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Abstract
Even though current vision language (V+L) models have achieved success in generating image captions, they
often lack specificity and overlook various aspects of the image. Additionally, the attention learned through weak
supervision operates opaquely and is difficult to control. To address these limitations, we propose the use of semantic
roles as control signals in caption generation. Our hypothesis is that, by incorporating semantic roles as signals, the
generated captions can be guided to follow specific predicate argument structures. To validate the effectiveness of
our approach, we conducted experiments using Flickr30k data and compared the results with a baseline model
VL-BART(Cho et al., 2021a). The experiments showed a significant improvement, with a gain of 45% in Smatch
score (Standard NLP evaluation metric for semantic representations), demonstrating the efficacy of our approach.
By focusing on specific objects and their associated semantic roles instead of providing a general description, our
framework produces captions that exhibit enhanced quality, diversity, and controllability.

Keywords: semantic role labeling, caption generation, controlled caption generation

1. Introduction

Automatic caption generation is a complex task that
combines computer vision and natural language
processing to generate meaningful descriptions of
images. This research area has attracted consider-
able attention from various studies (Duygulu et al.,
2002; Farhadi et al., 2010; Kulkarni et al., 2011;
Vinyals et al., 2014; Karpathy et al., 2014; Karpa-
thy and Fei-Fei, 2017). Attention-based machine
translation methods (Bahdanau et al., 2015) have
influenced the integration of image attention mecha-
nisms in generating caption words (Xu et al., 2015;
Huang et al., 2019; Anderson et al., 2018). Re-
cently, with the availability of large-scale image-
text datasets and advancements in transfer learn-
ing through weak supervision, transformer-based
vision-language pretraining approaches (Tan and
Bansal, 2019a; Lu et al., 2019; Li et al., 2019b;
Su et al., 2020; Li et al., 2021, 2020; Chen et al.,
2020b) have significantly enhanced caption gener-
ation performance.

The success of large-language models (LLMs)
and vision+language (V+L) models has led to a shift
in focus away from more fundamental components,
such as semantics. The diversification of gener-
ated descriptions in caption generation is done by
tweaking the model parameters such as sampling
temperature, number of beams, and beam length,
etc. Therefore, variation of captions is often lim-
ited to the surface level of the sentence, neglecting
semantic diversification. V+L research was not al-
ways this indifferent to semantics. Semantic diver-
sification was addressed in previous work(Cornia
et al., 2019; Yao et al., 2018; Chen et al., 2020a). In
this paper, we revisit the significance of semantics
in caption generation.

A blond woman in
sunglasses was laughing.

ARG1

A blond woman was
wearing sunglasses.

ARG0

ARG0 ARG0

Figure 1: An example from Flickr30k dataset. The
image on the left has ARG0 for both the woman
and the sunglass. The generated caption has an
intransitive verb. In the next image the sun-glass
in ARG1. The generated caption uses wearing with
sun-glass as object.

The predicate-argument structure in computa-
tional linguistics is a form of semantic parsing that
conveys knowledge about who is doing what to
whom when. Semantic role annotation, based on
paradigms such as PropBank or Framenet (Palmer
et al., 2005; Fillmore et al., 2003), is used to train se-
mantic parsers for natural language processing. In
other words, given an action in a sentence, it iden-
tifies who is performing the action (ARG0), who is
affected by the action (ARG1), what instrument is
being used (ARG2), etc. to comprehend the mean-
ing of the sentence. The task of marking word
spans with semantic roles is called Semantic Role
Labeling (SRL) (Màrquez et al., 2008; Padó and
Lapata, 2009; Kozhevnikov and Titov, 2013; Akbik
et al., 2015)(Jindal et al., 2022). Recent advances
in deep neural architecture has improved the quality
of SRL annotation (Jia et al., 2022; Blloshmi et al.,
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A blond woman in a denim
jacket and denim jacket is
smiling. A blond woman in

sunglasses laughing.

A blond woman wearing sunglasses.

A blond woman wearing sunglasses and
a denim jacket.

