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Abstract
We study in this paper the problem of clustering comparable corpora, building upon the observation that different
types of clusters can be present in such corpora: monolingual clusters comprising documents in a single language,
and bilingual or multilingual clusters comprising documents written in different languages. Based on a state-of-the-art
deep variant of Kmeans, we propose new clustering models fully adapted to comparable corpora and illustrate their
behavior on several bilingual collections (in English, French, German and Russian) created from Wikipedia.
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1. Introduction

Text clustering is a fundamental task of NLP and
unsupervised machine learning aiming to unveil the
structure underlying a collection of documents by
identify clusters of similar documents. In addition to
a better understanding of a collection through the
clusters it contains, clustering comparable corpora
can be useful to lexical and terminological studies
as linguists can study the different usages of a term
and its translations in specific topics. Many models
and algorithms have been proposed for clustering
purposes, from the original Kmeans algorithm (Mac-
Queen et al., 1967) to latent topic models as LDA
(Blei et al., 2003), the DBSCAN and HDBSCAN
approaches (Ester et al., 1996; Campello et al.,
2013), and the most recent Deep α-Kmeans pro-
posal (Moradi Fard et al., 2020) which jointly learns
document representations and cluster representa-
tives. We are interested in this study in clustering
comparable corpora, i.e., corpora consisting of doc-
uments written in different languages without being
translation of one another. For the sake of sim-
plicity, we further focus on bilingual comparable
corpora, in which documents can be written in ei-
ther one of two languages, denoted by ℓ1 and ℓ2 in
the remainder.

The main question we address here is whether or
not one should rely on existing methods to cluster
such corpora or develop dedicated methods. It is of
course possible to directly apply existing clustering
methods, as the ones mentioned above, to identify
clusters in bilingual comparable corpora. However,
the peculiarity of the clusters one is aiming at when
clustering bilingual comparable corpora is that they
are of different types: some are monolingual clus-
ters containing documents written in either ℓ1 or ℓ2
but not both, whereas other are bilingual and con-
tain documents written in ℓ1 as well as documents
written in ℓ2. For example, in bilingual comparable
collections comprising newspaper articles from dif-

ferent countries, some topics and clusters will be
specific to a particular country and a particular lan-
guage, while others will be shared across countries
and languages: documents pertaining to national
politics and economy may relate to specific, mono-
lingual topics and clusters, whereas documents
concerning international affairs will likely relate to
topics and clusters common to the two corpora.

Standard clustering approaches are of course
blind wrt this distinction; by considering all doc-
uments equivalently, without accounting for lan-
guage distinctions, they may result in the inabil-
ity to accurately identify clusters. The question is
thus whether considering different types of clusters,
solely in ℓ1, solely in ℓ2 or in both languages, may
help cluster bilingual comparable corpora.

To address this question, we introduce two new
variants of the Kmeans algorithm. These variants
are based on the state-of-the-art text clustering
method Deep Kmeans and its main building block,
denoted here α-Kmeans, which provides a fully dif-
ferentiable and soft version of the Kmeans problem
of the form:

argmin
R

∑
x∈X

K∑
k=1

d (x, rk)
e−αd(x,rk)

K∑
k′=1

e−αd(x,rk′ )

, (1)

where R is the set of cluster representatives
{rk}Kk=1, X is the set of documents, d is a dissimi-
larity measure, typically the squared Euclidean dis-
tance d(x, y) = ∥x− y∥22, and α is a non-negative
real number which plays the role of an inverse tem-
perature (Moradi Fard et al., 2020) such that when
α tends to +∞ the fraction in Eq. 1 is 0 or 1 so that
one recovers the original Kmeans formulation lead-
ing to a hard assignment of documents to clusters
(whereas finite values of α result in a soft clustering
of the documents over the different clusters). Note
that both documents and cluster representatives
are vectors in Rp.
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We furthermore evaluate these two variants
through a comprehensive series of experiments
conducted on new bilingual corpora with ground
truth clustering labels obtained from Wikipedia. Our
contributions are thus two-fold:

• Firstly, we introduce two new models based
on α-Kmeans dedicated to clustering bilingual
comparable corpora by (a) relying on differ-
ent cluster types (monolingual and bilingual),
and (b) further improving document represen-
tations obtained from auto-encoders through
masking;

• Secondly, we assess the quality of these mod-
els on new comparable corpora with ground
truth clusters.

To the best of our knowledge, this is the first at-
tempt to develop a clustering model dedicated to
comparable corpora.

The remainder of the paper is organized as fol-
lows: Section 2 describes related work; Section 3
introduces our new comparable clustering models
which are then evaluated through a series of ex-
periments in Section 4; Section 5 concludes the
paper.

2. Related Work

Clustering can be executed using various ap-
proaches. Algorithms, such as Gaussian Mixture
Models (Reynolds et al., 2009), Dirichlet Process
Mixture Models (DPMM), Bayesian Nonparametric
Clustering (Hjort et al., 2010), leverage distribution-
based clustering techniques. While these algo-
rithms are well-suited for handling uncertainty, they
are highly sensitive to the underlying data distribu-
tion and are less effective when dealing with large
and high-dimensional corpora.

In density-based clustering algorithms such as
DBSCAN (Ester et al., 1996) or OPTICS (Ankerst
et al., 1999), data points are clustered within re-
gions characterized by high data point density,
with these high-density regions demarcated by re-
gions of lower data point density. These algorithms
demonstrate proficiency in managing outliers, al-
though they may encounter challenges when con-
fronted with clusters exhibiting similar density and
high-dimensional data. Agglomerative Hierarchical
Clustering and Divisive Hierarchical Clustering are
clustering techniques used to group data points into
a hierarchical structure of clusters. It can be com-
putationally intensive, especially for large data sets,
and the choice of parameters can have a significant
impact on the results. Hierarchical density-based
clustering combines aspects of density-based and
hierarchical clustering, as seen in methods like

HDBSCAN (Campello et al., 2013). Similar to hi-
erarchical clustering, it can be computationally in-
tensive, and parameter selection for both density-
based clustering and hierarchical aggregation steps
is crucial.

