 and LED from Ta-
ble 2 using automated evaluation metrics in Table 3.
Evidently, the more adaptive prompting strategies

1We cannot experiment with more examples because
the lengths of some input already exceed the context
window size of Vicuna. We provide the details of the
hyperparameters and the prompt in the Appendix A.

that fit the task outperform the more generic exam-
ples and continuous prompts, i.e., no example <
fixed < retrieved < modular. These results affirm
the importance of a well-aligned prompt design that
matches with data semantics.

Additionally, we also study the performance of
various models on our task. Table 2 provides a com-
prehensive overview of the model performances.
Among all the models, we observe that the LED
models consistently achieve the highest scores
across all evaluation metrics. We speculate the
reason for these high scores is due to its ability to
handle larger context inputs.

4.2. Human Evaluation
In this subsection, we provide the results of our
human evaluation study. For this study, our aim
is to better understand the generated handover
messages beyond automatic metrics.

We conduct a human evaluation study on the test
set to further understand the correctness and hallu-
cination issues for all outputs. We asked two anno-
tators to evaluate 166 generated texts each from
six models. So we annotate 996 texts in total and
each text has two labels. We also present Cohen’s
kappa scores κ for the inter-annotator agreement
of each evaluation metric. The annotators evaluate
these texts by applying judgments based on four
binary properties.
Intrinsic hallucination: the generated text directly
contradict the input data (Zhou et al., 2021);
Extrinsic hallucination: some content in the gen-
erated text is not grounded in the input data (Zhou
et al., 2021);
Coverage: whether all the attributes in the input
data are mentioned in the generated text (Jolly et al.,
2022);
Correctness: whether the generated text is free
from grammatical and factual errors (Howcroft et al.,
2020). This metric overlaps with two hallucination
aspects because we want to give an overall quality
estimation;



Intrinsic Extrinsic
Methods H ↓ H ↓ Correctness Coverage # Token
Flan-T5
fixed 27.11 5.72 64.16 87.02 112.23
retrieved 37.65 2.41 61.15 86.15 108.36
RAMP 17.77 2.41 75.30 81.03 105.46
LED
fixed 37.65 7.83 59.64 82.23 107.60
retrieved 23.87 1.52 75.23 81.10 105.04
RAMP 11.15 2.41 81.03 81.33 105.90
κ 77.39 71.17 80.55 65.04

Table 4: Human evaluation results. All numbers are percentages of samples in the test set that exhibit
the corresponding property. ↓ indicates the lower number the better. We also report the average number
of tokens in the last column.

The results of this study are in Table 4. We com-
pare modular continuous prompts with the fixed
1-shot prompt and retrieved augmented prompt
methods. We can see that modular continuous
prompts surpass the performance of both the re-
trieved and fixed prompt settings. This observation
lends further support to the effectiveness of the
modular prompt approach, which is trained with
distinct attribute-specific knowledge. Our findings
are supported by the higher inter-annotator agree-
ment scores (i.e., κ).

We notice that retrieval-augmented methods ob-
tain lower Coverage with Flan-T5 but not with LED.
It could be the case that these models generate
shorter texts because of lower Extrinsic Hallucina-
tion. Further, we also inspect the output length
and find that retrieval-augmented methods indeed
generate shorter texts and lead to lower coverage.

The modular prompt design has demonstrated
a remarkable ability to elevate the performance
of pre-trained language models (PLMs) in gener-
ating text outputs that are notably more accurate
and contextually relevant. Significantly, the strik-
ing resemblance between the automatic evaluation
metric outcomes in Table 3 and the human evalua-
tion results in Table 4 serves to further underscore
the robustness of our method and strengthens the
credibility of our findings.

4.3. Error Analysis
To further understand the error patterns of our sys-
tem, we manually analyzed the errors made by
the system. We specifically wanted to understand
why intrinsic hallucinations increased for retrieved
prompts in Flan-T5 models and why we see cover-
age decreases for modular prompts.

We observed that whenever there are longer en-
tities such as "wall inside building", "bell-shaped
statue" mentioned in the input, the Flan-T5 model
fails to copy them correctly in the case of retrieved
prompts. For the coverage issue, although the num-

bers are lower for the Longformer models, it con-
sistently only misses to mention “PilotExperienced”
parameter. We believe these issues could be fixed
by changing the fine-tuning hyperparameters.

