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Abstract
AI democratization aims to create a world in which the average person can utilize AI techniques. To achieve this
goal, numerous research institutes have attempted to make their results accessible to the public. In particular, large
pre-trained models trained on large-scale data have shown unprecedented potential, and their release has had a
significant impact. However, most of the released models specialize in the English language, and thus, AI democra-
tization in non-English-speaking communities is lagging significantly. To reduce this gap in AI access, we released
Generative Pre-trained Transformer (GPT), Contrastive Language and Image Pre-training (CLIP), Stable Diffusion,
and Hidden-unit Bidirectional Encoder Representations from Transformers (HuBERT) pre-trained in Japanese. By
providing these models, users can freely interface with AI that aligns with Japanese cultural values and ensures
the identity of Japanese culture, thus enhancing the democratization of AI. Additionally, experiments showed that
pre-trained models specialized for Japanese can efficiently achieve high performance in Japanese tasks.
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1. Introduction

As AI technology advances, the idea of “AI de-
mocratization,” which aims to create a world where
everyone can easily use AI, has become widely
popular. To contribute to AI democratization,
many research institutions and companies are
publicly releasing their latest methods, source
codes, databases, and pre-trained models. Such
steps are essential for supporting the rapid devel-
opment of AI technology in the future.

Recently, methods using large-scale pre-trained
models based on massive training data have
achieved significant results and have become
mainstream. The advent of self-supervised learn-
ing, which generates pseudo-ground-truth labels
from training data, coupled with the introduction
of the Transformer architecture (Vaswani et al.,
2017), which enables efficient and accurate model
training from massive data, has made large-scale
modeling possible. The Generative Pre-trained
Transformer (GPT, Radford et al. 2018) series en-
gendered a breakthrough in text generation us-
ing self-supervised learning and Transformer ar-
chitectures by discovering a scaling law suggest-
ing that the performance improves as the model
size, amount of training data, and computation
increase (Kaplan et al., 2020). As a result, the
size of the pre-trained models has escalated dra-
matically in the text domain as well as the im-
age and speech domains. However, training high-
performance pre-trained models incurs significant
costs, such as creating training corpora and se-
curing computational resources, making it infeasi-
ble for everyone to undertake pre-training easily.
Fortunately, there is an active trend of releasing

pre-trained models on platforms such as Hugging
Face, and such models are now available.

While there is vibrant activity in the publishing of
pre-trained models, many pre-trained models tar-
geting languages are specialized for English. Con-
sequently, AI democratization lags in non-English-
speaking regions compared with English-speaking
regions. Research is underway on multilingual
models that support several languages. How-
ever, these multilingual models tend to have an in-
creased number of parameters and often under-
perform compared with models specialized for a
particular language given a fixed compute bud-
get (Lin et al., 2022).

To address this issue in Japanese, we released
pre-trained models optimized for Japanese on
Hugging Face. By providing pre-trained models
specialized for Japanese, we hope that users can
freely access a model that aligns with Japanese
cultural values but also ensures the identity of
Japanese culture, leading to a more inclusive AI
democratization that does not solely lean towards
English-centric perspectives.

2. Japanese Pre-Trained Models
We built pre-trained models appropriate for the
Japanese language and culture and released
them in Hugging Face1. Table 1 presents an
overview of the released pre-trained models we
have released by September 2023. These mod-
els have fewer restrictive licenses, thereby allow-
ing their wide use. In fact, between April 2021 and
September 2023, these models were downloaded
over four million times from Hugging Face. The de-

1https://huggingface.co/rinna

https://huggingface.co/rinna
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Pre-trained model Model size License Release date
Language model

rinna/japanese-gpt2-xsmall 37M MIT August 2021
rinna/japanese-gpt2-small 110M MIT August 2021
rinna/japanese-gpt2-medium 336M MIT April 2021
rinna/japanese-gpt-1b 1.3B MIT January 2022
rinna/japanese-gpt-neox-small 110M MIT September 2022
rinna/japanese-gpt-neox-3.6b 3.6B MIT May 2023
rinna/bilingual-gpt-neox-4b 4B MIT July 2023

Language-image model
rinna/japanese-clip-vit-b-16 197M Apache 2.0 May 2022
rinna/japanese-cloob-vit-b-16 197M Apache 2.0 May 2022
rinna/japanese-stable-diffusion 1.1B CreativeML OpenRAIL M September 2022

Speech model
rinna/japanese-hubert-base 95M Apache 2.0 April 2023

Table 1: Released pre-trained models in the Japanese language.

tails and specifics of these models are discussed
in Sections 3 to 5.