Centroid-based clustering models, represented
by algorithms like Kmeans, may not perform as well
in terms of initialization, handling irregularly shaped
clusters, and addressing outliers. However, they
rely on well-founded objective functions, excel in
a wide range of applications, offer high scalabil-
ity, and can handle large data sets with a relatively
small memory footprint, making it vital for real-world
applications involving big data. Furthermore, the
fully differentiable, deep version of Kmeans, known
as Deep α-Kmeans, has recently been shown to
outperform many clustering alternatives on text col-
lections (Moradi Fard et al., 2020). We thus rely on
this family of models in the remainder.

Lastly, we know of no work specifically dedicated
to clustering comparable corpora. We believe that
this is due to the fact that any clustering algorithm
can be applied on such corpora, provided one does
not want to take into account the different cluster
types inherent to them.

3. Clustering Comparable Corpora

We present in this section new models to cluster
bilingual comparable corpora.

3.1. Monolingual and Bilingual Cluster
Types

In the remainder, we will say that monolingual clus-
ters in language ℓ1 are of type t1, that monolingual
clusters in language ℓ2 are of type t2, and that bilin-
gual clusters containing both documents in ℓ1 and
ℓ2 are of type t3. If a document in ℓ1 (resp. ℓ2)
is close to other documents in ℓ1 (resp. ℓ2), and
far away from documents in ℓ2 (resp. ℓ1), then it
is likely that this document belongs to a cluster of
type t1 (resp. t2). Conversely, if a document in ℓ1
or ℓ2 is close to both documents in ℓ1 and ℓ2, then
it is likely that this document belongs to a cluster of
type t3.

We use here the ratio of the distances to the
closest document in language ℓ1 and to the closest
document in language ℓ2 to determine the cluster
type, with the assumption that if this ratio for a
document in ℓ1 strongly favors ℓ1 (resp. ℓ2 for a
document in ℓ2), then the document likely belongs
to a cluster of type t1 (resp. t2). On the other hand,
if the ratio does not strongly favor any language,
then the document likely belongs to a cluster of
type t3. This can be captured through the following
quantity, denoted F (v, i), where v denotes either a
document or a cluster representative and i one of
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the three cluster types:

F (v, i)i=1,2 = e
τ( 1

µ− di(v)

dī(v)
)
I(v, i),

F (v, 3) = e
τ(min(

d1(v)

d2(v)
− 1

µ ,
d2(v)

d1(v)
− 1

µ ))
I(v, 3).

(2)

d1(v) (resp. d2(v)) is the distance of v to its closest
document in ℓ1 (resp. ℓ2), and ī = 2 if i = 1 and 1 if
i = 2. 1/µ, µ > 1, represents the quantity control-
ling to which extent the ratio of closest distances
favors one of the two monolingual cluster types: for
a document in ℓ1, if d1(v)/d2(v) is smaller that 1/µ,
that is if the distance to the closest document in ℓ2 is
greater, by a factor µ, than the distance to the clos-
est document in ℓ1, then the document is likely to
belong to a cluster of type t1 (and similarly for docu-
ments in ℓ2 and clusters of type t2). The other hyper-
parameter, τ , controls to which extent the assign-
ment of documents and representatives to cluster
types is harder (higher values of τ ) or softer (smaller
values of τ ). Lastly, the function I(v, i), 1 ≤ i ≤ 3
allows one to avoid assigning documents in ℓ1 (resp.
ℓ2) to clusters of type t2 (resp. t1). It is defined by:
I(v, 1) = I(v, 2) = I(v, 3) = 1 if v is a represen-
tative, I(v, 1) = I(v, 3) = 1 and I(v, 2) = 0 if v is
a document in ℓ1, and I(v, 2) = I(v, 3) = 1 and
I(v, 1) = 0 if v is a document in ℓ2.

We can then define the probability, for any docu-
ment or cluster representative v, to belong to one
of the three cluster types as:

P (ti|v) =
F (v, i)∑3
i=1 F (v, i)

.

Lastly, in Eq. 1, each document x is assigned to
each representative {rk}Kk=1 with a quantity which
can be interpreted as the probability that rk is the
closest representative to x. However, when con-
sidering cluster types, one should try and assign
a document x of type ti, 1 ≤ i ≤ 3, to representa-
tives of the same type, and forbid assignment to
representatives and clusters of different types. To
do so, one can rewrite Eq. 1 as:

argmin
R

∑
x∈X

3∑
i=1

P (ti|x)
K∑

k=1

d(x, rk)A(x, ti, k;α,R),

(3)
with:

A(x, ti, k;α,R) =
P (ti|rk)e−αd(x,rk)∑K

k′=1 P (ti|rk′)e−αd(x,rk′ )
. (4)

For a document x of type ti, that is for which
P (ti|x) is high, the above formulation privileges,
in A(x, ti, rk;α,R), representatives of the same
type, that is representatives for which P (ti|x) is
high. The solution to the optimization problem in
Eq. 3, which can be obtained through standard gra-
dient descent approaches, will be referred to as
cα-Kmeans.

3.2. Weak Representation Learning
through Masking

Eq. 3 is valid for any vector-based representa-
tions of documents, in particular representations
obtained with auto-encoders. In that case, the
representation is learned beforehand, and used in
the clustering process. One can wonder however
whether it is possible to jointly learn a representa-
tion and cluster documents, as in Deep Kmeans,
with the potential advantage of learning a represen-
tation fully adapted to the clustering task.

It turns out that is not possible to replicate, in the
context of comparable corpora with different clus-
ter types, the approach followed in Deep Kmeans,
which relies on a joint loss function aiming to jointly
minimize the reconstruction error of the represen-
tation obtained with an auto-encoder and the er-
ror of the clustering obtained with this representa-
tion. This is due to the fact that the optimization
problem at the basis of Eq. 3 may change from
one epoch to the other if the representations of
documents change through an update of the auto-
encoder; indeed, this change can yield different
values for d1(x) and d2(x) and eventually different
cluster types. In that case, there is no guarantee
that the joint process converges.

This said, if one assumes that the original rep-
resentation of documents, typically in the form of
a vector obtained via an auto-encoder in our case,
contains the necessary information to accurately
cluster the comparable corpus, then one can try
and improve this representation by identifying, for
each cluster, the most relevant dimensions. Of
course, the information relevant to a particular clus-
ter may be widespread over different dimensions;
however, we believe it unlikely that all relevant infor-
mation are equally distributed over all dimensions,
and more likely that most of the relevant information
for a particular cluster be present in a subset of the
original dimensions, specific to the cluster.