In general, we found the following recurring pat-
terns in the errors made by the models:

Repeated Entities and Tokens We observe that
models tend to repeat some entities such as “drone
droness” instead of “drone’s”, “bell in in in the
drone’s flight” instead of “bell in the drones’ flight”
while generating messages.

Partial Phrases Similarly, we also notice that the
models sometimes fail to copy full phrases from the
input data. For example, it generated a fabricated
entity from the input such as "plant on Para" instead
of "planted parapet".

We believe both issues could be fixed by adding
the repetition penalties and using better token sam-
pling methods during inference.

5. Conclusion

In this work, we present a retrieval-augmented mod-
ular prompt design – RAMP, for a low-resource
D2T generation task. We utilize the drone sensor
dataset that is small and diverse in terms of data
records. Both the automated evaluation and the
human evaluation results demonstrate the effective-
ness of augmented prompts, especially the mod-
ular augmented prompts. The trainable design of
RAMP serves as a vital link for adapting specific in-
put data formats and augmented examples, facilitat-
ing the seamless addition of domain-specific knowl-
edge into the PLMs generation abilities. RAMP also
shows crucial improvements in hallucination. As
a result, our RAMP method presents a promising
solution to enhance the versatility and robustness
of D2T systems in real-world applications.
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A. Appendices

A.1. Prompt Engineering

Final Prompt.

<Retrieved Examples>

Here is the raw sensor data from a drone:

<INPUT_DATA>

Write the handover messages that only include
crucial situations for this data.

A.2. Activated Logic Expressions

The retrieval augmentation method 3.1 uses the
logic expression to retrieve examples that are simi-
lar to the input sensor data. This expression repre-
sents the application of ontology axioms to deter-
mine critical situations in the input data. In a sin-
gle data record, numerous critical situations might
emerge, each associated with various applicable
expressions. The DL expressions act as filters, seg-
menting and categorizing the input data according
to these axioms. An example of how these expres-
sions are applied to the input is provided in Table
1. The complete set of description logic expres-
sions and their most representative examples are
in Table 7.

A.3. Number of Continuous Prompt
Tokens

We were interested in the impact of the length of the
continuous prompt on performance. Table 5 shows
the effect of varying the length of the continuous
prompt lengths between 5 and 60 tokens for the
Flan-T5 and the LED models. The experiments use
the model setting where the continuous prompt is
augmented by the retrieved few-shot examples.

Our experimental results, which include updated
findings, indicate a positive correlation between the
number of continuous prompt tokens and the perfor-
mance of our model. Specifically, we observed that
the LED models exhibit a higher PARENT score as
the number of continuous prompt tokens increases.
Notably, this increase exhibited a slowdown after
the number of continuous prompt tokens exceeded
20. On the other hand, for the Flan-T5 model, we
observed a dramatic increase in the PARENT score
when the number of continuous prompt tokens ex-
ceeded 40. These observations demonstrate the
intricate relationship between continuous prompt
length and model performance, shedding light on
optimal configurations for different model variants.
By demonstrating the beneficial alignment between
the pretrained large language model and our data-
to-text dataset, the findings suggest that even with
60 continuous tokens, the model can effectively
adapt to the sampling space of the drone dataset.

A.4. Experiment Settings

We utilize checkpoints from Hugging Face for the
following models: T5-base3, flan-t5-xl4, led-

3https://huggingface.co/t5-base
4https://huggingface.co/google/

flan-t5-xl

https://openreview.net/forum?id=9Vrb9D0WI4
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# tokens BLEU ROUGE METEOR PARENT
Flan-T5
5 67.19 79.61 78.00 44.07
10 70.04 80.51 78.75 45.77
20 71.22 81.13 79.36 46.27
30 70.75 81.26 79.14 52.17
40 71.06 81.27 79.15 54.57
50 71.22 81.13 79.36 71.76
60 72.33 81.87 79.47 72.27
LED
5 67.19 79.61 78.00 51.38
10 70.04 80.51 78.75 63.18
20 68.14 81.89 78.62 69.09
30 72.34 83.28 80.39 71.15
40 71.23 83.28 80.24 70.51
50 72.05 83.60 80.41 70.78
60 75.61 84.92 81.76 71.16

Table 5: Impact of varying continuous prompt
lengths on Flan-T5 and LED models with retrieved
few-shot examples.