3. Language Models

3.1. GPT
3.1.1. Overview

The Generative Pre-trained Transformer
(GPT, Radford et al. 2018) is an autoregressive
language model composed of an input embed-
ding layer, stacked Transformer layers (Vaswani
et al., 2017), and an output classification layer. It
models p(x), the probability of a sequence of text
tokens x = [x1, · · · , x|x|], as factorized token-level
probabilities, and then pre-trains a GPT model to
minimize the negative log-likelihood (NLL) LNLL.

p(x) = p(x1)p(x2|x1) · · · p(x|x||x:|x|−1), (1)
LNLL = − log p(x). (2)

GPT-NeoX (Black et al., 2022) is a GPT vari-
ant that uses a modified architecture for the Trans-
former layer and an alternative position encoding
mechanism called rotary embedding (Su et al.,
2021) as a substitute for original learnable position
embeddings.

For the most capable models, we also released
their instruction-following versions, which were
trained using either Supervised Fine-Tuning (SFT)
or Reinforcement Learning from Human Feedback
(RLHF, Ouyang et al. 2022) via the Proximal Pol-
icy Optimization (PPO, Schulman et al. 2017) al-
gorithm in addition to SFT.

3.1.2. Training Data

For Japanese-specific GPT models, we used
Wikipedia, the CC-100 (Conneau et al., 2020),

and the mC4 (Raffel et al., 2020) datasets for
pre-training. For bilingual English-Japanese GPT
models, we additionally used the Pile (Gao et al.,
2020) and Redpajama (Computer, 2023) datasets.
The instruction-following models were trained on
the Japanese translation of the Anthropic HH (Bai
et al., 2022), the SHP (Ethayarajh et al., 2022), and
the FLAN (Wei et al., 2022) datasets.

Tokenizers of the GPT models are trained via
SentencePiece (Kudo and Richardson, 2018).
Their vocabulary sizes vary from 32000 to 65536.
While the tokenizers for Japanese-only models are
trained from Japanese corpora, the tokenizer of
bilingual-gpt-neox-4b is trained from a mixture of
Japanese and English corpora for a better cover-
age of English tokens.

3.1.3. Experiments

We conducted few-shot evaluations of the GPT
models to assess their performance on Japanese
tasks. We used the JP Language Model Evalua-
tion Harness2 benchmark for evaluation. We con-
ducted a comparison with meta/llama-7b (Touvron
et al., 2023a), meta/llama2-7b, and meta/llama2-
7b-chat (Touvron et al., 2023b), which were pri-
marily trained using English data.

Table 2 lists the average scores for the jcom-
monsenseqa, jnli, marc-ja, jsquad (Kurihara et al.,
2022), xwinograd (Muennighoff et al., 2023),
jaqket-v23, xlsum-ja (Hasan et al., 2021), and
mgsm (Shi et al., 2023) tasks. The few-shot
numbers were 3, 3, 3, 2, 0, 1, 1, and 5. Our
rinna/japanese-gpt-neox-3.6b and rinna/bilingual-

2https://github.com/Stability-AI/
lm-evaluation-harness/tree/jp-stable

3https://sites.google.com/view/
project-aio/competition2

https://github.com/Stability-AI/lm-evaluation-harness/tree/jp-stable
https://github.com/Stability-AI/lm-evaluation-harness/tree/jp-stable
https://sites.google.com/view/project-aio/competition2
https://sites.google.com/view/project-aio/competition2
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Pre-trained model Average score
rinna/japanese-gpt2-xsmall 26.63
rinna/japanese-gpt2-small 27.33
rinna/japanese-gpt2-medium 28.33
rinna/japanese-gpt-1b 32.21
rinna/japanese-gpt-neox-small 30.11
rinna/japanese-gpt-neox-3.6b 36.60
rinna/bilingual-gpt-neox-4b 38.29
meta/llama-7b 33.28
meta/llama2-7b 42.97
meta/llama2-7b-chat 41.31
rinna/japanese-gpt-neox-3.6b-sft 45.24
rinna/japanese-gpt-neox-3.6b-ppo 46.37
rinna/bilingual-gpt-neox-4b-sft 47.65
rinna/bilingual-gpt-neox-4b-ppo 47.33

Table 2: Language model evaluation on the JP
Language Model Evaluation Harness.

gpt-neox-4b pre-trained models outperformed
meta/llama-7b, and instruction tuning via SFT or
PPO significantly improved their capability. By
specializing in Japanese, good performance was
achieved while keeping the number of parame-
ters low. We refer the readers to rinna’s language
model benchmark4 for detailed benchmark results.