ARG0

ARG1

ARG0

ARG1

VL model

ARG0

Figure 2: A typical caption generation model will
present a holistic description. ReCAP can generate
different captions based on the semantic roles of
the object bboxes in the image

2021; Fei et al., 2021).

In this paper, we propose a framework called
Semantic Role Enhanced Caption Generation (Re-
CAP), where we utilize SRL as a control signal
in the image captioning process. The framework
takes an input image with bounding boxes (bboxes)
annotated with SRL information. This allows for
the creation of variations of the same image by
altering the SRLs assigned to the bboxes. The
generated captions will then reflect the correspond-
ing predicate-argument structures presented in the
bbox annotations. For instance, in Figure 1, the im-
age on the left shows a woman and sunglasses both
labeled as ARG0. As a result, the generated cap-
tion uses an intransitive verb, with the woman and
sunglasses being part of the agent. In contrast,
the second image has the sunglasses annotated
as ARG1, and the generated caption depicts the re-
quired predicate-argument structures by employing
a transitive verb. Our key contributions can be sum-
marized as follows.

• We have used semantic roles as control signals
to generate focused image descriptions.

• SRL-informed models can generate diverse cap-
tions based on different linguistic foci.

• The explanation of the generated caption stems
from its grounding in linguistics, which can be
attributed to the provided SRL annotation of the
image.

• We used the Smatch score (Cai and Knight,
2013) as our reinforcement signal for better
grounding of the predicate-argument structure.

2. Related Work

Initial approaches to caption generation can be cat-
egorized into two types: 1) bottom-up and 2) top-
down. In bottom-up approaches, information about
object relationships and attributes is detected, and
this information is then used to generate captions
using predefined templatess (Yang et al., 2011;
Farhadi et al., 2010; Kulkarni et al., 2011). How-
ever, template-based methods often lack novelty in
their generated captions. On the other hand, top-
down approaches involve language modeling that
is conditioned on image fragments using soft at-
tention mechanisms (Vinyals et al., 2014; Xu et al.,
2015; Mao et al., 2014; You et al., 2016; Yao et al.,
2018). Anderson et al. (2018) proposed use of both
bottom-up and top-down approaches (BUTD).

In recent years, the availability of large-scale
image-text datasets, advancements in transfer
learning through weak supervision, and the devel-
opment of transformer-based V+L pretraining ap-
proaches (Tan and Bansal, 2019a; Lu et al., 2019;
Li et al., 2019b; Su et al., 2020; Li et al., 2021, 2020;
Chen et al., 2020b) have significantly improved the
performance of caption generation. Additionally,
the remarkable success of language generation
models such as LLMs (Language Models)(Raffel
et al., 2020; Lewis et al., 2020; Wei et al., 2022;
Brown et al., 2020) and V+L models (Radford et al.,
2021; Jia et al., 2021) has led to the development of
socratic-style models (Zeng et al., 2023). Several
models in this field (Mokady et al., 2021; Li et al.,
2023; Dai et al., 2023; Alayrac et al., 2022) have
employed a frozen V+L model encoder and frozen
LLMs, training interface layers that map represen-
tations from the output domain of the V+L model
to the input domain of the LLMs. However, these
models primarily function as black boxes, limiting
user control over the generation process.

In the past, attempts have been made to intro-
duce some form of control, either through guidance
over attention (Huang et al., 2019; Zhou et al., 2020)
or by manipulating the object sequence (Cornia
et al., 2019). Scene graphs (Xu et al., 2017; Tang
et al., 2020, 2018) presented a potent tool to di-
versify the generated captions (Yao et al., 2018;
Chen et al., 2020a). But semantic comprehension
with scene graphs is insufficient for image articula-
tion (Cho et al., 2022b; Cheng et al., 2022). On the
other hand, predicate-argument structures such
as semantic roles (Palmer et al., 2005; Fillmore
et al., 2003) are effective computational linguis-
tic tools in meaning representation. Given an ac-
tion in a sentence, semantic role identifies who is
performing the action (ARG0), who is affected by
the action (ARG1), what instrument is being used
(ARG2), etc. to comprehend the meaning of the
sentence. The task of automatic annotation of se-
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Figure 3: Overview of ReCAP. 1) text embedding and visual feature embedding are fed to the encoder
2) encoded information fed to the decoder 3)decoder generates candidate descriptions 4)candidate
sentences and the image is fed to CLIP-S+grammar model for scoring 5) sentence with highest score is
selected and 6) fed to GPT3 for further grammar correction.