We thus introduce cluster masks, which are bi-
nary vectors representing, for each cluster, the di-
mensions that should be retained for this cluster. In
order to avoid ”concentrating” all documents and
cluster representatives on the same point, which
would minimize the objective function of Eqs. 1 and
3 but would lead to a degenerate solution, we fur-
ther limit the number of dimensions not retained,
so that the cluster masks are defined by:

Mη = {m(k)|m(k) ∈ {0, 1}p,
p∑

i=1

m
(k)
i ≥ η · p}Kk=1 (5)

In this formulation, the cluster masks serve as a
filtering mechanism that selectively emphasizes
the relevant dimensions within each cluster. By
setting certain dimensions to 1 and others to 0,
the mask effectively highlights the dimensions that
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contribute significantly to the representation of each
cluster. The parameter η controls the sparsity of
the masks, determining the number of dimensions
to be considered.

The comparison between each document and
each cluster representative can then be based on
the cluster mask by adapting the dissimilarity mea-
sure d used in Eqs. 1 and 3 to rely only on the
dimensions retained for the cluster, through:

∀k, 1 ≤ k ≤ K, dm(k)(x, rk) = d(x⊙m(k), rk⊙m(k)),

where ⊙ represents the element-wise product be-
tween two vectors.

Integrating this approach into Eq. 3 leads to the
following optimization problem:

argmin
R,M

∑
x∈X

2∑
i=0

P (i|x)
K∑

k=1

dm(k)(x, rk)

Am(x, ti, k;α,R,Mη), (6)

with:

Am(x, ti, k;α,R,Mη) =
P (i|rk)e−αd

m(k) (x,rk)∑K
k′=1 P (i|rk′)e−αd

m(k) (x,rk′ )
.

(7)
The solution of this problem, which is again fully dif-
ferentiable, is a model we refer to as mcα-Kmeans,
which is designed to take into account the different
cluster types inherent to clustering comparable cor-
pora while identifying representations specific to
each cluster.

Updating cluster masks We assume here
that the dissimilarity used is the squared Eu-
clidean distance, which corresponds to d(x, rk) =∑p

j=1 d
j(x, rk) with dj(x, rk) = (xj − rkj )

2. In both
Eqs 4 and 7, the quantities A(x, ti, k;α,R) and
Am(x, ti, k;α,R,Mη) can be interpreted as the
probabilities that x belongs to the cluster repre-
sented by rk; when α tends to infinity, these two
quantities tend to either 0 or 1 as only the dominat-
ing term, corresponding to the smallest distance in
the sum, is kept in the denominator, which either
dominates the numerator, leading a probability of 0,
or is equal to the numerator, leading a probability
of 1. The contribution of the jth dimension of the
kth cluster to Eq. 6 can thus be approximated, for
α sufficiently large, by:

∑
x∈X

2∑
i=0

P (i|x)dj
m(k)(x, rk)Am(x, ti, k;α,R,Mη).

(8)
Starting with mask vectors with all coordinates set
to 1, at the end of each epoch, for each cluster,
we then simply update its mask by setting to 0 its
coordinate on the dimension which deteriorates the
most the clustering loss, that is the dimension for
which the value given by Eq. 8 is the highest. We

however do not update a mask m(k) if the update
would lead to violate the constraint

∑p
i=1 m

(k)
i ≥

η · p.

4. Experiments

We describe here our experimental protocol,
present the results obtained and discuss important
issues. All data sets and code are freely available
through public repositories1 .

4.1. Data Collection
To obtain comparable corpora with ground truth
clusters and a variety of languages, we relied on
Wikipedia and its underlying interlingual category
system which is a graph with a tree backbone and
a root corresponding to the category Main topic
classifications. Articles in Wikipedia have different
versions in different languages which, while being
close to each other in terms of content, are usu-
ally not translations of each other. To this extent,
Wikipedia can be seen as an easily accessible,
high quality comparable corpus. In order to select
both clusters and documents which are neither too
generic nor too specific, we first filtered out all cat-
egories: (i) keeping only the ones such that the
length of the shortest path to the root is comprised
between 2 (level-2 categories) and 22 (level-22 cat-
egories), (ii) that either contain the empty words
by, in, from, about, and, after, as otherwise they
would be too specific, or the words list, award, im-
age, quotation, event, outline, redirect, people as
articles in these categories usually represent an
enumeration, and (iii) keeping only the ones that
are not ambiguous in the sense that they are not
subcategories of several categories. From the level-
2 categories and their subcategories, we then built
several comparable corpora through the following
process:

1. For each cluster type t1, t2, t3, we first ran-
domly select a number of clusters in {10, 15,
20, 25, 30}, and then associate each cluster to
one level-2 category randomly selected with-
out replacement,

2. For each level-2 category thus selected, ran-
domly select a number of documents in {100,
250, 500, 750, 1000, 1250, 1500, 2000} for
categories of types 1 and 2, and a number of

1The tools for creating data sets as well as
the data sets used in our experiments are avail-
able at: https://github.com/anna-laskina/
comparable_corpora_generator. The source
codes of the proposed models and the evaluation
measures are available at: https://github.com/
anna-laskina/comparable_clustering.

https://github.com/anna-laskina/comparable_corpora_generator
https://github.com/anna-laskina/comparable_corpora_generator
https://github.com/anna-laskina/comparable_clustering
https://github.com/anna-laskina/comparable_clustering
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document pairs in {100, 250, 500, 750, 1000,
1250, 1500, 2000} for categories of type 3,

3. Then, for each category, collect the articles,
or pairs of articles, directly related to it in
Wikipedia and which do not belong to more
than ρ level-2 categories and to any other se-
lected level-2 category of different types, focus-
ing on articles in ℓ1 (resp. ℓ2) if the category is
of type 1 (resp. 2), or using the pair of articles
in ℓ1 and ℓ2 if the category is of type 3; we refer
to the set of articles, or pairs of articles, thus
obtained as A.

