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Abstract
In modern times, generational artificial intelligence is used in several industries and by many people. One use
case that can be considered important but somewhat redundant is the act of searching for related work and other
references to cite. As an avenue to better ascertain the value of citations and their corresponding locations, we
focus on the common “related work” section as a focus of experimentation with the overall objective to generate the
section. In this article, we present a corpus with 400k annotations of that distinguish related work from the rest of the
references. Additionally, we show that for the papers in our experiments, the related work section represents the
paper just as good, and in many cases, better than the rest of the references. We show that this is the case for more
than 74% of the articles when using cosine similarity to measure the distance between two common graph neural
network algorithms: Prone and Specter.
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1. Introduction

Authors and researchers often turn to tools like
Google Scholar1, Semantic Scholar2, and Re-
searchGate3 to find related research for their scien-
tific papers. These tools rely on knowledge graphs,
where each paper is a node representing common
sections, with the “related work” (RW) section being
crucial for computational scientific articles.

In order to best represent a research article Q an
author would typically have to use search tools to
find references to create a RW section for Q. The
RW section would contain text and cite other arti-
cles similar to Q. In order to automate such a pro-
cess, we propose as a first step a novel technique
based on a newly-released corpus that contains
human annotations of related work sections. We
demonstrate that when using two common graph
neural network (GNN) algorithms to encode re-
search articles, (1) Prone (Zhang et al.) and (2)
Specter (Cohan et al., 2020), the RW section of Q
is more similar to a pre-trained GNN embedding
than other sections, hence "related work is all you
need" for representing Q in a GNN. In this article,
we denote the encoded GNN vectors of an outgo-
ing citation (called FANOUT) from Q as (VFANOUT ).
The representation of an article in a GNN consists
of citations as graph edges and articles as nodes.
We show that the related work section of an un-
seen article in most cases is more similar to its
pre-trained encoding than other sections of the ar-
ticle. This is achieved by comparing VFANOUT to
the original Prone or Specter GNN embeddings

1https://scholar.google.com/
2https://www.semanticscholar.org/
3https://www.researchgate.net

(Qmodel) (held out pre-trained models).
To better summarize our approach, we first re-

view previous work in Section 2, followed by an
explanation of how citation graphs are employed in
tools like Semantic Scholar and others. We then de-
tail our methodology using GNNs in Section 3 and
provide experimental settings in Section 4. Finally,
Section 5 presents the results, and Section 6 dis-
cusses the other models, concluding that “related
work is all you need.”

2. Related Work

The idea that related work could be the best
FANOUT representation of a paper has not been
explored heavily if at all. However, there has been
a considerable amount of work in related work gen-
eration that attempts to create the FANOUT of the
related work section of a paper.

For example, Chen et al. (2021) uses a set of
publications that are related to Q and summarizes
them to give the author more insight into other
works. Their work extracts sentences from papers
and generates an abstract from the related publica-
tions. Their work uses a relation-aware effect based
on relations from a graph with a unique dataset.
Unfortunately, since their graph is unique and not
part of a major benchmark, it differs from our ap-
proach which uses graphs that are commonly used
by Prone and Specter.

On the other hand, a technique similar to Prone
and Specter uses text and citations to generate
related work. (Chen and Zhuge, 2019) Their work
is more closely aligned to ours because, while it
does not show that related work is more important,
it attempts to generate the related work from the text

https://scholar.google.com/
https://www.semanticscholar.org/
https://www.researchgate.net
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of a paper to other papers that cite Q. Keywords
are extracted from those papers called QFANIN

and constructs an intermediate graph that is used
to generate a related work section. Their work uses
ROUGE, MEAD, and LexRank for evaluation of the
generated related work. In our work, citations and
text are compared but the similarity metric used is
based on cosine similarity. Our goal is to show that
the RW section is a more powerful representation,
thus, fluency metrics and others for generation are
not used for evaluation.

