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Abstract
This paper introduces REFLECTSUMM, a novel summarization dataset specifically designed for summarizing
students’ reflective writing. The goal of REFLECTSUMM is to facilitate developing and evaluating novel summariza-
tion techniques tailored to real-world scenarios with little training data, with potential implications in the opinion
summarization domain in general and the educational domain in particular. The dataset encompasses a diverse
range of summarization tasks and includes comprehensive metadata, enabling the exploration of various research
questions and supporting different applications. To showcase its utility, we conducted extensive evaluations using
multiple state-of-the-art baselines. The results provide benchmarks for facilitating further research in this area.
Keywords: Corpus Resource, Summarization, Opinion Mining, Applications

1. Introduction

Advances in Pretrained Language Models (Raf-
fel et al., 2020; Lewis et al., 2020; Zhang et al.,
2020) and Large Language Models (Brown et al.,
2020; Chowdhery et al., 2022; Workshop et al.,
2022; Touvron et al., 2023) have propelled neural
summarization to new heights. Existing research
has primarily focused on standard summarization
benchmarks within domains like news (Hermann
et al., 2015; Narayan et al., 2018), dialogue (Gliwa
et al., 2019), scientific articles (Cohan et al., 2018),
and opinions (Angelidis and Lapata, 2018; Chu
and Liu, 2019; Bražinskas et al., 2020). However,
there is also a need for benchmarks that better
represent real-life applications of summarization.
These benchmarks should explore areas that have
received limited attention and that present new and
challenging use cases. By incorporating these un-
derexplored domains into the evaluation process,
we can effectively assess the performance of sum-
marization models in scenarios where summariza-
tion can make a meaningful social impact. This
paper addresses this need by introducing REFLECT-
SUMM, a novel dataset focusing on the summariza-
tion of 17,512 student reflections on 782 univeristy
lectures from 24 large STEM classes. Table 1
shows example reflections in response to a prompt
regarding the interesting facets of a lecture. As sug-
gested by Baird et al. (1991), reflections are useful
for both students and teachers, enhancing their
knowledge, self-awareness, and classroom prac-
tice. For example, providing reflection summaries
can assist instructors in identifying key areas where

* These authors contributed equally to this work.

students exhibit misconceptions, thereby enabling
them to strategize appropriate follow-up actions for
upcoming lectures (Fan et al., 2017). Compared to
using human-crafted summaries, automatic sum-
marization can help scale the use of reflections in
educational practice.

It is important to recognize that student reflec-
tions and their summaries differ from standard
benchmark corpora in the related area of opinion
summarization,1 which has traditionally focused on
product and service reviews. Table 1 illustrates
the variability observed in the length and structure
of reflections. While some students opt for con-
cise expressions using words or phrases, others
delve deeper into the topic by composing complete
sentences to highlight interesting lecture aspects.
Reflection summaries are also more abstractive
than standard opinion summaries (see Table 2, to
be discussed below).

Furthermore, REFLECTSUMM provides richer
types of information compared to existing corpora
for summarizing both student reflections (Luo et al.,
2016; Fan et al., 2017; Magooda and Litman, 2020)
as well as opinions (Angelidis and Lapata, 2018;
Bražinskas et al., 2020; Angelidis et al., 2021; Yang
et al., 2023). While prior corpora emphasized ei-
ther abstractive or extractive summarization, our
dataset provides three types of reference sum-
maries for each set of reflections: extractive, ab-
stractive, and phrase-level extractive summaries.
Additionally, we augment the dataset with valuable
metadata, such as reflection specificity scores,2

1Opinions are similarly obtained from multiple hu-
mans and order doesn’t matter.

2Each reflection in Table 1 is assigned a score
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Reflection Prompt
Describe what you found most interesting in to-
day’s class

Student Reflections
• Nothing in particular today -> 1.0

• Despite the confusion, I did find setting up these problems to

be very interesting and rewarding. -> 3.0

• Equipotentials -> 2.0

• i thought the breakout room questions were interesting be-

cause i learned how to do questions -> 4.0

• I found the last problem in class the most interesting because

it was proven we can derive almost anything. -> 4.0

• The most interesting thing was that finding electric potential

doesn’t require a path, but only the magnitude of the charge and

it’s distance from the point of interest. -> 4.0

• I really enjoy line integrals and I can tell that we’re moving

towards using them to calculate potential. -> 4.0

• Collection of point charges (pairing them) -> 2.0

• How we can calculate something so complicated as electrons

passing through an area is very cool. -> 3.0

• I found equipotentials to be the most interesting thing, espe-

cially drawing a equipotentials for a dipole! -> 4.0

• I thought it was interesting that Vnet is equal to all Vs added

together -> 4.0

• I found how conductors act to be interesting. -> 3.0

... the rest is omitted to save space

Abstractive Summary
The students today found calculations and rela-
tionships to other concepts that they have learned
in this and other classes interesting. They also
found potential energy and equipotentials very
interesting, as well as some integration concepts.

Extractive Summary
• I found equipotentials to be the most interesting
thing, especially ...
• The most interesting thing was that finding elec-
tric potential doesn’t require a path, but only the
magnitude of the charge and it ...
... three more extractive reflections omitted to
save space

Phrase Summary
• equipotentials
• calculations
• relations to old concepts
• potential
• integration

Table 1: An example from the REFLECTSUMM
dataset showing reflections annotated with speci-
ficity score (displayed after the special token “->”)
and three different types of reference summaries.

which can be used to improve summarization per-
formance (see Section 7). Furthermore, we pro-
vide student demographic information, enabling
the exploration of fairness and equity issues.

Our contributions can be summarized as follows:
(1) We publicly release REFLECTSUMM, which con-

ranging from 1 to 4 (explained in Section 3.2).

tains 17,512 reflections on 782 lectures from 24 uni-
versity courses, along with reference summaries
and metadata, allowing for exploration and ad-
vancement in summarization. (2) We conduct a
detailed analysis using both pretrained language
models and large language models to benchmark
the REFLECTSUMM dataset across abstractive, ex-
tractive, and phrase summarization tasks. (3)
We investigate research directions leveraging the
provided metadata by exploring the concept of
specificity-aware summarization. The specificity
metadata provides a way to integrate the study of
specificity (Li and Nenkova, 2015; Gao et al., 2019)
into summarization. Additionally, we showcase that
our demographic information can assist further re-
search in studying the fairness and bias problem
in the context of summarization research (Sec-
tions 3.2 and 8). (4) We make our dataset, mod-
els, and model outputs publicly available at https:
//github.com/EngSalem/ReflectSUMM, enabling re-
searchers to build upon our work.

2. Related Work

Prior student reflection datasets (Luo and Litman,
2015; Luo et al., 2016; Magooda and Litman, 2020)
were constrained in their size, course diversity, and
summarization task coverage (see Table 3, to be
discussed below). Specifically, prior datasets not
only summarized fewer lectures, but also covered
fewer academic subjects and/or courses per sub-
ject, limiting investigations of how models gener-
alize. In addition, only one of our three summa-
rization tasks (extractive, abstractive, and phrase-
based) is covered per prior work. Well-known re-
view opinion summarization benchmarks are simi-
larly constrained in their summarization task cov-
erage, with OpoSum (Angelidis and Lapata, 2018)
focused on extractive summarization and Few-
Summ (Bražinskas et al., 2020) instead focused
on abstractive summarization (Table 2). REFLECT-
SUMM provides reference summaries in three for-
mats (abstractive, extractive, phrase-based), new
types of metadata (reflection-level specificity an-
notations, student demographic information), and
enables various evaluation scenarios (including but
not limited to cross-course, within-course, course-
agnostic, cross-subject, etc.).

Most prior NLP work on student reflections has
focused on quality (e.g. specificity) prediction
(Kovanović et al., 2018; Ullmann, 2019; Carpen-
ter et al., 2020). With respect to summarization,
Luo and Litman (2015) suggested extracting noun
phrases to compress the reflections for supporting
mobile applications. Magooda and Litman (2020)
utilized neural models with a focus on generat-
ing abstractive summaries in a low-resource con-
text (Magooda et al., 2021; Magooda and Litman,

https://github.com/EngSalem/ReflectSUMM
https://github.com/EngSalem/ReflectSUMM
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2021). Our work follows the neural paradigm, fur-
ther developing prior pretrained baselines and ex-
ploring the use of Large Language Models (LLMs).