mantic roles is known as semantic role labeling,
and it is a well-researched problem in the domain
of Computational Linguistics and NLP (Gildea and
Palmer, 2002; Pradhan et al., 2005; Zhou and Xu,
2015; Strubell et al., 2018; Blloshmi et al., 2021; Jia
et al., 2022; Fei et al., 2021). In this paper we are
proposing semantic role enhanced caption gener-
ation (ReCAP). Figure 2 shows an example of how
caption generation by ReCAP differs from current
V+L models.

3. Approach

Our model is inspired by VL-BART (Cho et al.,
2021a), which is an extended version of
BARTBase (Lewis et al., 2020). In VL-BART,
the text encoder is modified to accept image
region embeddings as additional input. The overall
framework of ReCAP is illustrated in Figure 3.
The encoder takes in image bbox and SRL
annotations, along with object labels as a prefix.
An auto-regressive decoder generates candidate
descriptions, with the number of beams determined
by the hyper-parameter "num_of_beam". The
candidate sentences undergo CLIPS+grammar
scoring(Cho et al., 2022a), and the winning
sentence is selected. This winning sentence
is then passed to GPT3(Brown et al., 2020) for
grammar correction.

3.1. Model
Visual Embedding The image representation is
obtained using Faster RCNN (Ren et al., 2015) pre-
trained on Visual Genome (Krishna et al., 2017),
following prior work (Anderson et al., 2018; Li et al.,
2020; Tan and Bansal, 2019b; Cho et al., 2021a).
We use a set of region vectors (R = r1, r2, ..., rn)

detected by Faster RCNN to represent the image.
Each region’s representation (ri) is derived from
the mean-pooled convolutional feature. In our ex-
periments, we use Faster RCNN features with a
dimension of 2048 and select the top 36 regions
based on class detection confidence scores. To
optimize computation, we pre-computed the Faster
RCNN features and utilized them in ReCAP. To
incorporate SRLs for the bboxes, we introduced an
embedding layer. The process of obtaining SRLs
for the bboxes is discussed in subsection 4.1. The
ultimate vision embedding (rv = rv1 , ..., r

v
2 ) is ob-

tained by summing the region feature, SRL embed-
ding, region id embedding, and bbox position.

Text Embeddings The input text for caption gen-
eration in our model follows the approach used in
VL-BART. As suggested by Li et al. (2020), the text
prompt (t) is accompanied by the object labels of
the image bounding boxes (bboxes). We utilize a
shared text embedding layer that is used by the en-
coder, decoder, and the language modeling head.
The embedded representation for the text input t is
denoted as et. Additionally, special visual sentinel
tokens were included to the vocabulary to obtain
embeddings for the image region ids. These shared
embeddings play a vital role in generating captions
that are grounded in the bboxes (Cho et al., 2021a).

Traning vs Inference ReCAP is a transformer-
based encoder-decoder model. The encoder and
the decoder consists of a stack of m multimodal
transformers and residual layers. The encoder
takes the concatenation of rv and et as input
and produces a contextualized joint representa-
tion, denoted as h = Enc(rv, et). The decoder
attends to the encoder representation h through
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cross-attention and to previously generated tokens
through self-attention. During training, the decoder
receives a version of the expected text sentence
that is right-shifted by one token position. During
inference, the decoder generates tokens condi-
tioned on the previously generated tokens in an
autoregressive manner. In other words, the de-
coder produces a probability distribution for the
next token over the vocabulary, represented as
Pθ(yj |y<j , t, v) = Dec(y<j , h), where θ represents
the model parameters. These parameters are
learned by optimizing the negative log-likelihood
(NLL) with respect to the ground truth tokens in the
context of the input text t and image v.