Somewhat related is the work from Li and
Ouyang (2022) that surveys the field according to
more recent summarization techniques. Compar-
isons are done on the latest approaches. Their
work shows important to the related work section
and shows that several approaches are based on
tasks that are not directly related to what we pro-
pose. However, it seems as if several of the extrac-
tive techniques have found citations helpful while
not using citation graphs as a method of training.
Our work explicitly uses the information gotten from
citation graphs that were created using the Prone
and Specter method.

One work (Lv et al., 2022) is most closely related
to our work because it uses a a large graph of pa-
pers along with a learning method that projects cita-
tions and papers into a vector space, thus making
them measurable via a linear vector-space method
such as cosine similarity. Their work creates a
graph that is derived from titles and abstracts, simi-
lar to the Specter method compared here. However,
their work classifies entire papers into scientific cat-
egories omitting a section-level analysis.

Mai et al. also conducted experimentation on
datasets from Semantic Scholar (similar to the
Specter method) to validate entity retrieval where
entities are mostly paragraph vectors. Additionally,
they note that knowledge graph embeddings along
with paragraph vectors can be useful for link pre-
diction. Their work touches on several of the same
themes as ours but does not explicitly show that
paragraphs belong to specific sections nor do the
make claims of the value of FANOUT from specific
sections.

Another approach (Jia and Saule, 2018) creates
clusters citations based on distributed representa-
tions of papers. Instead of doing random walks
like Prone they construct neighborhoods using a
sliding window over consecutive words in a sam-
pling procedure. Their approach is impressive and
should be considered a good next step to show the
value of the citations chosen. In this work, we focus
strictly on showing that for two baseline graph em-
bedding approaches we are able to show that the
combination of VFANOUT in RW alone is a good
representation of Q.

3. Methodology

3.1. Graphs Embeddings
Language models trained using algorithms like
Prone and Specter generate embeddings that rep-
resent articles. The embeddings are numerical
represenations of graphs and are able to capture
semantic relationships and information measurable
by graph metrics such as cosine similarity. When
encoding an embedding for an article (Q) that is
not in a set of articles created by a pre-trained GNN
Prone or Specter model, it may be difficult to gen-
erate a new embedding for Q. This is due to fact
that Q is not part of the original graph and, thus,
the lacks relationship and other knowledge – Q is
not an article in G, the pre-trained graph. In order
to resolve this issue, we propose that an unseen
article Qnew can be represented by the centroid, or
weighted average of its VFANOUT (the vector of all
of its outgoing citations) as illustrated in In Figure
1.

Figure 1: Flowchart illustrating the process of gen-
erating a new vector (Qnew) using the centroid
method.

3.2. Related Work Representations
To demonstrate that the RW section annotated from
the newly-formed dataset4 accurately represents
articles, we combine the VFANOUT of related work
sections, calculate their weighted average (cen-
troid), and compare it with centroids from all sec-
tions using cosine similarity.

We employ two cutting-edge models for generat-
ing semantic vectors of articles: Specter and Prone.
Specter, a transformer-based model (Vaswani et al.,
2017), utilizes SciBERT (Beltagy et al., 2019) and
PubMedBERT (Gu et al., 2020) language mod-
els, producing 1024-dimensional embedding vec-
tors capturing semantic relationships among pa-
pers. Prone, based on the BERT architecture, is
tailored for scientific documents, generating 512-

4https://github.com/rjzevallos/
Related-Work-is-All-you-Need

https://github.com/rjzevallos/Related-Work-is-All-you-Need
https://github.com/rjzevallos/Related-Work-is-All-you-Need
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dimensional embedding vectors representing text
semantics.

For each article, we use the unique DOI id to ob-
tain its Semantic Scholar ID (SSID)5. We use the
SSID to query both pre-trained models (Specter
and Prone) to obtain encoded GNN embeddings.
Each paper’s embedding is then used to compute
the centroid of vectors from FANOUT related work
sections and compare to other sections. A descrip-
tion follows in Algorithm 1.