Our dataset can be considered as a special
case of low-resource multi-document opinion sum-
marization, where the opinions here refer to stu-
dent reflections rather than service and product
reviews (Angelidis and Lapata, 2018; Bražinskas
et al., 2020). Most prior opinion work with lim-
ited data focused on synthesizing training data for
intermediate finetuning (Bražinskas et al., 2020),
parameter efficient techniques (Bražinskas et al.,
2022), or second stage reranking (Oved and Levy,
2021). Previous low-resource work that targeted
summarizing both student reflections and prod-
uct reviews leveraged multitask learning with pre-
trained language models (Magooda et al., 2021),
domain transfer from pretrained models (Magooda
and Litman, 2020), and curriculum learning (Ma-
gooda and Litman, 2021). Recently, Large Lan-
guage Models (Brown et al., 2020; Workshop et al.,
2022; Sanh et al.; Touvron et al., 2023) have been
explored for both news (Goyal et al., 2022; Zhang
et al., 2024) and opinion (Bhaskar et al., 2023)
summarization in zero-shot settings. We provide
several baseline results with both pretrained lan-
guage models and LLMs to benchmark their utility
in the zero-shot and one-shot summarization of
reflective writing.

3. REFLECTSUMM

3.1. Dataset Collection and Annotation

The student reflections in REFLECTSUMM were col-
lected after each lecture in 24 courses from two
American universities. The data were obtained
across four semesters, from Fall 2020 to Spring
2022. Students used the CourseMirror Applica-
tion (Fan et al., 2015)3 to respond to two prompts:
(1) Describe what you found most interesting in
today’s class and (2) Describe what was con-
fusing or needed more details in today’s class.
These reflection prompts are based on learning
sciences research, starting with Menekse et al.
(2011), where students wrote reflections on pa-
per and a TA manually summarized them. These
prompts are polarity-specific (confusing versus in-
teresting lecture aspects). Prior evaluations of
early versions of the CourseMIRROR app used to
collect our data (where the app only used phrase
summarization at the time) found that reading the
phrase summaries was viewed positively by both

3The application is downloadable from Apple Store
https://apps.apple.com/us/app/coursemirror-v2/
id1506495976 and Google Store https://play.google.
com/store/apps/details?id=education.pittsburgh.
cs.mips.cm_v2&hl=en_US&gl=US&pli=1

instructors and students (Fan et al., 2015). More
recently, Menekse (2020) found that generating
reflections and reading class phrase summaries
improved student exam scores.

Figure 1: REFLECTSUMM corpus creation.

For the reflection quality annotation, following
the guidelines in Luo and Litman (2016), annota-
tors assigned a score from 1-4, where 4 means
the reflection text has the highest specificity and 1
means the least specificity.

Turning to summarization, the phrase summary
task for the annotator is to provide five phrases that
can best summarize the students’ reflections, to-
gether with how many students semantically men-
tioned each phrase. Those phrases can be ei-
ther extracted from the reflections or manually con-
structed by the annotator. The annotators are fur-
ther instructed to write an abstractive summary to
summarize the major points of the full reflections.
Lastly, the annotators select five reflections as the
extractive summaries. Full annotation guidelines
are in Appendix A.1.

Eleven college students with backgrounds in the
appropriate subject domains were recruited to work
on reflection scoring and summarization. Students
were first trained on three batches of extra-held
sets to understand and grasp the tasks before be-
ing assigned real jobs. The average pairwise inter-
annotator agreement (IAA) across four students
with double-annotations is 0.668 for the reflec-
tion score by Quadratic Weighted Kappa, suggest-
ing substantial agreements. For summarization,
we instead measure the averaged inter-annotator
ROUGE scores (R-1/R-2/R-L) (Lin, 2004), which
are 48.31/27.57/43.52 and 30.16/6.77/27.91 for the
extractive and abstractive summarization tasks, re-
spectively. These scores are slightly lower than
those reported in Magooda (2022), which used

https://apps.apple.com/us/app/coursemirror-v2/id1506495976
https://apps.apple.com/us/app/coursemirror-v2/id1506495976
https://play.google.com/store/apps/details?id=education.pittsburgh.cs.mips.cm_v2&hl=en_US&gl=US&pli=1
https://play.google.com/store/apps/details?id=education.pittsburgh.cs.mips.cm_v2&hl=en_US&gl=US&pli=1
https://play.google.com/store/apps/details?id=education.pittsburgh.cs.mips.cm_v2&hl=en_US&gl=US&pli=1
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the same guidelines but on different data. Figure
1 provides a summary of the annotation process
involved in constructing REFLECTSUMM.4

3.2. Dataset Description and Details

REFLECTSUMM reflections were collected after 782
lectures from 24 courses spanning four different
subjects: Engineering (ENGR), Physics (PHY),
Computer Science (CS), and Computing Infor-
mation (CMPINF).5 The majority of both lectures
(56.9%) and courses (54.2%) are from ENGR. The
remaining data is fairly evenly distributed between
CS (20.3% of lectures and 20.8% of courses) and
PHY (18.2% of lectures and 16.7% of courses), with
only a small percentage of CMPINF lectures and
courses (4.6% and 8.3%, respectively).

A total of 17, 512 REFLECTSUMM reflections
spanning the 782 lectures have been annotated
for their specificity as noted above. The majority
of the reflections (52.5%) were rated as having a
specificity score of 3, indicating moderate speci-
ficity. 22.6% of the reflections received the high-
est rating of 4, while 14.2% received a score of
2 and only 10.7% received a score of 1. The av-
erage specificity score of sentences selected for
extractive summaries is higher (3.08) compared to
the discarded sentences (2.85), suggesting that
considering specificity as additional information to
guide summarization is worth exploring.

Before the data collection phase, students were
asked to participate in a pre-survey that collects
their demographic information. Male students
make up the majority (55.71%), while the survey
did not record 3.45% of students’ gender informa-
tion. We also observe a diverse distribution across
multiple racial groups, and the majority (58.89%)
are White followed by Asian (20.93%).

Table 2 compares REFLECTSUMM with several
established multi-document opinion summariza-
tion datasets. REFLECTSUMM boasts 782 input-
summary pairs, which represent the count of
unique lectures featuring the "interesting/confus-
ing" prompt in the summarization input. This
dataset surpasses OPOSUM (Angelidis and Lap-
ata, 2018) and FewSumm (Bražinskas et al., 2020)
in terms of dataset size (column 2). While OPO-
SUM and FewSumm limit the number of docu-
ments per input, REFLECTSUMM has more vari-
ability in the number of words and documents per
input (columns 3 and 4). Column 5 shows that our
abstractive summarization task is more abstractive,
as measured by the percentage of novel n-grams

4We justify the reason to select undergraduate
students as annotators in Appendix A.2.

5ENGR courses come from a midwest US univer-
sity, while the rest come from a northeast university.

(See et al., 2017).6 Lastly, REFLECTSUMM encom-
passes a distinctive blend of summarization tasks
(column 6). Table 3 compares REFLECTSUMM
with prior reflection-focused corpora. Columns 2-5
show that our dataset surpasses in the number of
unique lectures featured with focused prompts, the
breadth of courses covered, the diversity of refer-
ence summaries, and the availability of metadata.

4. Tasks and Benchmark Models

4.1. Extractive Summarization

Corresponding to the human extractive summary
task, the goal of our models is to pinpoint the
five most salient reflections (documents) from a
collection of reflections within the same lecture.
We evaluate several baseline models to bench-
mark extractive performance: the traditional un-
supervised method, LexRank (Erkan and Radev,
2004); BERTSUM-EXT (Liu and Lapata, 2019),
a pretrained language model crafted for extrac-
tive summarization; MatchSum (Zhong et al.,
2020), a state-of-the-art summarization system
which employs a re-ranker, and follows a two-stage
paradigm to extract summaries; and ChatGPT
(GPT-3.5 turbo), a large language model capable
of generating high-quality summaries. For Chat-
GPT, we devised two variants of prompts for exper-
imentation in a zero-shot setting: (1) GPT-reflect:
This variant prompts the model to select complete
reflections, which mirrors how students typically
write their reflections. (2) GPT-reflect + speci-
ficity: This variant integrates specificity scores
with the original reflection and prompts the model
to consider these scores while making selection
choices. We also created a one-shot setting for
the best-performing zero-shot model by randomly
selecting a training split example and instructing
the model to follow the example.