4. Continue collecting all articles, or pairs of arti-
cles, directly related to the subcategories of the
categories considered so far2 and add them in
A until A contains at least n articles (or pairs
of articles) or there are no more subcategories,
where n is the number of documents selected
for the category at step 2.

5. Finally, if A contains more than 100 articles,
which is the lower bound for the number of arti-
cles considered per cluster, randomly select n
articles, or pairs of articles, from A; otherwise
do not consider the category.

The ranges considered for the number of clus-
ters of different types and the number of documents
per cluster allow one to obtain varied comparable
corpora, with more or less balanced clusters and
monolingual and bilingual parts. Furthermore, ρ al-
lows one to control to which extent the comparable
corpus obtained relies on hard (ρ = 1) or soft clus-
ters (ρ > 1). As the average number of clusters per
document in almost all corpora we finally consid-
ered is 1.02 and as our clustering methods derive
from Kmeans, which is a hard clustering method,
we present in this section the results obtained on
comparable corpora built with ρ = 1. Lastly, we
built 9 data sets for the English-French (En-Fr) lan-
guage pair, one for the English-German (En-Ger)
language pair and one for the French-Russian (Fr-
Ru) language pair. Table 1 displays the main char-
acteristics of these data sets and Table 2 presents
an example of the cluster appearance in corpora.

4.2. Experimental Protocol
Models compared In order to evaluate our pro-
posal, we compared our approach with different
variants of the Kmeans algorithm, as (a) other base-
lines as HDBSCAN performed badly on the data
sets retained3, and (b) Deep α-Kmeans model is a

2At first only one category is considered, then all its
subcategories, then all the subcategories of its subcate-
gories, ...

3In particular, in all the configurations we tested, HDB-
SCAN provided a high number of outliers, resulting in a

Corpora id t1 t2 t3
doc. k doc. k doc. k

En-Fr №1 6240 16 2342 9 6160 7
En-Fr №2 1657 8 3193 6 4354 8
En-Fr №3 7986 16 2068 8 5132 8
En-Fr №4 3472 12 925 7 5178 9
En-Fr №5 2601 12 1048 4 4150 20
En-Fr №6 5487 19 882 7 5460 12
En-Fr №7 8972 15 507 5 8026 13
En-Fr №8 2988 8 947 8 10682 15
En-Fr №9 2205 7 1045 5 2388 6
En-Ger №1 1620 6 1012 7 3004 7
Fr-Ru №1 1618 6 945 7 3002 7

Table 1: Data sets used in the experiments. For
each data set, we provide the number of documents
and number of clusters per cluster type. The num-
bers of clusters below 10 are due to the potential
pruning in step 5 of the data collection process.

state-of-the-art model for text clustering. The mod-
els retained are: the scikit-learn implementation of
the standard Kmeans algorithm (Sklearn), a vari-
ant of the Kmeans algorithm which uses batches
(Kmeans batch) as all other models but the pre-
vious one, the fully differentiable and soft version
α-Kmeans, our proposals cα-Kmeans and mcα–
Kmeans, and the pre-trained version of the deep
Kmeans model proposed by Moradi Fard et al.
(2020) (referred to here as Deep α-Kmeansp). Fur-
thermore, in order to assess the importance of
the masking mechanism (Section 3.2), we also in-
cluded it in the α-Kmeans model, leading to the mα-
Kmeans model, and in the Deep α-Kmeansp model,
leading to the Deep mα-Kmeansp model. To pro-
duce comparable results when using non-deep ver-
sions of Kmeans, we used the same auto-encoder
with the same settings as for the deep version
Moradi Fard et al. (2020), using pre-trained BERT-
base embeddings as input to the auto-encoder.

As users usually interact with clustering methods
in order to select the best hyperparameters of the
method, we ran each model 10 times and com-
pared them according to their best run, the average
of their 3 best runs and the average of their 10
runs. On each data set, the hyperparameters were
chosen on the following sets: {1.00, 5.00, 10.00,
10000.00} for α, {0.0, 1.0, 5.00, 10.00} for τ , and {1.00,
0.95, 0.90, 0.80, 0.75} for η. For mαKmeans, mcα-
Kmeans and Deep mα-Kmeans, we set µ = 2.0. To
ensure reproducibility, identical seed values were
applied to all models for initialization.

Evaluation measures We compared the clus-
ters obtained by the above models with the ground
truth labels available in the data sets we con-
structed. Apart from the standard versions of

lot of documents not being assigned to any cluster and
finally poor clustering performance.
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Type Cluster category Document titles

t1
Wisdom, Social concepts, Musical composition, Information theory,
Information management, Sports stubs, Technology development Entropic vector, Pinsker’s inequality, Pointwise mutual information

t2
Periodic phenomena, Historiography, Historic preservation, Books,
Business software Révisionnisme, Histoire comparée, Âge d’or des comics

t3
Geographical areas, History of religion, Philosophical theories,
Change, Information Age, Time zones

Scientific realism, Quantum mind, Acatalepsy,
Réalisme scientifique, Esprit quantique, Acatalepsie

Table 2: Category representations within En-Fr №9 corpus by monolingual English (t1), monolingual
French (t2), and bilingual (t3) types. The second column provides lists of the Wikipedia categories that
formed clusters in the collection. For categories in bold, the third column lists some of the document
titles assigned to them. Underlined titles refer to texts in English, while ununderlined titles refer to texts in
French.