4. Language-Image Models

4.1. CLIP

4.1.1. Overview

Contrastive Language-Image Pre-training (CLIP,
Radford et al. 2021) connects visual concepts
with natural language in the embedding space.
It comprises a pair of text and image encoders
and is trained by minimizing contrastive loss. The
Contrastive Leave One Out Boost (CLOOB, Fürst
et al. 2022) demonstrated a better zero-shot per-
formance than the original CLIP by introducing a
novel loss function termed InfoLOOB.

To train the Japanese-specific CLIP efficiently,
we applied Locked-image Tuning (LiT, Zhai et al.
2022), in which both encoders were initialized us-
ing separate pre-trained models, and only the text
encoder was trained. We used the pre-trained
12-layer 16×16-patch-size AugReg Vision Trans-
former (Dosovitskiy et al., 2021; Steiner et al.,
2022) for the image encoder, and randomly ini-

4https://rinnakk.github.io/research/
benchmarks/lm/index.html Due to the update of
the evaluation code base, the latest benchmark adopts
a different evaluation setting than that used in this
paper. The results presented in this paper can be found
in the benchmark spreadsheet on the 20231031 tab.

Pre-trained model Accuracy
laion/clip-base 38.00
laion/clip-large 53.09
rinna/japanese-clip-vit-b-16 50.69
rinna/japanese-cloob-vit-b-16 54.64

Table 3: ImageNet image classification accuracy
in a zero-shot setting.

tialized 12-layer Bidirectional Encoder Represen-
tations from Transformers (BERT, Devlin et al.
2019) with a SentencePiece tokenizer (Kudo and
Richardson, 2018) for the text encoder.

4.1.2. Training Data

Owing to the absence of a large-scale dataset with
Japanese captions, we used CC12M (Changpinyo
et al., 2021). We translated all the English captions
into Japanese. For data augmentation, we gen-
erated captions using Bootstrapping Language-
Image Pre-training (BLIP, Li et al. 2022) trained on
an English dataset.

4.1.3. Experiments

We evaluated CLIP for ImageNet (Deng et al.,
2009) zero-shot image classification. We used
open-sourced Japanese class names5. Addition-
ally, we created 37 Japanese templates from 80
English templates by deduplicating captions that
had the same meaning in Japanese. We com-
pared our models with open-source multilingual
CLIP models (Ilharco et al., 2021) trained on full
LAION-5B (Schuhmann et al., 2022).

Table 3 shows the top-1 accuracy for each
model. Our rinna/japanese-cloob-vit-b-16 per-
formed the best and achieved state-of-the-art ac-
curacy. This is because, even with a limited
amount of training data, the model can be effi-
ciently trained by specializing in a specific lan-
guage.

4.2. Stable Diffusion

4.2.1. Overview

Stable Diffusion (SD) facilitates high-quality im-
age generation using simple text prompts. It is
based on the Latent Diffusion Model (LDM, Rom-
bach et al. 2022), which comprises three main
components: a Variational AutoEncoder (VAE,
Kingma and Welling 2014), a text encoder, and U-
Net (Ronneberger et al., 2015).

5https://gist.github.com/PonDad/
4dcb4b242b9358e524b4ddecbee385e9

https://rinnakk.github.io/research/benchmarks/lm/index.html
https://rinnakk.github.io/research/benchmarks/lm/index.html
https://gist.github.com/PonDad/4dcb4b242b9358e524b4ddecbee385e9
https://gist.github.com/PonDad/4dcb4b242b9358e524b4ddecbee385e9
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(1st)
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Figure 1: Outputs for the text prompt “salary man,
oil painting”. For JSD, the translation in Japanese
“サラリーマン油絵” was used.

To train the Japanese-specific SD (JSD), we
fine-tuned CompVis/stable-diffusion-v1-46 trained
on the English dataset. We applied two train-
ing stages following the concept of Pretraining-
based Image-To-Image translation (PITI, Wang
et al. 2022); The text encoder was trained solely
with U-Net fixed in the first stage and jointly trained
in the second stage.

4.2.2. Training Data

We used approximately 100 million images with
Japanese captions, including the Japanese subset
LAION-5B (Schuhmann et al., 2022). To ensure
data quality, we employed our rinna/japanese-
cloob-vit-b-16 introduced in Section 4.1 to calcu-
late the similarity scores between images and their
captions, and samples with scores below a certain
threshold were removed.