Algorithm 1 Related Work vs. All Distance
.
Require: Q with N references: Ri

Require: Qmodel generated for Prone and Specter
Models

1: Generate VFANOUT of Q using Prone and
Specter models

2: Split VFANOUT into Vrw (Related Work ref-
erences FANOUT) and Vall (All references
FANOUT)

Require: Vrw = {Ra, Rb, Rc} where Ra,b,c ∈ RW
Require: Vall = VFANOUT

3: Calculate the centroid vector of Vrw =⇒ Qrw =
1

Nrw

∑Nrw

i=1 Vrwi

4: Calculate the centroid vector of Vall =⇒ Qall =
1

Nall

∑Nall

i=1 Valli

5: Calculate the cosine similarity between Qrw

and Qmodel =⇒ Crw = Qrw·Qmodel

∥Qrw∥·∥Qmodel∥
6: Calculate the cosine similarity between Qall

and Qmodel =⇒ Call =
Qall·Qmodel

∥Qall∥·∥Qmodel∥

4. Experimental Setup

In this section, we detail the setup of the various ex-
periments carried out in the context of our study on
FANOUT representations in graph models for the
analysis of articles. To evaluate the effectiveness of
our approach, we conduct a series of experiments
covering multiple aspects of the processing and
application of these models.

4.1. Dataset

The dataset (made public)6 used in this study con-
sists of 400,000 academic research papers in the
English language, spanning diverse fields of re-
search including computer science, engineering,
physics, chemistry, mathematics, economics, and
others. The papers originate from peer-reviewed
venues including journals and conference proceed-
ings in various scientific disciplines. The corpus

5The original Specter GNN embed-
dings were obtained from Semantic Scholar
(www.semanticscholar.com)

6https://github.com/rjzevallos/
Related-Work-is-All-you-Need

covers publications from the past 5 years as well as
seminal historical papers within each field. Each
paper contains the full list of bibliographic refer-
ences, which have been manually categorized by
expert annotators into related works versus other
references. The related works are directly relevant
to the paper’s contributions and methodology, while
other references provide background information.

On average, each paper has 20 references, with
a minimum of 5 and maximum of 50 references per
paper. 60% of the papers come from computer
science conference proceedings including ACL,
NeurIPS, ICML, CVPR, ICCV, SIGIR, WWW, and
others. The remaining 40% come from scientific
journals such as Nature, Science, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
ACM Transactions on Information Systems, Journal
of Machine Learning Research, and more. Each pa-
per is uniquely identified by an ID mapped to its Se-
mantic Scholar identifier, to retrieve pre-computed
embedding representations from the Specter and
Prone models.

4.2. Experiments

This section describes the experiments conducted
to evaluate the hypothesis that the FANOUT from
a RW section better captures semantic information
of a Qnew when compared to other sections. We
perform the following two main tasks: (1) assess
the centroid of RW vectors from our dataset in the
absence of modeling and (2) create a predictive
model that will combine both the RW from papers
and other sections to create vectors that can repre-
sent the entire paper.

4.2.1. Task One: Related Work Vectors

In order to better ascertain the validity of our hy-
pothesis, we focus on first showing that the RW
section represents an article well without modeling.
We use the entire set of available articles (400K) by
creating the VFANOUT of each paper. This is done
by computing the centroid of both the Specter and
Prone vectors with the assumption that the cen-
troid vector best summarizes what the RW section
contains. We then measure the cosine similarity
difference between: (1) Qrw and Qmodel and (2)
Qall and Qmodel of each article. After that, we eval-
uate the results by calculating the average count
of RW centroids (Crw) and All centroids Call that
performed best as shown in Algorithm 1.

4.2.2. Task Two: Predictive Models

In our second task, we aim to assess how well
a predictive model can estimate Qnew and com-
pare it to the Qrw assumption. We want to see if

https://github.com/rjzevallos/Related-Work-is-All-you-Need
https://github.com/rjzevallos/Related-Work-is-All-you-Need
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combining Qrw and Qnrw still produces good re-
sults, similar to adversarial learning. We evaluate
the models by measuring cosine similarity between
predicted vectors (Qpredict) and Qrw compared to
the actual representation of each scientific paper.
When the model predicts higher cosine similarity,
we review the examples to find the best paper rep-
resentation. This helps us determine if the models
offer additional insights beyond related work alone.
Our results provide insights into optimal VFANOUT

representation strategies.
For this task, we use two neural network ap-

proaches. The first is a feed-forward neural network
(NN1), consisting of three hidden layers with 512
units and ReLU activations. It has 50% dropout
and matches the embedding size (768). We use a
learning rate of 0.0005 and a batch size of 32, with
an Adam optimizer, and fine-tune hyperparameters
via grid search.