Kmeans, all models in fact yield soft assignments
of documents to clusters. In addition to these soft
assignments, we also consider hard assignments
obtained by selecting the best cluster for each doc-
ument. For evaluating the hard clustering results,
we used two standard measures, namely the Ma-
trices Adjusted Rand Index (ARI) (Hubert and Ara-
bie, 1985), and Adjusted Mutual information (AMI)
(Vinh et al., 2009). The prevailing methods for
evaluating soft clustering algorithms typically in-
volves expanding on the Rand Index (Rand, 1971).
There are indeed numerous fuzzy adaptations of
the Rand Index (Campello, 2007; Frigui et al., 2007;
Brouwer, 2009; Hullermeier and Rifqi, 2009; Ander-
son et al., 2010). In this work, we employed the
Fuzzy Rand Index by Hullermeier and Rifqi (2009)
(H-FRI), which is based on the comparison of the
document distributions on the true clusters and the
clusters obtained with a model, and our own varia-
tion of it called O-FRI and specifically tailored for
collections in which documents belong to a lim-
ited number of clusters. Indeed, H-FRI tends to
give high scores to distributions concentrated on
a few clusters and fail to discriminate between dif-
ferent models. Following the notation introduced
by Hullermeier et al. (2011), we use in O-FRI the
cosine siimlarity for the fuzzy equivalence relations
EP and EQ, and renormalize the degree of discor-
dance as:

disc(x, x′) = λ(EP (x, x
′)− EQ(x, x

′))2

λ =

{
b

n(n−1)/2−b ifEP (x, x
′) = 0

n(n−1)/2−b
b otherwise

(9)

where b is a number of pairs (x, x′) ∈ X 2 of docu-
ments for which EP (x, x

′) = 0. Here, P denotes
the ground truth partition, while Q denotes the pre-
dicted partition. Figure 1 illustrates whether the
different measures retained concentrate or not on a
particular range of values. As one can note, both H-
FRI and AMI tend to concentrate in a given region
and fail to discriminate different models. For space
reasons, we thus report here the results obtained
with ARI and O-FRI.

Code All models and measures were imple-
mented in Python (v. 3.8.10), using the scikit-learn

Figure 1: Concentration of the evaluation measures
for all models on the 9 En-Fr data sets.

(v. 1.1.3), numpy (v. 1.22.2), scipy (v. 1.10.1) and
pytorch (v. 1.10.2) libraries.

4.3. Results
The main results are summarized in Table 4 for
the En-Ger and Fr-Ru collections, and Table 3 for
the En-Fr collections. As one can note, for ARI,
the best results over all 9 En-Fr collections, as well
as for the En-Ger collection, for the best run, the
three best runs and the 10 best runs, are obtained
with our complete proposal mcα-Kmeans, followed
by Deep mα-Kmeansp. Furthermore, for the last
collection (Fr-Ru), mcα-Kmeans is the best model
when comparing the best run and the three best
runs, and second after Deep mα-Kmeansp when
comparing the 10 best runs. For O-FRI, for the
En-Fr collections, mcα-Kmean is the best model
for the 10 best runs on 7 out of 9 collections, the
best model for the 3 best runs on 6 out of 9 col-
lections, and the best model for the best run on 5
out of 9 collections. It is in average (last column
of Table 3) the best model for the 3 best and 10
best runs, and is second and close (0.819 vs 0.822)
to best model (Deep mα-Kmeansp) in average for
the best run. The two models, mcα-Kmean and
Deep mα-Kmeansp, are the best models for all En-
Fr collections on all runs. Contrary to the En-Fr
collections, the Fr-Ru and En-Ger data sets benefit
from the capacity of the deep versions to jointly
learn a representation and perform clustering. In-
deed, Deep mα-Kmeansp is the best model here,
over all runs, followed by Deep α-Kmeansp and
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ARI
En-Fr №1 En-Fr №2 En-Fr №3 En-Fr №4 En-Fr №5 En-Fr №6 En-Fr №7 En-Fr №8 En-Fr №9 avg

AE+Sklearn
0.369 0.546 0.435 0.275 0.349 0.396 0.257 0.282 0.693 0.400 ± 0.134

0.353 ± 0.013 0.501 ± 0.032 0.433 ± 0.003 0.267 ± 0.010 0.345 ± 0.003 0.393 ± 0.003 0.230 ± 0.019 0.274 ± 0.006 0.690 ± 0.003 0.387 ± 0.134
0.329 ± 0.018 0.452 ± 0.043 0.401 ± 0.027 0.249 ± 0.015 0.339 ± 0.005 0.379 ± 0.011 0.212 ± 0.016 0.254 ± 0.017 0.656 ± 0.034 0.363 ± 0.127

AE+Kmeans batch
0.366 0.518 0.431 0.285 0.357 0.419 0.273 0.286 0.694 0.403 ± 0.128

0.345 ± 0.015 0.494 ± 0.017 0.428 ± 0.004 0.275 ± 0.008 0.353 ± 0.003 0.411 ± 0.007 0.239 ± 0.025 0.274 ± 0.009 0.686 ± 0.007 0.389 ± 0.130
0.331 ± 0.016 0.454 ± 0.033 0.404 ± 0.025 0.254 ± 0.015 0.344 ± 0.007 0.396 ± 0.012 0.216 ± 0.021 0.253 ± 0.018 0.660 ± 0.028 0.368 ± 0.127

AE+α–Kmeans
0.374 0.539 0.463 0.432 0.380 0.427 0.275 0.316 0.698 0.434 ± 0.119

0.353 ± 0.010 0.512 ± 0.025 0.446 ± 0.012 0.400 ± 0.028 0.375 ± 0.004 0.418 ± 0.009 0.267 ± 0.008 0.300 ± 0.012 0.691 ± 0.006 0.418 ± 0.119
0.339 ± 0.015 0.465 ± 0.031 0.417 ± 0.030 0.338 ± 0.050 0.359 ± 0.012 0.401 ± 0.013 0.234 ± 0.024 0.278 ± 0.019 0.665 ± 0.025 0.388 ± 0.118

AE+mα–Kmeans
0.413 0.573 0.477 0.432 0.381 0.427 0.313 0.316 0.716 0.449 ± 0.122

0.391 ± 0.012 0.535 ± 0.027 0.460 ± 0.017 0.400 ± 0.026 0.375 ± 0.006 0.418 ± 0.005 0.279 ± 0.024 0.300 ± 0.008 0.698 ± 0.016 0.428 ± 0.120
0.357 ± 0.022 0.473 ± 0.054 0.429 ± 0.026 0.338 ± 0.046 0.359 ± 0.012 0.401 ± 0.011 0.248 ± 0.029 0.278 ± 0.019 0.666 ± 0.028 0.394 ± 0.116