LXE(θ) = −
|y|∑
j=1

logPθ(yj |y<j , t, v) (1)

Reinforcement Learning To address the expo-
sure bias issue of NLL loss (Ranzato et al., 2016),
self-critical sequence training (SCST) (Rennie et al.,
2017) has been successful in image captioning
(Huang et al., 2019; Anderson et al., 2018; Cornia
et al., 2019; Li et al., 2020). In SCST, the objective
is to minimize the negative expected score, starting
from a model trained with cross-entropy.

Lr(θ) = Ey1:T∼Pθ
[r(y1:T )] (2)

where r is the reward function. Following (Rennie
et al., 2017) the gradient can be calculated as-

∇θLr(θ) ≈ −(r(ys1:T )−r(ŷ1:T ))∇θ logPθ(y1:T ) (3)

where ys1:T is a sampled caption and ŷ1:T is ob-
tained from current model with greedy decoding.
Previous methods (Huang et al., 2019; Anderson
et al., 2018; Cornia et al., 2019; Li et al., 2020)
primarily relied on CIDEr (Vedantam et al., 2014)
as a reward score to encourage caption genera-
tion similar to the reference captions. However,
our objective is to guide the model to mimic the
predicate-argument structure instead.

3.2. AMRs for focusing on
Predicate-Argument structure

To encourage the model to identify predicate-
argument structure we required an appropriate
scoring function that can reward correct predicate-
argument structure closest to the ground truth
(GT). To facilitate comparisons among predicate-
argument structures, we selected Abstract Mean-
ing Representation (AMR) graphs. AMR graphs
can be represented as sets of triplets, where each
triplet consists of a relation and two arguments
connected by the relation. The measure of proposi-
tional overlap between two AMRs involves counting
the number of matching triplets. Due to the various
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Figure 4: Histogram plot of F1 score of SRL(Shi
and Lin, 2019) on Flickr30k. Human annotators
corrected annotation for 4698 SRL propositions over
2676 sentences. We then randomly sampled 100
propositions and measured the F1 scores over 1000
iterations. Mean F1 score is 80.39 with std 2.66.

possible mappings between triplets from any two
AMRs, there can be multiple instances of propo-
sitional overlap. Smatch (Cai and Knight, 2013)
calculates the maximum F1 score among these
different mappings. For more details on Smatch,
please refer to Cai and Knight (2013).

We used Smatch as our reinforcement reward
metric. To generated AMR we employed the
SPRING parser (Bevilacqua et al., 2021) trained
with AMR 3.0 version of the LDC release (Knight
et al., 2020). For evaluation of the parser on
Flickr30k, we randomly selected 50 GT sentences
from the Flickr30k dataset and generated AMRs
using SPRING. Human experts also annotated the
same 50 sentences. The Smatch score for the
parser was 0.74. We performed a similar evaluation
for the captions generated by our model, resulting
in a Smatch score of 0.7.

4. Experiments

4.1. Experimental Set up
Data Preparation. We conducted our experi-
ments using the Flickr30k Entities dataset (Plum-
mer et al., 2017), which is derived from the Flickr30k
dataset (Young et al., 2014). The Flickr30k dataset
consists of 31, 000 images, each annotated with five
sentences. In the Entities dataset, each mention in
the sentences is linked to one or more bboxes in
the corresponding image. We utilized the provided
training-dev-test splits.

Since Flickr30k does not provide GT SRLs for
image bboxes, we generated SRLs for Flickr30k
entities by applying automatic SRL parsing to the
gold captions (Shi and Lin, 2019). The performance
of the SRL parser on Flickr30k, compared to hu-
man annotation, is shown in Figure 4. For each
sentence, the SRL parser produces propositions
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One man wearing a white shirt is flipping a
pancake ...

[One man]_Arg0 [wearing]_V
[a white shirt]_Arg1 is flipping
a pancake ...

[One man wearing a white
shirt]_Arg0 is [flipping]_V a
[pancake]_Arg1 ...

One man

white shirt
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image caption pair with entity mapping 

SRL model

Arg1
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One man wearing a white
shirt is flipping a pancake.