Parameter Flan-T5 LED
Batch size 16 4
Maximal epochs 150 200
Learning rate 0.5 0.5
Optimizer Adam Adam

Table 6: Hyperparameters of Flan-T5 and LED.

base-163845, and vicuna-13b-v1.36. These
experiments are performed on a GPU server
equipped with 8 Nvidia Tesla A100 cards, training
each model using three randomly selected seeds.
We run each model using three different random
seeds including 3407, 42, and 1223. We also pro-
vide the training hyperparameters for our best per-
forming models in Table 6.

The evaluation metrics, including both automatic
and human evaluation, average the outcomes of
three experimental runs under the same prompt
configurations (fixed, retrieved, modular).

5https://huggingface.co/allenai/
led-base-16384

6https://huggingface.co/lmsys/
vicuna-13b-v1.3

https://huggingface.co/allenai/led-base-16384
https://huggingface.co/allenai/led-base-16384
https://huggingface.co/lmsys/vicuna-13b-v1.3
https://huggingface.co/lmsys/vicuna-13b-v1.3


Description Logic Activated Expression Retrieved Example

broken frame [Altitude ≥ Flying] ∧ [Normal_frame ⊑
Normal]

"The drone is flying with a damaged
frame."

nearby moving object [Distance ≤ Near] ∧ [Object_Type ⊑
Moving_objects]

"(0:01) The drone is risking physical dam-
age. It’s flying too close to the moving car
at a distance of 3.0m."

reachable object inpath [Distance ≤ Reachable] ∧ [Inpath =
True]

"(0:05) The drone is facing the risk of
physical damage. There is a car in the
drone’s flight path at a distance of 0.3m."

empty battery [Altitude ≥ Flying] ∧ [Battery_level ≤
empty_battery]

"The flying drone is running out of battery
with only 20% charge."

low battery & strong
wind

[WindSpeed ≥ Strong_wind] ∧ [Bat-
tery_level ≤ empty_battery]

"The drone is flying in a strong wind of
18m/s with a low battery level at 30%."

inexperienced nearby
object

[Distance ≤ Near] ∧ [PilotExperienced =
False]

"(0:00) The drone is facing the risk of
physical damage. It’s flying too close to
Bird1 at a distance of 0.5m, and the pilot
is not experienced."

low battery & low tem-
perature

[Temperature ≤ Low_temperature] ∧
[Battery_level ≤ Low_battery]

"The drone is flying in low temperature at
0 degree with a low battery level at 40%."

low battery & high alti-
tude

[Altitude ≥ High_Atitude] ∧ [Bat-
tery_level ≤ Low_battery]

"The drone is flying so high at 80m height
with a low battery level at 40%."

precipitation [waterproof = False] ∧ [Weather ⊑ Pre-
cipitation]

"The drone is facing a risk of internal dam-
age as it’s flying in gloomy weather and
not waterproof."

gloomy & high altitude [Altitude ≥ High_Atitude] ∧ [Weather ⊑
Gloomy]

"The drone would be damaged physically
as it’s flying at a high altitude of 90m in
gloomy weather.

out of range while low-
battery

[Distance_from_control ≥ Al-
most_out_range] ∧ [Battery_level
≤ Low_battery]

"The drone has only 20% battery and is
4490m away from the remote control."

water surface & low al-
titude

[Altitude ≤ Low_altitude] ∧ [flying_over
⊑ Water]

"The drone is facing a risk of physical
damage as it’s flying over the water sur-
face at a very low altitude of 0m height."

low altitude & fast
speed

[Altitude ≤ Low_altitude] ∧ [Drone-
Speed ≥ Fast_speed]

"The drone is facing the risk of physical
damage. It’s flying at a high speed of
16m/s and low altitude of 0m."

low visibility & nearby
object

[Low_visibility = True] ∧ [Distance ≤
Near]

"(0:00) The drone might get physical dam-
age. It’s flying with a low visibility, and too
close to the tube at a distance of 0.5m."

very close to human [Object_Type = Human] ∧ [Distance ≤
Very_close]

"(0:00) The drone is flying very close to a
human at a distance of 0.5m, and might
cause human injury."

upsidedown & inexperi-
enced

[upside_down = True] ∧ [PilotExperi-
enced = False]

"The drone is risking physical damage for
it’s flying upside down and the pilot is not
experienced."

indoor & nearby human [Indoor = True] ∧ [Distance ≤ Near] ∧
[Object_Type = Human]

"The drone might cause human damage,
it’s flying indoor, and there is a person
only 3.0m away."

Table 7: Description logic and retrieved examples
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