AE+cα–Kmeans
0.376 0.539 0.463 0.432 0.390 0.427 0.275 0.316 0.720 0.438 ± 0.124

0.366 ± 0.007 0.512 ± 0.025 0.458 ± 0.006 0.400 ± 0.028 0.375 ± 0.004 0.418 ± 0.009 0.267 ± 0.008 0.300 ± 0.012 0.706 ± 0.014 0.422 ± 0.122
0.340 ± 0.021 0.465 ± 0.031 0.421 ± 0.036 0.338 ± 0.050 0.359 ± 0.012 0.401 ± 0.013 0.234 ± 0.024 0.278 ± 0.019 0.669 ± 0.033 0.389 ± 0.119

AE+mcα–Kmeans
0.424 0.591 0.480 0.432 0.390 0.428 0.313 0.326 0.720 0.456 ± 0.121

0.398 ± 0.022 0.546 ± 0.042 0.463 ± 0.016 0.400 ± 0.026 0.382 ± 0.011 0.419 ± 0.007 0.279 ± 0.024 0.306 ± 0.016 0.708 ± 0.017 0.433 ± 0.122
0.358 ± 0.033 0.473 ± 0.054 0.429 ± 0.026 0.338 ± 0.046 0.360 ± 0.008 0.401 ± 0.011 0.248 ± 0.029 0.278 ± 0.019 0.669 ± 0.036 0.395 ± 0.117

Deep α–Kmeansp

0.324 0.486 0.400 0.374 0.354 0.389 0.267 0.300 0.677 0.397 ± 0.116
0.303 ± 0.015 0.467 ± 0.014 0.385 ± 0.006 0.336 ± 0.017 0.344 ± 0.007 0.384 ± 0.004 0.241 ± 0.019 0.281 ± 0.019 0.669 ± 0.006 0.379 ± 0.120
0.282 ± 0.018 0.441 ± 0.022 0.365 ± 0.017 0.288 ± 0.042 0.337 ± 0.006 0.368 ± 0.011 0.226 ± 0.015 0.244 ± 0.014 0.638 ± 0.037 0.354 ± 0.119

Deep mα–Kmeansp

0.324 0.471 0.406 0.374 0.357 0.383 0.268 0.301 0.680 0.396 ± 0.115
0.305 ± 0.013 0.467 ± 0.005 0.387 ± 0.005 0.338 ± 0.015 0.345 ± 0.008 0.379 ± 0.004 0.242 ± 0.018 0.276 ± 0.017 0.667 ± 0.009 0.378 ± 0.119
0.282 ± 0.019 0.435 ± 0.018 0.365 ± 0.021 0.288 ± 0.043 0.338 ± 0.007 0.367 ± 0.013 0.228 ± 0.014 0.243 ± 0.014 0.637 ± 0.037 0.353 ± 0.118

O-FRI
En-Fr №1 En-Fr №2 En-Fr №3 En-Fr №4 En-Fr №5 En-Fr №6 En-Fr №7 En-Fr №8 En-Fr №9 avg

AE+Sklearn
0.356 0.517 0.395 0.318 0.328 0.373 0.281 0.306 0.677 0.395 ± 0.119

0.342 ± 0.010 0.483 ± 0.025 0.393 ± 0.003 0.314 ± 0.005 0.326 ± 0.002 0.368 ± 0.004 0.261 ± 0.014 0.301 ± 0.004 0.672 ± 0.004 0.384 ± 0.118
0.325 ± 0.013 0.447 ± 0.033 0.366 ± 0.024 0.303 ± 0.010 0.322 ± 0.004 0.355 ± 0.010 0.248 ± 0.011 0.287 ± 0.011 0.640 ± 0.032 0.366 ± 0.110

AE+Kmeans batch
0.353 0.500 0.392 0.324 0.338 0.396 0.294 0.317 0.686 0.400 ± 0.116

0.339 ± 0.010 0.480 ± 0.014 0.389 ± 0.003 0.319 ± 0.004 0.333 ± 0.003 0.388 ± 0.006 0.268 ± 0.018 0.305 ± 0.008 0.678 ± 0.006 0.389 ± 0.117
0.328 ± 0.010 0.451 ± 0.026 0.369 ± 0.022 0.306 ± 0.010 0.327 ± 0.005 0.371 ± 0.012 0.251 ± 0.015 0.291 ± 0.013 0.649 ± 0.028 0.371 ± 0.112

AE+α–Kmeans
0.637 0.577 0.800 0.591 0.459 0.782 0.903 0.850 0.778 0.709 ± 0.139

0.631 ± 0.004 0.561 ± 0.011 0.788 ± 0.013 0.576 ± 0.013 0.452 ± 0.006 0.759 ± 0.016 0.900 ± 0.002 0.850 ± 0.000 0.777 ± 0.001 0.699 ± 0.142
0.614 ± 0.015 0.530 ± 0.029 0.756 ± 0.025 0.552 ± 0.019 0.433 ± 0.015 0.722 ± 0.033 0.885 ± 0.019 0.843 ± 0.008 0.752 ± 0.023 0.676 ± 0.144

AE+mα–Kmeans
0.877 0.643 0.936 0.752 0.521 0.930 0.914 0.899 0.805 0.809 ± 0.137

0.871 ± 0.004 0.617 ± 0.019 0.936 ± 0.000 0.748 ± 0.003 0.505 ± 0.013 0.918 ± 0.009 0.911 ± 0.002 0.898 ± 0.001 0.796 ± 0.008 0.800 ± 0.142
0.861 ± 0.010 0.574 ± 0.040 0.934 ± 0.002 0.720 ± 0.035 0.484 ± 0.017 0.907 ± 0.010 0.906 ± 0.004 0.894 ± 0.005 0.769 ± 0.024 0.783 ± 0.152

AE+cα–Kmeans
0.695 0.577 0.816 0.596 0.459 0.819 0.919 0.857 0.785 0.725 ± 0.144

0.681 ± 0.011 0.562 ± 0.009 0.809 ± 0.008 0.586 ± 0.008 0.452 ± 0.006 0.804 ± 0.013 0.916 ± 0.002 0.850 ± 0.000 0.782 ± 0.002 0.716 ± 0.146
0.653 ± 0.026 0.530 ± 0.029 0.778 ± 0.025 0.561 ± 0.018 0.433 ± 0.015 0.769 ± 0.030 0.910 ± 0.007 0.843 ± 0.008 0.758 ± 0.026 0.693 ± 0.149