4.2. Extractive Phrase Summarization

The extractive phrase summarization task seeks to
generate summaries constituted by five phrases,
each supplemented with an accompanying num-
ber that indicates how many reflections support
each phrase. This numerical task is inspired by the
desire for a more comprehensible display of reflec-
tion distributions to instructors (Fan et al., 2015)
while phrase extraction facilitates easier access on
mobile devices. To benchmark phrase summariza-
tion, we have employed the unsupervised model
proposed by Luo and Litman (2015), aggregating
noun phrases into five clusters and identifying the
clusters’ centroids as the phrase summary. We

6novelty = # new n-grams in summary/ # total n-
grams in summary
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Dataset # Pairs # Words/input # Docs/input Abstractiveness Tasks
(min/avg/max) (min/avg/max) (1/2/3-grams)

OPOSUM 600 468/485/499 10/10/10 - Ext.
FEWSUMM Amazon 180 342/397/438 8/8/8 25.02/78.29/97.65 Abst.
FEWSUMM Yelp 300 362/399/433 8/8/8 26.04/80.71/98.76 Abst.

REFLECTSUMM 782 10/344/2229 4/22/79 36.97/83.11/98.12 Abst./Ext./Phrase

Table 2: Descriptive statistics comparing prior datasets (top) to REFLECTSUMM. # Pairs denotes the
number of reflection/review document and summary pairs, while # Words/Input (concatenated re-
flections/reviews) represents the total word count in the input. # of Docs (reflections/reviews)/input
indicates the number of documents per input . Abstractiveness measures abstractive summaries’
novelty in terms of n-grams. (-) signifies that the information is not applicable for this dataset. Tasks
include Abstractive (Abst.), Extractive (Ext.), and Phrase (Phr.) summarization.

Dataset # Pairs Course Coverage Tasks Metadata

Luo and Litman (2015) 36 1-ENGR Phrase No

Luo et al. (2016) 70 2-Statistics Phrase No

Magooda and Litman (2020) 188 4-ENGR/Statistics/CS Abst. No

REFLECTSUMM (ours) 782 24-ENGR/PHY/CS/CMPINF Phrase/Abst./Ext. Yes

Table 3: Comparison of REFLECTSUMM with previous reflection summarization datasets. #Pairs rep-
resents the count of unique lectures featuring the "interesting/confusing" prompt in the summarization
input. Course Coverage describes the sources of reflections, presented in a count-course subjects
format, Tasks delineates the types of reference summaries, and Metadata indicates the inclusion of
additional information in the corpus (e.g., student demographics, reflection specificity).

named it PhraseSum. In addition, we utilized Ope-
nAI’s ChatGPT (GPT-3.5-turbo) as our LLM to
perform zero-shot phrase extraction. We experi-
mented with GPT-Human, using the prompt pro-
vided to human annotators. However, as the origi-
nal prompt doesn’t specify the types of phrases to
extract, we introduced two more baselines for addi-
tional experiments: (1) GPT-noun phrase aimed to
extract just noun phrases for each lecture, and (2)
GPT-Human + noun which adds “noun phrase” to
the original human prompt. We also added a one-
shot setting for the best-performing model, similar
to the extractive summarization task. We include
all prompts in Appendix B.

4.3. Abstractive Summarization

Human annotators were given the task of sum-
marizing students’ reflections concisely and coher-
ently within 40 words. To benchmark this task, var-
ious models were employed, including fine-tuning
pretrained language models, namely BART-Large
(Lewis et al., 2020) and a modified version called
BART-Large+specificity. The latter incorporates
markers on a 4-point scale indicating reflection
specificity scores, following the same approach
used in literature for scientific articles (DeYoung
et al., 2021), dialogue (Khalifa et al., 2021), and

legal documents (Elaraby and Litman, 2022).7

As with the extractive models, we developed
ChatGPT models too. In the zero-shot setting, we
explored two prompting settings: (1) GPT-Human:
using a version similar to the prompt given to hu-
man annotators and (2) GPT-Human + specificity:
incorporating specificity scores of each reflection
in the prompt. We also added a one-shot model as
in the extractive summarization tasks.

5. Experimental Setup

All models are evaluated using cross-validation.
Lectures are first grouped and shuffled by the sub-
jects. Each subject is then divided into five folds by
shuffling the lectures within that subject. We com-
bine those four folds from each subject as the final
training fold set and make the remaining test fold.
We randomly select 10% of the data within each
training fold set for validation and model selection.

We mainly evaluate our models using two stan-
dard metrics, ROUGE (Lin, 2004) and BERTScore
(Zhang* et al., 2020). In addition, we report lecture-
level reflection exact match F1 (EM F1) and partial
match F1 (P F1) scores for the extractive summa-

7See Appendix B.2 for an example of using markers
to include specificity scores.



13824

rization task.8 For the exact match F1, we compare
the predicted and human-reference reflections on
a per-lecture basis. Partial match F1 assesses
the correctness of selecting partial components
from a complete reflection, allowing for more flex-
ibility in the evaluation. While standard extractive
summarization tasks typically use human-written
abstractive summaries as references, we utilize
the annotated extractive reference summaries to
evaluate the model outputs.

Abstractive models often suffer from hallucina-
tions, generating information not present in the
source text (Ji et al., 2023). To assess the factu-
ality of our generated summaries, we utilize the
pre-existing entailment metric called SUMMAC (La-
ban et al., 2022). This metric assesses the overall
entailment score between the generated summary
and the input document, considering different lev-
els of granularity. The score can be computed by
considering the entire document or computing the
aggregated score from pair-wise sentence-level
entailments. SUMMAC introduces two versions:
SummaCzs, which averages pairwise entailment
scores. A score (ranging from 0 to 1) indicates a
stronger alignment between the document and the
summary, while a negative score (ranging from 0
to −1) suggests counterfactually-generated text;
and SummaCconv, where entailment scores are
aggregated by a convolution layer to avoid mean
sensitivity to extreme entailment values. The con-
volution layer aggregates values into 5 bins: [0, 0.2),
[0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1). A higher
bin indicates a stronger factual consistency of the
summary. We mainly relied on SummaCconv in our
analysis, as recommended by the paper.9

6. Implementation Details

For the BERTSUM-EXT extractive
summarization model, we leveraged a
bertext_cnndm_transformer checkpoint that
was trained on the CNN/DM news dataset using
the original codebase10 to select 5 reflections.
We additionally fine-tuned BERT-EXT models
on our dataset and the FEWSUMM AMAZON
dataset to examine the benefits of our data for
summarization tasks. We further experimented
with BERT-EXT + specificity, where the specificity

8See Appendix C.1 for an illustrative example of
how these scores are computed.

9We opted against using factuality metrics based on
question-answering (QA) approaches like QAFactEval
(Fabbri et al., 2022). This decision was due to limita-
tions in entity extraction, which struggled to recognize
educational concepts and noisy noun phrase genera-
tion caused by the varied structure of input reflections,
as shown in the example included in Appendix C.2.

10https://github.com/nlpyang/PreSumm

scores are incorporated into the input. For
MatchSum, we used the checkpoint equipped
with a RoBERTa-based re-ranker. We formed
the candidate sets by employing the off-the-shelf
BERT-EXT model to prune the original documents
into 8 reflections and constructed the combinations
of 5 sentences subject to the pruned document.
For LexRank, we used the lexrank package,11

treating the concatenation of all reflections from
the train split of each fold as documents to initialize
the model and setting the summary size at 5 with
threshold ratio of 0.1. For ChatGPT, we utilized
the OpenAI API.12 We set the maximum tokens to
1024 and the temperature to 0.5.

We replicated the extractive phrase summa-
rization model from Luo and Litman (2015), which
utilizes KMedoid clustering of noun phrases ex-
tracted from reflections and encoded using the
BERT-base model (details in Appendix D.1). For
ChatGPT, we set the maximum tokens to 1024 and
the temperature to 0.5.

We fine-tune the BART-Large abstractive sum-
marization model for 10 epochs on each fold, em-
ploying an early stopping technique with the pa-
tience of 3 epochs. We utilize the HuggingFace
implementation (Wolf et al., 2020). To identify the
optimal model, we evaluate its R-2 score on the
validation set. For the BART + reflection specificity
tokens, we use human-annotated specificity scores
during training and predicted specificity obtained
by a finetuned-DistillBERT model. For LLMs, we
use openAI’s API and set the maximum tokens to
100 and the temperature to 0.7.