One man wearing a white
shirt.
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Figure 5: Process of bbox annotation creation for Flickr30k dataset using provided entity mapping. 1)
GT caption is fed to SRL parser 2) SRL parser gives SRL propositions 3) Using entity mapping SRLs
are transferred to bboxes and sub-sentences are created. During training, both the annotated image
and sub-sentences are used. During inference we used only the SRL annotated images. Refer to
subsection 4.1 for more details.

based on the number of predicates. We extract
the corresponding sub-sentences for each SRL
proposition. By mapping the SRLs to the bboxes
using the entity mapping of the Flickr30k Entities
dataset, we create annotations for the images. In
our experiments, we associate each bbox with the
image region that has the highest Intersection over
Union (IoU) among those detected by the Faster
RCNN. This results in a sub-sentence with an SRL-
annotated image, which serves as our training data.
The procedure is illustrated in Figure 5, where an
annotated image-sentence pair is created for each
predicate, such as flipping and wearing. During
inference, we use the SRL-annotated images only.

At this point, our experiments are limited to
Flickr30k because to the best of our knowledge,
no other dataset has entity-bounding box mapping.

Implementation Details. We used the pre-
trained VL-BART model (H = 768) and finetuned
it for caption generation with Flickr30k. Our batch
size was 8. We trained for 10 epochs with AdamW
Optimizer (Loshchilov and Hutter, 2019) with learn-
ing rate 3 × 10−5, (β1, β2) = (0.9, 0.999), and
ϵ = 1−8 with 5% linear warmup schedule. Our
code will be public upon acceptance of the paper.

4.2. Results and Discussions
Quantitative Results. To investigate the impact
of SRL, we conducted experiments using a basic
BUTD model (Anderson et al., 2018) with SRL
annotation. For ReCAP we started from the VL-
BART (Cho et al., 2021a) model. Table 1 shows
the performance of our caption generation sys-
tem with respect to BLEU, METEOR, ROUGE and
CIDEr (Papineni et al., 2002; Denkowski and Lavie,

2014; Lin, 2004; Vedantam et al., 2014). We also
include Smatch scores (as previously defined in
Section 3.2) in our Results table. The reader will
immediately note that our results seem very mixed.
Smatch and CIDEr show marked improvement, in
contrast with BLEU, METEOR, ROUGE.

The introduction of SRL into the BUTD model
resulted in a modest increase in the Smatch score,
from 0.31 to 0.33. However, it’s worth noting that a
Smatch score of 0.33 can also be achieved with a
vanilla BLIP model (Li et al., 2022). Furthermore,
the vanilla BLIP2 (Li et al., 2023) (finetuned t5xl)
model scored 0.35Smatch score. The improvement
in the Smatch score due to introduction of SRL was
more significant in the case of VL-BART, with a
45% increase, raising the Smatch score from 0.35
to 0.51. These enhancements, observed in both
a basic model like BUTD and an advanced model
like VL-BART, highlight the effectiveness of SRL in
generating the desired predicate-argument struc-
ture. Improvement in Smatch from BLIP to BLIP2
intrigued us about exploring large V+L models in
context of SRL. However, at this moment we leave
this as our future endeavour.

Training with SCST and utilizing the Smatch
score resulted in even better performance. How-
ever, the use of CLIP-S+grammar (Cho et al.,
2022a) in selecting candidate sentences did not im-
prove performance in terms of predicate-argument
structures. It’s worth noting that the removal of
CLIP-S selection from the pipeline slightly reduced
the model’s performance in other metrics. This is
because the CLIP-S model was trained to select
grammatically superior sentences with better object
grounding, but it had no impact on SRLs.