AE+mcα–Kmeans
0.891 0.654 0.941 0.788 0.524 0.936 0.920 0.906 0.812 0.819 ± 0.136

0.886 ± 0.004 0.629 ± 0.029 0.938 ± 0.002 0.784 ± 0.004 .506 ± 0.013 0.936 ± 0.000 0.917 ± 0.002 0.902 ± 0.003 .803 ± 0.009 0.811 ± 0.143
0.877 ± 0.008 0.574 ± 0.040 0.934 ± 0.002 0.742 ± 0.039 0.489 ± 0.015 0.925 ± 0.009 0.911 ± 0.009 0.897 ± 0.006 0.773 ± 0.024 0.791 ± 0.154

Deep α–Kmeansp

0.683 0.519 0.925 0.674 0.571 0.835 0.902 0.862 0.786 0.751 ± 0.138
0.669 ± 0.010 0.514 ± 0.004 0.921 ± 0.005 0.670 ± 0.001 0.557 ± 0.010 0.833 ± 0.001 0.902 ± 0.000 0.861 ± 0.000 0.771 ± 0.010 0.744 ± 0.140
0.632 ± 0.037 0.490 ± 0.021 0.863 ± 0.047 0.660 ± 0.019 0.533 ± 0.021 0.817 ± 0.023 0.902 ± 0.000 0.857 ± 0.005 0.746 ± 0.023 0.722 ± 0.142

Deep mα–Kmeansp

0.899 0.545 0.925 0.862 0.602 0.836 0.902 0.900 0.928 0.822 ± 0.136
0.765 ± 0.046 0.538 ± 0.005 0.925 ± 0.000 0.862 ± 0.000 0.599 ± 0.003 0.834 ± 0.002 0.902 ± 0.000 0.900 ± 0.000 0.926 ± 0.002 0.806 ± 0.136
0.710 ± 0.044 0.524 ± 0.009 0.900 ± 0.019 0.685 ± 0.181 0.586 ± 0.015 0.828 ± 0.004 0.902 ± 0.000 0.860 ± 0.002 0.917 ± 0.010 0.768 ± 0.138

Table 3: Clustering results in terms of ARI and O-FRI on the 9 En-Fr collections (higher is better). Each
cell contains the best run and the average of the 3 and 10 best runs (with std deviation).

mcα-Kmeans.
To complement the above analysis, we display in

Figure 2 the Critical Difference diagrams (Demšar,
2006) for the En-Fr collections for both evaluation
measures, ARI and O-FRI. These diagrams are
based on the non-parametric Friedman test (Fried-
man, 1937). In the event that the null hypothesis
(indicating that all ranks are not significantly differ-
ent) is rejected, the Nemenyi test (Nemenyi, 1963)
is employed as a post-hoc test. According to the
Nemenyi test, two models are deemed significantly

different if the corresponding average ranks differ
by at least the critical difference. These critical dif-
ference diagrams show that the best method overall
is indeed mcα-Kmeans, with a clear, even though
not significant overall collections, difference with
the second best model, which is cα-Kmeans for
ARI, and Deep α-Kmeansp for O-FRI.

Table 5 provides results for En-Fr collections by
cluster type. For both metrics, ARI and O-FRI, mcα-
Kmean outperforms the other models, sharing this
place with α-Kmean, mα-Kmean and cα-Kmean for
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En-Ger №1 Fr-Ru №2
ARI O-FRI ARI O-FRI

AE+Sklearn
0.466 0.482 0.406 0.425

0.463 ± 0.003 0.474 ± 0.006 0.399 ± 0.006 0.420 ± 0.005
0.447 ± 0.011 0.463 ± 0.009 0.386 ± 0.010 0.409 ± 0.008

AE+Kmeans batch
0.471 0.485 0.446 0.459

0.461 ± 0.008 0.474 ± 0.008 0.418 ± 0.022 0.451 ± 0.006
0.447 ± 0.011 0.464 ± 0.008 0.387 ± 0.025 0.426 ± 0.019

AE+α–Kmeans
0.474 0.542 0.451 0.621

0.463 ± 0.008 0.538 ± 0.005 0.429 ± 0.015 0.620 ± 0.000
0.448 ± 0.012 0.527 ± 0.008 0.392 ± 0.028 0.600 ± 0.021

AE+mα–Kmeans
0.474 0.556 0.457 0.667

0.463 ± 0.009 0.555 ± 0.001 0.431 ± 0.020 0.664 ± 0.003
0.448 ± 0.012 0.545 ± 0.009 0.392 ± 0.030 0.646 ± 0.017

AE+cα–Kmeans
0.494 0.544 0.451 0.640

0.468 ± 0.018 0.538 ± 0.005 0.429 ± 0.015 0.622 ± 0.015
0.449 ± 0.012 0.527 ± 0.008 0.392 ± 0.000 0.600 ± 0.021

AE+mcα–Kmeans
0.495 0.558 0.457 0.688

0.468 ± 0.006 0.556 ± 0.002 0.432 ± 0.014 0.681 ± 0.008
0.449 ± 0.012 0.545 ± 0.009 0.394 ± 0.029 0.661 ± 0.019

Deep α–Kmeansp
0.405 0.607 0.436 0.751

0.391 ± 0.008 0.592 ± 0.011 0.429 ± 0.008 0.740 ± 0.012
0.373 ± 0.016 0.576 ± 0.014 0.391 ± 0.031 0.701 ± 0.042

Deep mα–Kmeansp
0.405 0.922 0.442 0.923

0.392 ± 0.012 0.727 ± 0.003 0.428 ± 0.007 0.828 ± 0.000
0.374 ± 0.017 0.712 ± 0.011 0.398 ± 0.021 0.811 ± 0.020

Table 4: Clustering results on the En-Ger and Fr-Ru
collections (higher is better). Each cell contains the
best run as well as the average of the 3 and 10 best
runs (with std deviation).

ARI and type t3, and with Deep mα–Kmeansp for
O-FRI and type t2. We suspect that for ARI this is
due to a concentration problem (Fig. 1). In almost
all models for O-FRI except Deep mα–Kmeansp

the results for type t1 are better than for type t2
and for type t2 better than for type t3. For ARI this
is only true in half of the cases, namely Sklearn,
Kmeans batch, cα–Kmeans, and mcα-Kmean, but
it is true that for all models it achieves better re-
sults for types t1 and t2 than for type t3. These
results highlight the difficulty of clustering compara-
ble corpus, suggesting that it is more difficult than
clustering monolingual corpus.