7. Results and Analysis

7.1. Extractive Summarization

Table 4 shows that the baseline BERTSUM-EXT
is not as satisfactory as the traditional LexRank
baseline. We observe that fine-tuning the model
on our specific dataset brings appreciable perfor-
mance gains, as evidenced by the comparison be-
tween row 2 and row 4. Furthermore, fine-tuning
on a similar opinion summarization dataset also
enhances performance, though not to the same ex-
tent as using our in-domain data (row 2 vs. row 3).
Including specificity scores in the dataset brings
improvements in R-2 and helps with the match-
ing F1 when compared to the fine-tuned baseline
without specificity information (row 4 vs. row 5).
The state-of-the-art model MatchSum obtained
the second-best performances regarding ROUGE
scores and the highest BERTScore and match-

11https://github.com/crabcamp/lexrank
12https://platform.openai.com/docs/

api-reference

https://github.com/nlpyang/PreSumm
https://github.com/crabcamp/lexrank
https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
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Model R-1 R-2 R-L BS EM F1 P F1

LexRank 56.96 40.45 55.10 89.95 31.33 37.16

BERTSUM-EXT (cnndm) 55.21 38.29 53.39 89.91 34.08 37.74
BERTSUM-EXT (ft. FEWSUMM AMAZON) 55.51 38.41 53.59 89.88 33.85 37.81
BERTSUM-EXT (ft. REFLECTSUMM) 56.15 39.09 54.25 89.94 33.14 37.49
BERTSUM-EXT (ft. REFLECTSUMM) + Specificity 55.94 39.50 54.16 89.31 33.45 37.84

MatchSum 58.79* 42.59* 56.70* 90.57 36.26* 38.94

GPT-reflect 60.16* 43.93* 58.26* 89.98 21.41 37.68
GPT-reflect + specificity 58.76* 42.49* 56.85* 90.29 21.28 36.45

GPT-reflect - one-shot 58.65 41.04 56.46 89.58 20.18 33.07

Table 4: Extractive summarization model performance reported on ROUGE (R-1, R-2, R-L),
BERTScore (BS), Exact Match F1 (EM F1) and Partial F1 (P F1). The best column results are bolded,
while * means statistically different from the baseline LexRank (p-value < 0.05) using a paired t-test.

Model R-1 R-2 R-L BS

PhraseSum 24.87 7.98 24.31 83.9

GPT-Human 34.25* 11.25* 33.27* 84.7*
GPT-noun phrase 39.28* 14.55* 38.26* 87.1*
GPT-Human + noun 38.86* 13.56* 38.02* 84.6*

GPT-noun - one-shot 40.43* 15.48* 39.51* 87.7*

Table 5: Extractive phrase summarization model
performance. The best result of each column
is bold. * means statistically different from the
baseline PhraseSum (p-value < 0.05) using a
paired t-test.

ing performances.13 Meanwhile, ChatGPT models
obtain the best or on-par performance concern-
ing ROUGE and BERTScores. However, it should
be noted that the ChatGPT-based models strug-
gle to fully extract the reflections, as evidenced
by the lower Exact Match F1 scores. We posit
the improvements from Exact to Partial F1 are at-
tributed to the incapability of ChatGPT models to
comprehend the prompt fully, thus cutting the origi-
nal reflections into sentences and making partial
selections. Overall, the Partial F1 score suggests
that there is still ample room to improve the ex-
tractive summarization models to match human
performance. Based on the best zero-shot set-
ting (GPT-reflect), we also explored the one-shot
setting and found no gains.

To validate the hypothesis that ChatGPT-based
models may not be able to perform the extractive
task faithfully, we analyzed the proportion of model
output sentences that are fully extracted from the
original reflections. In detail, we measure the ratio
of the system-extracted reflections that come from
the original reflections instead of being generated
creatively by the ChatGPT model. Compared to

13Example outputs for all models are in Appendix E.

the BERTSUM-EXT model with near-perfect ex-
tractiveness (99.4%),14 ChatGPT models obtained
92.53, and 94.68% extractiveness scores for GPT-
reflect and GPT-reflect + specificity, respectively,
showing that GPT models do sometimes generate
non-extractive sentence/reflections. In contrast,
MatchSum follows a two-stage paradigm to extract
summaries. The output reflections are guaranteed
to be selected from the original reflections, secur-
ing higher EM F1 and P F1.

7.2. Extractive Phrase Summarization

Table 5 shows the results.15 The PhraseSum
model obtains the worst performance. We ob-
serve a difference when adjusting the prompt for
the ChatGPT models. Comparing GPT-Human
and GPT-Human + noun shows that just replac-
ing “phrases” with “noun phrases” brings about 4.5
points improvements on R-1 and R-L, 2.3 points
on R-2. Meanwhile, GPT-noun phrase obtains im-
provements of 5.0, 3.3, and 4.9 ROUGE (1,2, L)
scores compared to GPT-Human. We posit that the
relatively lower performance of GPT-Human com-
pared to GPT-noun phrase is that, in GPT-Human,
the task is inherently a multi-task project by adding
the prompt of together with how many students se-
mantically mentioned each phrase in parenthesis.
Finally, based on the best zero-shot setting, we
explored a one-shot setting for GPT-noun phrase,
where a random sample from the data was used.
Unlike in Table 4, one-shot outperforms all zero-
shot settings, perhaps because phrase samples
are more consistent than the full reflections.

14The score does not reach 100% since some anno-
tators selected sentences instead of full reflections.

15We apply regular expressions to clean up the GPT
model outputs. Details are in Appendix D.3.
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Model R-1 R-2 R-L BS

BART-Large 47.09 24.17 43.76 90.49
+ specificity 47.70 24.85 44.41* 90.57

GPT-Human 35.83 9.40 31.85 88.23
+ specificity 36.73 9.13 31.64 88.27

GPT-one-shot 36.86 9.46 31.96 88.26

Table 6: Abstractive summarization performance.
Best column result bolded; * is statistically differ-
ent from the baseline BART-Large.

Model %Novel Length
1/2/3 grams min/avg/max

Human-refer. 37.00/83.18/98.16 23/46/99

BART-Large 36.91/79.67/95.11 28/45/85
+ specificity 35.27/77.29/93.18 26/42/85

GPT-Human 27.71/74.65/94.40 19/35/68
+ specificity 29.10/74.19/94.02 15/38/66

GPT-one-shot 31.43/77.59/95.39 15/35/66

Table 7: Percent of novel n-grams and length
statistics in abstractive summaries.

7.3. Abstractive Summarization

We report our abstractive summarization results in
Table 6. Our results demonstrate that incorporating
specificity markers into the input achieved the best
fine-tuned BART baseline performance by a small
margin (rows 1 vs. 2; p < 0.05 for R-L). Unlike
the results for the prior two extractive summariza-
tion tasks, none of the GPT-based LLMs could
match the performance of more traditional meth-
ods, with respect to ROUGE and BERTScore. To
examine whether characteristics of the LLM sum-
mary output might be a factor in their poor ROUGE
performance, Table 7 shows the percentage of
novel n-grams present in each summary, as well
as the average summary length. The novelty fig-
ures indicate that LLMs generally have a lower pro-
portion of novel n-grams compared to fine-tuned
models, which maximize generating summaries
that follow human-written summaries (high in nov-
elty). However, incorporating one-shot learning
improves n-gram novelty in LLMs, showing that
providing even one example enhances the gener-
ation of novel outputs. Additionally, the abstrac-
tive summaries generated by LLMs are generally
shorter than human-written summaries and those
produced by fine-tuned models, potentially con-
tributing to lower ROUGE.

Finally, Table 8 shows the results of the factu-
ality evaluation using SUMMAC. For computing
off-the-shelf entailment scores, we utilize the Al-
BERT model, which was fine-tuned on an entail-

Model SUMMAC ↑
Sentence Document

Human-reference 0.25 0.22

BART-Large 0.25 0.21
+ specificity 0.25 0.22

GPT-Human 0.26 0.31
+ specificity 0.27 0.26

GPT-one-shot 0.26 0.26

Table 8: Factuality scores based on SUMMAC(↑:
higher means better entailment).

ment dataset as described in Schuster et al. (2021).
Our results indeed highlight the challenge and lim-
itations of current factuality metrics when applied
to this new type of data. The results indicate that
GPT-Human demonstrates the highest level of over-
all agreement with the input reflections, surpass-
ing even the human-written summaries at both
the sentence-level (GPT-Human +specificity) and
document-level resolutions. This finding is surpris-
ing since we guaranteed the quality of our human-
written summaries by providing annotator training,
as detailed in Section 3.1. Therefore, a higher
average SummaC score for the summaries gen-
erated by chatGPT does not necessarily indicate
a more factual summary when compared to the
human-written ones.16

We postulate that this disparity arises as our re-
flections may contain individual words or phrases
rather than complete sentences, thereby deviat-
ing from the training data of the entailment model,
which consists of complete sentences (Williams
et al., 2018). Therefore, a thorough qualitative
analysis is crucial to assess the factual accuracy
of generated summaries. Novel factuality metrics
tailored to reflective writing and similar summa-
rization domains are promising avenues for future
research.