The performance of ReCAP did not surpass the
baseline in terms of BLEU, METEOR, and ROUGE
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Model Smatch CIDEr BLEU-4 METEOR ROUGE
BLIP (base_coco) (Li et al., 2022) 0.33 0.761 0.274 0.237 0.507
BLIP(large_coco) (Li et al., 2022) 0.33 0.793 0.289 0.243 0.518
BLIP2(finetuned t5 xl) (Li et al., 2023) 0.35 0.947 0.337 0.264 0.557

TDBU (Anderson et al., 2018) 0.31 0.53 0.253 0.214 0.512
+SRL 0.33 0.384 0.206 0.185 0.481

ReCAP (ours)

VL-BART (Cho et al., 2021a) 0.35 0.66 0.27 0.23 0.50
+SRL 0.4 0.95 0.12 0.17 0.35
+CLIP-S(Cho et al., 2022a) 0.4 0.945 0.118 0.167 0.346
+amr scst 0.51 0.857 0.104 0.177 0.344
+amr scst −CLIP-S 0.51 0.823 0.099 0.175 0.341

Table 1: Comparison of ReCAP with respect to different metrics discussed in subsection 4.2

Roles Count +SRL +CLIP-S +SCST −CLIP-S

ARG0 10566 0.864 0.852 0.856 0.862
ARG1 9024 0.757 0.755 0.777 0.782
ARG2 2269 0.696 0.699 0.711 0.724
ARGM-LOC 1457 0.595 0.609 0.653 0.659
ARGM-TMP 945 0.692 0.702 0.695 0.692
ARGM-ADV 709 0.290 0.298 0.375 0.379
ARGM-DIR 532 0.682 0.678 0.651 0.663
ARGM-PRD 114 0.127 0.152 0.127 0.085
ARGM-COM 72 0.405 0.405 0.388 0.388
ARGM-PRP 69 0.386 0.454 0.367 0.326

Table 2: Comparison with respect to SRL grounding
in the generated caption (Recall based scoring)

metrics. Moreover, recent systems like BLIP (Li
et al., 2022) can achieve better results with these
metrics while maintaining a similar Smatch score
compared to the baseline model. It is important to
note that these metrics evaluate the generated cap-
tions based on n-gram overlap with the GT captions.
VL-BART and most V+L language models tend to
provide a comprehensive description of the image,
which often leads to better performance in terms of
these metrics. Additionally, each generated caption
is compared to five reference captions, resulting
in a higher likelihood of n-gram overlaps. One sur-
prising observation is that, while the BLIP large
model demonstrated some improvement over the
BLIP base model in terms of n-gram based metrics,
their Smatch score remained the same. This sug-
gests that these large models, despite generating
captions with detailed object descriptions, may not
capture predicate-argument structures any better.

In contrast, our model was trained to be sensi-
tive to the image’s SRL annotation. To achieve
this, we used SRL-specific annotation for the image
and corresponding sub-sentences as discussed
in Section 4.1. As a result, the captions gener-
ated by ReCAP are highly specific to the particular
predicate-argument structure in the image, and we
do not have five reference sentences for a particular
SRL annotation. Therefore, the amount of n-gram
overlap with the GT captions will be lower. This is
also reflected in the numbers presented in Table 1.

However, the integration of SRL into VL-BART
has led to a substantial 24% improvement in the

ARG0

ARGM-LOC

ARGM-COM

With AMR SCST:A person in a blue
wetsuit kayaking on a lake with a black
and yellow dog.

Without SCST: A person kayaking on a
lake with a dog.

GT sentence: A woman kayaking in a
yellow kayak with her dog.

a

b

c

Figure 6: Captions with low CIDEr score can have
desired predicate-argument structure. a) GT cap-
tion. b)caption generated by ReCAP without SCST.
c) caption generated by ReCAP with SCST

CIDEr score, increasing it from 0.66 to 0.82. It’s
worth noting that the CIDEr metric takes into ac-
count not only n-gram overlaps but also the tf-idf
scores of each n-gram, which helps to mitigate the
impact of uninformative n-grams. Therefore, the
improvement in the CIDEr score suggests that Re-
CAP captures valuable information and generates
captions that are more relevant and of higher qual-
ity, thanks to the incorporation of semantic roles.