4.4. Discussion

Overall, the above results indicate that mcα-
Kmeans outperforms the other models on almost
all collections, followed by Deep mα-Kmeansp and
cα-Kmeans. This provides a positive answer to the
general question we addressed, namely whether
or not dedicated clustering models, as cα-Kmeans
and mcα-Kmeans, able to take into account the dif-
ferent cluster types inherent to comparable corpora
can improve the clusters obtained. This also shows
that it is important to somehow learn a representa-

Figure 2: Critical difference diagrams of the mean
ranks of the different models, in terms of ARI (top),
and O-FRI (bottom). Horizontal bars denote lack
of significant differences among models.

tion adapted to a given collection, either through a
joint approach as in Deep α-Kmeans or through the
masking mechanism we introduced which is able
to improve the joint learning of Deep α-Kmeans.
This said, the main disadvantage of the masking
mechanism compared to the joint learning is that
it assumes that the original embedding space, ob-
tained here with a pre-trained, shared auto-encoder,
captures all the correct cluster representations as
its only role is to prune, in a cluster dependent way,
some of the dimensions of the original embedding
space. This may not be true in practice and we
believe that this explains why the joint approach
clearly outperforms the other approaches on the
En-Ger and Fr-Ru collections for O-FRI.

In regards to the complexity of the proposed
models in comparison to the baseline models, one
epoch of our complete model (mcα-Kmeans) has
a complexity of 3(C + K) where K denotes the
number of clusters and C denote the complexity of
one epoch of the baseline model with α-Kmeans.
As K << C, the complete model is roughly three
times slower than the α-Kmeans baseline, presum-
ing that the number of epochs is the same for all
models.

Another point concerns the generalization of the
approach proposed to multilingual corpora, com-
prising documents in more than two languages.
The main problem with such corpora is that the
number of cluster types can be of the order 2ℓ,
where ℓ is the number of different languages, as all
combinations of languages can yield different clus-
ter types. A possible approach would be to select
just a few cluster types based on the proximity of
the different documents in the embedding space
obtained by a pre-trained, shared auto-encoder.
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AE+Sklearn
AE+Kmeans batch

AE+α–Kmeans
AE+mα–Kmeans

AE+cα–Kmeans
AE+mcα–Kmeans

Deep α–Kmeansp
Deep mα–Kmeansp

ARI
t1 0.428 ± 0.162 0.436 ± 0.160 0.447 ± 0.167 0.459 ± 0.171 0.487 ± 0.190 0.505 ± 0.185 0.441 ± 0.235 0.448 ± 0.230
t2 0.426 ± 0.115 0.430 ± 0.115 0.457 ± 0.112 0.466 ± 0.101 0.470 ± 0.113 0.478 ± 0.101 0.459 ± 0.117 0.461 ± 0.114
t3 0.304 ± 0.173 0.311 ± 0.175 0.348 ± 0.164 0.348 ± 0.166 0.348 ± 0.164 0.348 ± 0.166 0.312 ± 0.174 0.313 ± 0.176

O-FRI
t1 0.619 ± 0.103 0.624 ± 0.101 0.795 ± 0.071 0.820 ± 0.063 0.816 ± 0.079 0.838 ± 0.069 0.797 ± 0.101 0.801 ± 0.109
t2 0.491 ± 0.106 0.495 ± 0.107 0.743 ± 0.086 0.808 ± 0.098 0.758 ± 0.087 0.814 ± 0.098 0.780 ± 0.089 0.814 ± 0.080
t3 0.448 ± 0.131 0.454 ± 0.132 0.685 ± 0.116 0.753 ± 0.108 0.697 ± 0.118 0.758 ± 0.110 0.700 ± 0.101 0.730 ± 0.099

Table 5: Clustering results by cluster type in terms of ARI and O-FRI (higher is better). Each cell contains
the average of 10 runs over 9 En-Fr collections (with std deviation).

Lastly, we also assessed to which extent the dif-
ferent models are sensitive to the setting of their
hyperparameters. Figure 3 illustrates this for mcα-
Kmeans for O-FRI and η. As once can note, there
exists an important interval in which all η values
provide good models. This is true for all the hyper-
parameters of mcα-Kmeans (but not other models)
for O-FRI, and to a lesser extent for ARI.

5. Conclusion

We have revisited in this paper the problem of clus-
tering bilingual comparable corpora, building upon
the fact that comparable corpora can yield differ-
ent types of clusters. We have designed a new
model, based on α-Kmeans, to take into account
this fact, and have shown how one can further
adapt, through a masking mechanism, input rep-
resentations to obtain cluster dependent represen-
tations for both documents and cluster represen-
tatives. This last point is important as there is in
general no guarantee that a given representation is
well adapted to all clusters of a given collection, or
even to the clustering task. We further developed
a suite of tools to create, from Wikipedia, new bilin-
gual comparable corpora with ground truth clusters
and different distributions over the cluster types and
clusters in a given type. Our results, on 9 En-Fr,
one En-Ger and one Fr-Ru collections, indicate that
the model we proposed outperforms all the other
models on almost all collections.

Our future work will focus on trying to come up
with a formulation of the problem that can lead to a
true joint learning of the representation and cluster-
ing of the documents. This is however not easy as
there one needs to estimate, for each document,
the probability that it belongs to a particular cluster
type. We will also consider the problem of clus-
tering multilingual comparable corpora (with more
than two languages) through an appropriate selec-
tion of the possible cluster types.

Ethical considerations Our study aims to pro-
pose and evaluate models for clustering bilingual
comparable corpora and our work is mostly method-
ological. In particular, the developments of our

Figure 3: Sensitivity of mcα-Kmeans (for O-FRI)
wrt the hyperparameter η averaged over the 9 En-
Fr collections.

models and tools raised no ethical concerns. It
is nevertheless possible, and beyond our control,
that the clusters obtained by the models and tools
proposed be used for purposes which may not be
entirely ethical.
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