8. Broader Impact of the Dataset

This paper focused on introducing and utilizing the
REFLECTSUMM dataset to develop and evaluate
benchmark models for three summarization tasks.
For the NLP community, the dataset can enable
the creation of new benchmarks for other tasks
by harnessing the rich metadata to be released
with the dataset. For instance, researchers can
use the student demographics to work on analyses
of potential fairness or equity issues (Dash et al.,
2019) in summarization and build fairness-oriented
summarization models. Initial explorations indicate
that REFLECTSUMM shows promise for this pur-

16See Appendix C.3 for an illustrative example.
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pose, as it reveals a difference in the distribution
of reflections along the gender dimension between
the extractive summaries and the entire dataset.17

Moreover, new ways to use the manually an-
notated specificity annotations beyond those pre-
sented here can bridge summarization and NLP
research on specificity prediction more broadly (Li
and Nenkova, 2015; Gao et al., 2019). Also, our
tasks and models could enable new downstream
functionalities in educational technologies already
collecting reflections (Fan et al., 2015; Carpenter
et al., 2021) such as generating recommended
readings and explaining confusing concepts based
on summary output. Learning scientists may also
find our dataset valuable for monitoring the growth
of students across a semester by analyzing reflec-
tions for the same course over time. On average,
students contributed course reflections to 42 per-
cent of the lectures throughout the semester. The
longitudinal aspect of our data might also be used
to define new summarization tasks.

9. Conclusion and Future Work

We present REFLECTSUMM, a new dataset de-
signed for course reflection summarization that in-
cludes multiple summarization tasks. The dataset
provides specificity annotations of reflections and
metadata on user demographics. To demonstrate
its utility, we benchmarked the dataset. Our re-
sults demonstrated how the benefits of pretrained
and finetuned language models, large language
models, reflection specificity, and one-shot learn-
ing techniques could vary significantly across dif-
ferent summarization tasks, shedding light on the
nuanced advantages of these approaches.

Future Work We foresee numerous future direc-
tions that can be built upon the dataset’s rich infor-
mation coverage. For instance, we plan to enhance
the efficacy of LLMs by investigating improved
prompting techniques and developing more appro-
priate evaluation metrics that align with the nature
of students’ reflective writing. Our benchmark re-
sults also uncover that prompts modeled on human
summarization guidelines are insufficient and that
it remains challenging to incorporate best super-
vised examples and/or specificity into the summa-
rization tasks. Additionally, extending our dataset
across different domains is necessary and bene-
ficial for future research. We have collected data
from two psychology courses (new domain) from a
Canadian institute (outside the US) and a few Math
and Mechanical Engineering courses from US insti-
tutes. We plan to add those as future additions to

17There are more male-written reflections in extrac-
tive summaries (57%) than in the overall distribution
(52%), verified with chi-square test.

the REFLECTSUMM dataset. The number of extrac-
tive phrases or reflections should be dynamically
adjusted for the extractive summarization tasks, as
real-world scenarios vary across different lectures
and subjects. Our analysis reveals 75 of the 782
lectures have 10 or fewer students. In these cases,
the number of shared topics can be fewer than 5.
One future direction would be a dynamic system
that utilizes topic models to handle different-sized
reflection collections.

Limitations

For experiments involving the recent advanced
LLMs, we created fairly straightforward bench-
marks. Future work will need investigations of
methods such as prompt optimization to better un-
leash the capability of ChatGPT and other LLMs
(Qin et al., 2023; Bang et al., 2023). More super-
vised extractive/abstractive summarization mod-
els are yet to be added, and we encourage re-
searchers to help contribute to the benchmarks.
We also acknowledge that the released dataset
may be of a narrow scope of subjects, includ-
ing only engineering and science-related courses.
With the released protocol, we envision extend-
ing the dataset to cover courses from the liberal
arts and other backgrounds and facilitate the over-
all quality of teaching and education. We also
have not yet incorporated human assessments to
gauge the quality of various system outputs and ex-
plore the similarities or differences between human-
authored and AI-generated outputs. In this re-
source paper, our primary focus is to introduce the
details of the proposed dataset alongside showcas-
ing its tasks through benchmarking experiments
carried out on prevailing domain-specific models.
Our experimental exploration, though not as fo-
cused on the intricacies of modeling as typically
seen in modeling-based summarization papers,
offers a comprehensive insight into the practical
performance and applicability of different models.
It establishes a robust foundation for further inves-
tigations into course reflection summarization.

Data Statement

We are dedicated to making the dataset, includ-
ing metadata such as demographic information
and specificity scores, accessible to the public.
Furthermore, we pledge to provide supplemen-
tary materials instrumental in crafting this dataset
and conducting experiments. These materials,
such as the annotation guidelines, the list of
prompts used for LLM experiments with GPT,
and examples of our evaluation metrics, can
be accessible at https://github.com/EngSalem/
ReflectSUMM and in the Appendices.

https://github.com/EngSalem/ReflectSUMM
https://github.com/EngSalem/ReflectSUMM
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berger, Zdeněk Kasner, Alice Rueda, Amanda
Pestana, Amir Feizpour, Ammar Khan, Amy
Faranak, Ana Santos, Anthony Hevia, Antig-
ona Unldreaj, Arash Aghagol, Arezoo Abdol-
lahi, Aycha Tammour, Azadeh HajiHosseini, Ba-
hareh Behroozi, Benjamin Ajibade, Bharat Sax-
ena, Carlos Muñoz Ferrandis, Daniel McDuff,
Danish Contractor, David Lansky, Davis David,
Douwe Kiela, Duong A. Nguyen, Edward Tan,
Emi Baylor, Ezinwanne Ozoani, Fatima Mirza,
Frankline Ononiwu, Habib Rezanejad, Hessie
Jones, Indrani Bhattacharya, Irene Solaiman,
Irina Sedenko, Isar Nejadgholi, Jesse Pass-
more, Josh Seltzer, Julio Bonis Sanz, Livia Du-
tra, Mairon Samagaio, Maraim Elbadri, Mar-
got Mieskes, Marissa Gerchick, Martha Akin-
lolu, Michael McKenna, Mike Qiu, Muhammed
Ghauri, Mykola Burynok, Nafis Abrar, Nazneen
Rajani, Nour Elkott, Nour Fahmy, Olanrewaju
Samuel, Ran An, Rasmus Kromann, Ryan Hao,
Samira Alizadeh, Sarmad Shubber, Silas Wang,
Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oye-
bade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhi-

nav Ramesh Kashyap, Alfredo Palasciano, Ali-
son Callahan, Anima Shukla, Antonio Miranda-
Escalada, Ayush Singh, Benjamin Beilharz,
Bo Wang, Caio Brito, Chenxi Zhou, Chirag Jain,
Chuxin Xu, Clémentine Fourrier, Daniel León
Periñán, Daniel Molano, Dian Yu, Enrique Man-
javacas, Fabio Barth, Florian Fuhrimann, Gabriel
Altay, Giyaseddin Bayrak, Gully Burns, Helena U.
Vrabec, Imane Bello, Ishani Dash, Jihyun Kang,
John Giorgi, Jonas Golde, Jose David Posada,
Karthik Rangasai Sivaraman, Lokesh Bulchan-
dani, Lu Liu, Luisa Shinzato, Madeleine Hahn
de Bykhovetz, Maiko Takeuchi, Marc Pàmies,
Maria A Castillo, Marianna Nezhurina, Mario
Sänger, Matthias Samwald, Michael Cullan,
Michael Weinberg, Michiel De Wolf, Mina Mihalj-
cic, Minna Liu, Moritz Freidank, Myungsun Kang,
Natasha Seelam, Nathan Dahlberg, Nicholas Mi-
chio Broad, Nikolaus Muellner, Pascale Fung,
Patrick Haller, Ramya Chandrasekhar, Renata
Eisenberg, Robert Martin, Rodrigo Canalli,
Rosaline Su, Ruisi Su, Samuel Cahyawijaya,
Samuele Garda, Shlok S Deshmukh, Shubhan-
shu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-
aroonsiri, Srishti Kumar, Stefan Schweter, Sushil
Bharati, Tanmay Laud, Théo Gigant, Tomoya
Kainuma, Wojciech Kusa, Yanis Labrak, Yash
Shailesh Bajaj, Yash Venkatraman, Yifan Xu,
Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan
Ye, Mathilde Bras, Younes Belkada, and Thomas
Wolf. 2022. BLOOM: A 176B-Parameter Open-
Access Multilingual Language Model. arXiv e-
prints, page arXiv:2211.05100.