4.2.3. Experiments

We used Japanglish “salary man”, which is com-
monly visualized as a man in a suit, as the text
prompt for the evaluation. Figure 1 shows the re-
sults. The original SD failed to accurately inter-
pret such distinctive Japanese terms. In the first
stage, JSD understood the prompt’s meaning, but
the generated images depicted businessmen with
Western features because U-Net had not been up-
dated. JSD at the second stage (rinna/japanese-
stable-diffusion), JSD successfully generated im-
ages of businessmen with Japanese features. Us-
ing images reflecting Japanese culture as the
training data, we were able to construct a model
consistent with Japanese cultural identity.

6https://huggingface.co/CompVis/
stable-diffusion-v1-4

5. Speech Models

5.1. HuBERT

5.1.1. Overview

The Hidden-unit BERT (HuBERT, Hsu et al.
2021) is a pre-trained model that can learn self-
supervised speech representations. HuBERT
comprises two main components: a convolutional
waveform encoder and a BERT encoder (Devlin
et al., 2019). HuBERT is trained with a BERT-
like masked prediction objective: a portion of the
encoded speech feature sequence is randomly
masked, and a label corresponding to the masked
portion is predicted from the unmasked portion.
However, because speech signals, unlike text,
are continuous-valued sequences, the model is
trained by targeting discrete pseudo-labels ob-
tained from speech using offline k-means cluster-
ing.

5.1.2. Training Data

We used the ReazonSpeech corpus (Yin et al.,
2023), a 19,000-hour speech corpus collected
from Japanese TV programs with 16 kHz sam-
pling. To generate pseudo-labels, we ran k-means
clustering with 100 clusters on 39-dimensional
Mel-frequency cepstral coefficient features for the
first iteration of HuBERT training and 500 clus-
ters on the latent features extracted from the 6-th
Transformer layers’ of the first iteration for the sec-
ond iteration of HuBERT training.

5.1.3. Experiments

We evaluated the performance of the pre-trained
HuBERT model for Japanese Automatic Speech
Recognition (ASR). We used Corpus of Sponta-
neous Japanese (Maekawa et al., 2000). Two
training subset sizes were prepared: core data
only (approximately 32 h) and all data (approxi-
mately 552 h). ASR fine-tuning using the Con-
nectionist Temporal Classification (CTC, Graves
et al. 2006) loss was performed as described
in (Hsu et al., 2021). The final projection layer
was replaced with a softmax layer before ASR
fine-tuning. The target vocabulary included 40
Japanese phonemes, a word boundary symbol,
and a special CTC blank symbol. The pub-
lic HuBERT model meta/hubert-base-ls9607, pre-
trained with 960 hours English speech from Lib-
rispeech (Panayotov et al., 2015), was used for
comparison. In this study, we used the beam
search with a beam size of 20 without a language
model.

7https://huggingface.co/facebook/
hubert-base-ls960

https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/facebook/hubert-base-ls960
https://huggingface.co/facebook/hubert-base-ls960
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Pre-trained model Eval1 Eval2 Eval3
meta/hubert-base

32-hour labeled 13.12 10.33 10.66
552-hour labeled 7.88 5.66 6.48

rinna/japanese-hubert-base
32-hour labeled 9.30 7.07 6.87
552-hour labeled 5.72 4.45 4.73

Table 4: The word error rates for the fine-tuned
HuBERT models with the different sizes of data.

The results are presented in Table 4. For both
sizes of labeled data, the rinna/japanese-hubert-
base outperformed the meta/hubert-base-ls960.
This result indicates that the pre-trained HuBERT
model trained with a large Japanese speech cor-
pus has the potential to provide better performance
in Japanese speech-processing tasks.

6. Conclusion

Aiming to advance AI democratization, this pa-
per discusses the released Japanese GPT, CLIP,
Stable Diffusion, and HuBERT models. Experi-
ments with GPT, CLIP, and HuBERT showed that
pre-trained models specialized for Japanese can
efficiently achieve high performance in Japanese
tasks. Additionally, the Stable Diffusion results in-
dicate that it handles Japanese input and produces
output that reflects Japanese culture. Pre-trained
models are continuously refined, and technically
challenging tasks for improving them have now be-
come achievable. We plan to continue releasing
pre-trained models to further contribute to techno-
logical progress.
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