The second approach, NN2, is also a feed-
forward neural network operating on the same in-
puts. It comprises 100 hidden layers, each with
256 units and GELU activations. After each GELU
activation, we apply layer normalization and 40%
dropout. Input dimensions are 256 for the Vrw and
512 for all VFANOUT . We use a learning rate of
0.00005, a batch size of 32, a CosineAnnealing
learning rate scheduler, and an AdamW optimizer
for training.

5. Results

In our experiments, we show that the creation of a
RW vector (Vrw) is an effective approach for creat-
ing graph embeddings of an unseen article. The
results in this section provide more detail into both
tasks performed.

5.1. Task One: Related Work Vectors
In Task One, we calculate weighted average cen-
troids of Prone and Specter embeddings for Vrw

using only related work sections of each paper. We
also compute separate centroids for Prone and
Specter embeddings for Vall, considering all pa-
per sections. Then, we compare the Crw and Call

values to determine the final paper representation.
“Related Work” FANOUT is more similar to the orig-
inal encoding in 74% (Prone) and 69% (Specter)
of all articles, respectively.

5.2. Task Two: Predictive Models
In Task Two, we leverage the prior knowledge
gained in Task One as a valuable means to predict
vectors that can enhance the representation of a sci-
entific paper. Our objective in this task is to assess
the feasibility of constructing a predictive model that
combines both Qrw and Qnrw centroids to more

accurately approximate the final Prone and Specter
representations of the paper. To achieve this, we
employ NN1 and NN2 as determining mechanisms.

Using NN1, a three-layer feedforward neural net-
work, we observe a notable improvement when
combining Qrw with Qnrw within the predictive
model. Specifically, we achieve a 2.7% enhance-
ment in the case of Prone and a 3.2% enhance-
ment in the case of Specter, as measured by cosine
similarity. Our evaluation, limited to the test set, vali-
dates that the predicted vectors better align with the
paper’s content compared to the vectors derived
from related work in 62% of the cases. Notably, our
experiments reaffirm the prominence of the "Re-
lated Work" section as the primary determinant for
generating a GNN vector representation of a paper.
However, it’s important to underscore that a neural
network can be employed synergistically with the
"Related Work" section to enhance the outcomes
of other FANOUT methods.

Conversely, NN2 yields even more impressive re-
sults, boasting an 8.1% improvement for Prone and
a remarkable 10.15% improvement for Specter over
the baseline Qrw. Furthermore, our assessment
demonstrates that, in 78% of evaluated cases, the
predicted vectors outperform those derived from
the related work section in terms of alignment with
the paper’s content.

6. Conclusion

In this article, we explore two major graph neu-
ral network methods: Prone (Zhang et al.) and
Specter (Cohan et al., 2020). We demonstrate that
for a newly-formed dataset where “related work”
citations are annotated, the “related work” section
alone more often than not (more than 50% of the
time) represents scientific papers sufficiently. This
insight provided a novel method for generating pa-
per vectors.

Our experiments highlight the key role of related
work citations (FANOUT) in shaping paper repre-
sentations. Summarizing pertinent papers cap-
tures primary topical and semantic signals, rein-
forced by significant improvements in cosine simi-
larity across both Prone and Specter embeddings.

We introduce predictive models that combine
related work with other VFANOUT to enhance
GNN representations. Integrating related and non-
related reference knowledge can surpass individual
paper vectors’ limitations, potentially creating su-
perior composite representations. Our approach
extends beyond encoding new papers, consolidat-
ing information into better encodings for unseen
articles.

In conclusion, this work advances optimal
reference-based strategies for academic document
vector representations, guiding researchers in sit-
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uating manuscripts within semantic vector spaces
for exploration and discovery.
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