Xianjun Yang, Kaiqiang Song, Sangwoo Cho, Xi-
aoyang Wang, Xiaoman Pan, Linda Petzold, and
Dong Yu. 2023. OASum: Large-scale open do-
main aspect-based summarization. In Findings
of the Association for Computational Linguistics:
ACL 2023, pages 4381–4401, Toronto, Canada.
Association for Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter Liu. 2020. PEGASUS: Pre-training with
extracted gap-sentences for abstractive summa-
rization. In International Conference on Machine
Learning, pages 11328–11339. PMLR.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kil-
ian Q. Weinberger, and Yoav Artzi. 2020.
BERTscore: Evaluating text generation with bert.
In International Conference on Learning Repre-
sentations.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy
Liang, Kathleen McKeown, and Tatsunori B.
Hashimoto. 2024. Benchmarking Large Lan-
guage Models for News Summarization. Trans-
actions of the Association for Computational Lin-
guistics, 12:39–57.

https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.18653/v1/2023.findings-acl.268
https://doi.org/10.18653/v1/2023.findings-acl.268
https://proceedings.mlr.press/v119/zhang20ae/zhang20ae.pdf
https://proceedings.mlr.press/v119/zhang20ae/zhang20ae.pdf
https://proceedings.mlr.press/v119/zhang20ae/zhang20ae.pdf
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.1162/tacl_a_00632
https://doi.org/10.1162/tacl_a_00632


13833

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing
Wang, Xipeng Qiu, and Xuanjing Huang. 2020.
Extractive summarization as text matching. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
6197–6208, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.552


13834

A. Human Annotation Details

A.1. Annotation Guidelines

Figure 2 shows the guideline we used for reflection
specificity score annotation. We provided the origi-
nal human annotation guidelines for summarization
tasks in Figures 3 to 6.

A.2. Rationales on Human Annotator
Selection

We worked with undergraduate students on this
task for continuity and practicality. First, in prior mo-
tivating work from the learning sciences (Menekse
et al., 2011) and as noted in Section 3.1, course
TAs created summaries, so we wanted to keep a
similar model, and we wanted to evaluate to what
degree the NLP-generated summaries are similar
to human-generated summaries. Second, prac-
tically, undergraduate students are more readily
available and easier to recruit than course instruc-
tors. Importantly, our selection criteria for these
individuals were not arbitrary; we chose students
based on their academic majors. This ensured that
they were familiar with the course content and had
successfully met the course requirements them-
selves.

It would be interesting to ask some experienced
professionals to do the same task and compare
the results between raters. This comparison could
yield a richer understanding of summarization qual-
ity and style variances across different expertise
levels.

B. ChatGPT Prompts and BART’s
Markers

B.1. Extractive Prompts

We include the prompts for the extractive summa-
rization task in Table 9, and the prompts for the
extractive phrase summarization in Table 10.

B.2. Abstractive BART + markers
Example

During training, we use oracle markers, while we
rely on model predictions during inference. We
include an example in Table 11.

B.3. Abstractive Summarization Prompts

To ensure a fair comparison with models that uti-
lized BART-large, which underwent fine-tuning on
reference summaries generated by human anno-
tators, where the annotators were instructed to

create approximately 40 word summaries, we fol-
lowed a similar approach when providing instruc-
tions to GPT-Human. This was done to maintain
consistency in the experimental setup and enable
a meaningful comparison between the two mod-
els. For the one-shot setting, we rely on in-context
learning by providing an example from the refer-
ence summaries annotated by human annotators.
Table 12 shows the prompts we used in each set-
ting.
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Model Prompt

GPT-reflect "reflections: {{reflections}}
Can you summarize the reflections, which are split by the special token
∥_∥, by extracting and selecting 5 original reflections from the split
list?"

GPT-reflect + specificity "reflections: {{reflections}}
Can you summarize the reflections, which are split by the special token
∥_∥. Each reflection ends with a special marker -> and the specificity
score in a range of 1-4, where 1 is the least specific and 4 is the most
specific. Can you extract and select 5 original reflections from the split
list by removing the ending "->" with the specificity score?"

Table 9: ChatGPT Prompts used for the extractive summarization task.

Model Prompt

GPT-Human "reflections: {{reflections}}
Create a summary using five phrases together with how many students
semantically mentioned each phrase in parenthesis. You can use your own
phrases."

GPT-noun phrase "reflections: {{reflections}}
Can you summarize the reflections by extracting and selecting five noun
phrases?"

GPT-Human + noun "reflections: {{reflections}}
Create a summary using five noun phrases together with how many students
semantically mentioned each phrase in parenthesis. You can use your own
phrases."

Table 10: ChatGPT Prompts used for the extractive phrase summarization task.

Example
<high> Energy conservation in particle physics with a gamma ray photon being split into an ...
since I’ve never learned much about gamma rays in the past. </high> “\n” <bad> Nothing in partic-
ular today </bad>

Table 11: An example of using markers for quality in our dataset, and all reflections are concatenated
with new line symbols.

Model Prompt

GPT-Human "reflections: {{reflections}}}
Given the students’ responses, create a short summary with no more than
40 words"

GPT-Human + specificity "reflections: {{reflections}}}
Each reflection ends with a special marker -> and the specificity score
in a range of 1-4, where 1 is the least specific and 4 is the most
specific.
Given the students’ responses, create a short summary with no more than
40 words, don’t include the specificity scores in the summary."

GPT-oneshot "reflections: {{oneshot reflections}}
summary: {{oneshot summary}} reflections: {{test reflections}}
summary:"

Table 12: ChatGPT Prompts used for the abstractive summarization task.
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C. Evaluation Metrics

C.1. Extractive F1 Metrics

Besides the classical evaluation metrics including ROUGE and BERTScore, we additionally report the
reflection-level exact match F1 and partial F1s. The intuition is to measure the selection accuracy of a
given system provided with five human-annotated choices. As shown in Table 13, the GPT models can
sometimes extract a portion of the original reflections, even with a carefully designed prompt. Using a
too-strict exact matching would make the F1 score unfaithfully low, so we instead consider the partial
matching on the sentence level and compute the partial match F1 accordingly in the main results.

Oracle Reflections

1. Three Sum example was very confusing, so it would be nice to go over it again. Also just more
practice problems with determining the runtime of functions. And lastly just reiterating the formal
definitions of the Big O family
2. The triple loops example and finding the runtime I got really lost in how we determine how to
segment the loops into pieces and also how to calculate each individual output. Also why O(n) is the
same as O(n+1) ie why the +1 is dropped from the calculation.
3. I found it hard to follow some of the math done to analyze code examples, as well as towards the
beginning with the formal definitions of the big o family.
4. More practice with determining run-times would be useful as well as more practice with the Big-O
family functions
5. Mathematically modeling runtime was somewhat confusing as was determining the cost of exe-
cuting each statement.

GPT-reflect output

1. Three Sum example was very confusing, so it would be nice to go over it again.
2. Just more practice problems with determining the runtime of functions.
3. The triple loops example and finding the runtime I got really lost in how we determine how to
segment the loops into pieces and also how to calculate each individual output.
4. I found it hard to follow some of the math done to analyze code examples, as well as towards the
beginning with the formal definitions of the big o family.
5. Mathematically modeling runtime was somewhat confusing as was determining the cost of exe-
cuting each statement.

Table 13: An example, the first two GPT model outputs came from the same oracle reflection, and
the third GPT model sentence belongs to the second oracle reflection. If we only consider the exact
matching, the true positive count would be 2, while partial F1 considers the true positive as 4, which is
more realistic and relaxed.
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C.2. Factuality Evaluation

In order to emphasize the difficulties associated
with utilizing QA-based evaluation metrics for factu-
ality assessment, we present an example in Table
14 that showcases the challenges encountered in
entity extraction, which is a crucial component of
the question generation module. Consequently, we
opted not to incorporate QA-based factuality eval-
uation in our approach, acknowledging the limita-
tions and complexities associated with this method-
ology.

Input reflections

• Combinatorics.
• Understanding that the sum of two integers
is still less then or equal to the product of
twice the maximum of the set of integers be-
ing added was a little mind blowing since I
was struggling understanding that for awhile.
Using the product rule to consider abstract
examples like possible injective functions.
• Combinatorics seems really cool and it
seems like it has a lot of real world and CS
based applications. the visual explanation of
the binary trees was more helpful than my
reading about them so that was interesting
The combinatorics was a topic that I feel rel-
atively comfortable with already. It seems
straightforward and easy to comprehend as of
now.
• The idea that induction has so many applica-
tions is interesting to me.
• Combinatorics.
Extracted entities

Entity two: Type: number
Extracted Nounphrases

Nounphrases: Combinatorics,CS, sum, in-
tegers, two integers, sum of two integers ,
applications, trees, search trees ...
Shortened for space

Table 14: Examples of the extracted entities and
noisy nounphrases for a given input set of reflec-
tions.

C.3. Entailment Based Metrics Limitation

To better understand the limitations of entailment
methods in our domain-specific summarization
task, Table 15 presents an example of SUMMAC
scores applied to a human-reference summary.
The zero-shot score of 0.07 indicates poor factual-
ity. Additionally, the sentence-level SummaCconv

score of 0.21 indicates poor factuality value (sec-
ond lowest bin), which is counter-intuitive given
that our human-reference summaries are accurate

as shown in the example. This highlights the con-
straints of entailment-based metrics and empha-
sizes the need to explore factuality metrics tailored
to the nature of students reflections.

Input reflections

• One thing I found interesting was how many
categories of machine learning there are.
• What discrete variables were and how they
can be classified.
• None.
• The idea of discrete and continuous labels
was most interesting.
• Supervised and unsupervised learning as
well as discrete and continuous labels and
how they all related to one another.
• The process for both categorization and
classification. How one is based on context or
perceived similarity and the other is a system-
atic arrangement of entities.
• How to categorize things as continuous or
discrete.
• Different categories of machine learning.
• The algorithm systems for the ways the algo-
rithms group different things on the way they
identify the patterns.
• The relationship between unsupervised and
supervised deep learning.
• I was intrigued by why discrete meant clas-
sification and how those 2 worked together
was very interesting. • Supervised vs unsu-
pervised learning.

Human-reference summary

Students enjoyed learning about the differ-
ences between supervised and unsupervised
learning. Along with that, they also enjoyed
learning about the different categories in Ma-
chine Learning and the different categoriza-
tion and classification methods.

SummaCconv : 0.21

SummaCzs: 0.07

Table 15: SUMMAC scores on a human-reference
summary example
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D. Experimental Details

D.1. PhraseSum Setups

We first reproduced the model from prior work
(Luo and Litman, 2015). This model utilizes the
spaCy toolkit (Honnibal et al., 2020) to extract all
noun phrases from student reflections, followed by
the BERT-base model to extract the representa-
tion of these phrases. An unsupervised clustering
method, KMedoid, is then employed to construct
five clusters and extract their centroids as the fi-
nal extractive phrases. Following Luo and Litman
(2015), we named it PhraseSum.

D.2. Reflection Specificity Prediction

The goal of this task is to predict the specificity of
student reflections. We first experimented with the
prior model introduced by Magooda et al. (2022),
which uses a DistillBERT model (Sanh et al., 2019)
followed by an SVM to predict scores on a 4-
point scale. The baseline model was trained on
the publicly available CourseMIRROR (CM) cor-
pus18, consisting of 6,824 student reflections col-
lected from four undergraduate classes (Chem-
istry (Chm), Statistics (ST), and Material Science
(MSG1, MSG2)) at the end of each lecture. We
retrained the model using a k-fold cross-validation
setup. The QWK (Quadratic Weighted Kappa)
scores improved from 0.624 to 0.689 when we
trained the baseline model on our newly collected
dataset.

D.3. Regular Expression for Phrase
Cleaning

We have included the Python code snippets below,
which demonstrate the regular expressions used
in Section 7 to clean up the “number of support” for
phrase outputs generated by GPT models. One ex-
ample of applying the regular expressions together
with some post-processing to remove the order
numbers can be found in Table 16. Since auto-
matic metrics are sensitive to the n-gram wordings,
removing the predicted values inside the parenthe-
sis can make the comparison fair.

my_regex = re . compile ( r " − >(1 |1 .0 |2 .0
| 2 | 3 . 0 | 3 | 4 . 0 | 4 ) | ( \ | \ | ) " )
t e x t = my_regex . sub ( ’ ’ , t e x t )

my_regex = re . compile ( r " \ ( ra ted . * \ ) " )
t e x t = my_regex . sub ( " " , t e x t )

my_regex = re . compile ( r " ra ted as a \ d " )
t e x t = my_regex . sub ( " " , t e x t )

18https://engineering.purdue.edu/coursemirror/
download/reflections-quality-data/.

my_regex = re . compile ( r "−> r a t i n g : ( 1 | 1 . 0 |
2 . 0 | 2 | 3 . 0 | 3 | 4 . 0 | 4 ) " )
t e x t = my_regex . sub ( " " , t e x t )

my_regex = re . compile ( r "− ( 1 | 1 . 0 | 2 . 0
| 2 | 3 . 0 | 3 | 4 . 0 | 4 ) " )
t e x t = my_regex . sub ( " " , t e x t )

my_regex = re . compile ( r " \ ( \ d+ ( s tudent )
?s ? \ ) " )
t e x t = my_regex . sub ( " " , t e x t )

my_regex = re . compile ( r " \ ( \ d+( s tudent )
?s ? \ ) " )
t e x t = my_regex . sub ( " " , t e x t )

my_regex = re . compile ( r " \ ( \ s+ ( s tudent )
?s ? \ ) " )
t e x t = my_regex . sub ( " " , t e x t )

RegEx Text

Before 1. Conditional probability examples
(2) 2. Race with ties problem (1)
3. Challenge problems (1) 4. Se-
quences (1) 5. Disobeying condi-
tional probability (1)

After Conditional probability examples
Race with ties problem
Challenge problems
Sequences
Disobeying conditional probability

Table 16: Examples of phrases processed using
regular expressions in summaries generated by
GPT models.

https://engineering.purdue.edu/coursemirror/download/reflections-quality-data/.
https://engineering.purdue.edu/coursemirror/download/reflections-quality-data/.
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E. Output Examples

Extractive Summarization Table 18 and 19
shows an example of different system outputs for
the extractive summarization models. GPT-reflect
and GPT-reflect+specificty extracted the full reflec-
tions with the modified prompt. The latter extracted
more detailed reflections with the provided speci-
ficity hints. We also observe that MatchSum is
more capable of extracting long reflections that
align better with human preferences.

Extractive Phrase Summarization Regarding
the phrase summarization tasks, as shown in Table
17, adding the noun prompt can make the gener-
ated phrases similar to the human written version.
Yet, it is still unclear how the GPT models generate
the student support count for each phrase (for both
GPT-Human and GPT-Human + noun).

Abstractive Summarization In the context of ab-
stractive summaries, Table 20 provides examples
of the generated summaries compared to those
written by humans. Notably, models based on fine-
tuned BART-Large (BART-Large and Bart-Large
+ specificity) demonstrate a tendency to cover a
broader range of topics compared to the refer-
ence summaries. For instance, the generated
summary includes details about concepts such
as "deep copy," "shallow copy," and specific im-
plementation and usage of the "BinaryNode." Con-
versely, GPT-Human tends to produce shorter sum-
maries that do not delve into deeper details, align-
ing with our analysis indicating that GPT-Human
summaries are generally shorter compared to the
fine-tuned BART models. GPT-one-shot generates
summaries that encompass interesting topics re-
lated to confusion topics. We hypothesize that this
might be due to the random selection of examples
for one-shot learning, which could lead the model
to capture intriguing aspects of the lecture content.

Oracle Phrase Summary

1. Ohm’s Law (4)
2. Resistors/Resistance (6)
3. Circuits (4)
4. Power (2)
5. Real world applications (3)

PhraseSum

1. the copper wire example
2. Ohm’s Law
3. the resistors
4. real world incidences
5. how easy calculating resistance

GPT-Human

1. Ohm’s Law and circuit analysis (8)
2. Resistance in series and parallel (4)
3. Battery voltage and electromotive force (3)
4. Applying physics concepts to real life (2)
5. Power and energy in circuits (2)

GPT-noun phrase

1. Copper wire example
2. Ohm’s Law
3. Circuits
4. Batteries and resistance
5. Practice problems

GPT-Human + noun

1. Circuit analysis (4)
2. Ohm’s Law (3)
3. Resistance calculation (2)
4. Battery behavior (2)
5. Power and energy (2)

GPT-noun - one-shot

1. Copper wire example
2. Ohm’s Law
3. Circuits
4. Resistance calculations
5. Batteries and their characteristics

Table 17: An example of the extractive phrase
summary and different model outputs.



13840

Oracle Reflections
1. The idea of grounding was confusing for me. I feel like seeing some more examples would be helpful.
2. Problem 27.54 with the car motor problem was confusing. I did not understand what the starting motor does.
Does it withdraw or add voltage? Does it act as a resistor or a battery? Otherwise your lectures were clear and
concise as always.
3. I am still a bit confused about why the voltage was negative in the first given example even though the volt-
age coming out of the battery is positive.
4. Current for the last top hat circuit question that was graded
5. Re-drawing circuit diagrams with grounds seems to get complicated when multiple branches and resistors/-
capacitors are involved.

LexRank
1. some of the ideas about grounding were confusing, especially with the top hat, but i think i have the general
idea that a grounded circuit has a voltage drop of 0.
2. some of the ideas about grounding were confusing, especially with the top hat, but i think i have the general
idea that a grounded circuit has a voltage drop of 0.
3. The most confusing thing for me was when we went over the 2 different cases of grounding. I just found it
confusing when going over the formulas like whether to add or subtract Ir
4. I found grounding to be very confusing; what does it mean for a circuit to be grounded?
5. conceptually, I was a little confused how you can have a ground before a resistor, making the voltage zero,
and that doesn’t impact the energy continuing on. Mathematically I can see why this is true, but conceptually
it’s a bit confusing."

GPT-reflect
1. The idea of grounding was confusing for me. I feel like seeing some more examples would be helpful.
2. I’m confused about how the spot where we place a ground affects how we measure voltage.
3. The most confusing thing for me was when we went over the 2 different cases of grounding.
4. The only thing that confuses me slightly is the sign associated with I*R when going in the flow of charge vs
against the flow of charge. Also, how would we determine where the charge flows?
5. Finding the emf was confusing.

GPT-reflect + specificity

1. I am still a bit confused about why the voltage was negative in the first given example even though the volt-
age coming out of the battery is positive.
2. Some of the ideas about grounding were confusing, especially with the top hat, but I think I have the general
idea that a grounded circuit has a voltage drop of 0.
3. The conceptual questions during class were the hardest for me to understand because I kept getting the
wrong.
4. It was really hard to understand the currents and why they were going in the direction they were.
5. The idea of grounding was confusing for me. I feel like seeing some more examples would be helpful.

GPT-reflect one-shot

1. The conceptual questions during class were the hardest for me to understand because I kept getting the
wrong answers.
2. The idea of grounding was confusing for me. I feel like seeing some more examples would be helpful.
3. More examples of simplifying circuits would be helpful and a bit more explanation about grounding.
4. The most confusing thing for me was when we went over the 2 different cases of grounding. I just found it
confusing when going over the formulas like whether to add or subtract IR.
5. The sapling question about finding emf and internal resistance has me stumped. If we could go over more of
these that would be awesome.

Table 18: An example of the difference between the oracle extractive summary and the generated
model outputs (1/2).
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Oracle Reflections
1. The idea of grounding was confusing for me. I feel like seeing some more examples would be helpful.
2. Problem 27.54 with the car motor problem was confusing. I did not understand what the starting motor does.
Does it withdraw or add voltage? Does it act as a resistor or a battery? Otherwise your lectures were clear and
concise as always.
3. I am still a bit confused about why the voltage was negative in the first given example even though the volt-
age coming out of the battery is positive.
4. Current for the last top hat circuit question that was graded
5. Re-drawing circuit diagrams with grounds seems to get complicated when multiple branches and resistors/-
capacitors are involved.

BERTSUM-EXT (cnndm)

1. I am still a bit confused about why the voltage was negative in the first given example even though the volt-
age coming out of the battery is positive.
2. Problem 27.54 with the car motor problem was confusing. I did not understand what the starting motor does.
Does it withdraw or add voltage? Does it act as a resistor or a battery? Otherwise your lectures were clear and
concise as always.
3. The idea of grounding was confusing for me. I feel like seeing some more examples would be helpful.
4. some of the ideas about grounding were confusing, especially with the top hat, but i think i have the general
idea that a grounded circuit has a voltage drop of 0.
5. I found grounding to be very confusing; what does it mean for a circuit to be grounded?

BERTSUM-EXT (ft. FEWSUM AMAZON)

1. I found grounding to be very confusing; what does it mean for a circuit to be grounded?
2. why it is useful to have a reference point. i am confused about what exactly delta V is
3. The most confusing thing for me was when we went over the 2 different cases of grounding. I just found it
confusing when going over the formulas like whether to add or subtract Ir
4. I’m confused about how the spot where we place a ground affects how we measure voltage
5. The sapling question about finding emf and internal resistance has me stumped. If we could go over more of
these that would be awesome.

BERTSUM-EXT (ft. REFLECTSUMM)

1. conceptually, I was a little confused how you can have a ground before a resistor, making the voltage zero,
and that doesn’t impact the energy continuing on. Mathematically I can see why this is true, but conceptually
it’s a bit confusing.
2. I am still a bit confused about why the voltage was negative in the first given example even though the volt-
age coming out of the battery is positive.
3. Finding the emf was confusing.
4. why it is useful to have a reference point. i am confused about what exactly delta V is
5. Figuring out how grounding will affect the potential

BERTSUM-EXT (ft. REFLECTSUMM) + Specificty

1. I am still a bit confused about why the voltage was negative in the first given example even though the volt-
age coming out of the battery is positive.
2. It was really hard to understand the currents and why they were going in the direction they were
3. Current for the last top hat circuit question that was graded
4. some of the ideas about grounding were confusing, especially with the top hat, but i think i have the general
idea that a grounded circuit has a voltage drop of 0.
5. Figuring out how grounding will affect the potential

MatchSum
1. some of the ideas about grounding were confusing, especially with the top hat, but i think i have the general
idea that a grounded circuit has a voltage drop of 0.
2. The clicker questions about grounding.
3. Problem 27.54 with the car motor problem was confusing. I did not understand what the starting motor does.
Does it withdraw or add voltage? Does it act as a resistor or a battery? Otherwise your lectures were clear and
concise as always.
4. Finding the emf was confusing.
5. I found grounding to be very confusing; what does it mean for a circuit to be grounded?

Table 19: An example of the difference between the oracle extractive summary and the generated
model outputs (2/2).
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Human-reference
In this lecture students were most confused with BinaryNode class. They also require further in-
struction on methods to construct and implement a binary tree. Also students were confused on the
different traversal methods.
BART-Large

In this lecture, students were confused by the BinaryNode class and BinaryTree implementation.
Students were also confused by BinaryNode’s implementation and how it used BinaryNode objects
to execute all its functions. Students also found it confusing to understand the difference between
deep copy and shallow copy. They also were confused about the code for the different traversal
methods. Lastly, they were confused on the binary tree diagram.

BART-Large + specificity

In this lecture, students were confused by the BinaryNode and BinaryTree methods. Students also
found the code for the different traversal methods confusing in how it used BinaryNode objects to
execute all its functions. They also found it confusing to learn about the difference between deep
copy and shallow copy. Students were also confused by tree diagram and the last example shown in
class.
GPT-Human
The class covered topics such as deep copy vs shallow copy, Binary Tree implementation, BinaryN-
ode objects, and tree traversal methods. Some students found these topics confusing, while others
did not have any questions.
GPT-Human+specificity
Students found the implementation of BinaryNode and Binary Tree methods confusing, especially
the difference between deep copy and shallow copy. Some were lost during the last example and
had trouble understanding the constructor and copying a binary tree.

GPT-oneshot
Students found binary tree implementation confusing, particularly the deep copy vs shallow copy
in BinaryNode class and the BinaryTree build tree method. Some were unsure of the last example
discussed. Tree traversal and terminology were interesting.

Table 20: An example of the reference summary and different abstractive model outputs.

Figure 2: Human annotation guideline on the reflection specificity.
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Figure 3: Human annotation guidelines 1/4.
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Figure 4: Human annotation guidelines 2/4.
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Figure 5: Human annotation guidelines 3/4.



13846

Figure 6: Human annotation guidelines 4/4.
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