To further support our claim regarding the ineffi-
cacy of CLIP-S with respect to predicate-argument
structure, we measured the SRL recall of ReCAP’s
output, as shown in Table 2. To assess the ground-
ing of a semantic role, we parsed the generated
sentence using the SRL parser and collected the
corresponding text spans for each role. Similarly,
we gathered the bboxes from the input image
associated with the same semantic role. Using
spaCy (Honnibal and Montani, 2017) we created
the embeddings of text spans and object labels. If
the similarity score between the text span and the
object label of the bbox exceeded a threshold of 0.5,
we considered it as a correct grounding. We used
spaCy to compute the similarity score. Inclusion of
CLIP-S on top of the SRL-incorporated model did
not significantly improve the SRL grounding.

One noteworthy observation is that SCST train-
ing of the model improves its performance in terms
of the Smatch score, albeit with a slight decrease
in the CIDEr score. It is important to note that even
though a sentence may have a higher n-gram over-
lap, it can still fail to capture the desired predicate-
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argument structure. This is illustrated in Figure 6
with an example. In the image, the captions labeled
as a, b, and c represent the GT caption, the cap-
tion generated with SRL without AMR SCST and
the caption generated with AMR SCST, respec-
tively. It is worth noting that captions a and b are
very similar in terms of word choices and predicate-
argument structure. However, in caption c, ReCAP
over-generates the frame of wearing (indicated by
the phrase ’in a blue wetsuit’) and the description of
the dog. It is important to note that, while these de-
scriptions are not incorrect and do not change the
main predicate, they do reduce the n-gram overlap
with the GT.

Linguistic Analysis. ReCAP generates diverse
captions based on the semantic roles of objects,
providing control over the caption generation pro-
cess. This SRL-conditioned generation produces
different captions based on various linguistic fea-
tures. Thus, ReCAP offers improved interpretability
compared to diversifying generation solely through
adjustments to model parameters such as the num-
ber of beams, beam size, and sampling temper-
ature. In the following sections, we will explore
ReCAP’s ability in terms of verb valency, different
predicate selection, diverse agent selection, event
structures, and more.

The valency refers to number of argument and
their corresponding types that a verb can take. In
the case of ReCAP, the generation of predicates is
influenced by the valency indicated by the SRL an-
notation of the input image, as previously illustrated
in Figure 1. Depending on the variety of arguments,
ReCAP selects the appropriate predicate to accom-
modate the required valency.

ReCAP selects different predicates based on the
presence of different participants. In Figure 7, while
(a) and (c) feature the verb playing, the main
predicate for (d) and (e) is wearing. Moreover, de-
spite both captions featuring the predicate wearing
it should be noted that the participants in (d) and
(e) of Figure 7 are distinct, corresponding to the
different bboxes.

With the use of SRL, we gain control over the
information that is included in the generated cap-
tions. For example, in Figure 7, the annotation
for (a) included the phrase two girls. In (b),
the SRL annotation provided additional information
about the ball, and ReCAP incorporated this in-
formation into the generated caption by modifying
the main verb accordingly. In the following image,
(c), the attire of the individuals became part of
ARG0 in the SRL annotation. ReCAP incorporates
this information by extending the noun phrase to
include the gerund as a modifier, resulting in the
caption “Two girls wearing uniforms are playing soc-
cer.” This demonstrates how SRL enables us to

explicitly control and incorporate specific details
into the generated captions.

ReCAP can understand event structures, such
as activities and state (Vendler, 1957), based on
the SRLs in the input image. Activity verbs in these
images typically represent physical actions like run-
ning, jumping, and swimming, while state verbs
convey a state or condition like sitting or stand-
ing. Even with the same participants, ReCAP can
generate different verbs based on their semantic
roles. For example, when ARG0 indicates agency
and volition of the participant towards the predicate,
ReCAP will generate a caption reflecting an activ-
ity. Conversely, if ARG1 represents prototypical
patients, ReCAP will choose a stative predicate
when ARG1 is the subject. In Figure 8, (a) shows
all humans marked as ARG0, resulting in a caption
with the main verb walking. In contrast, in (b), the
same bboxes are annotated with ARG1, leading to
a sentence with the stative verb standing.

ReCAP can differentiate between different
ARGM roles, which capture various semantic roles
in Propbank style annotation, such as direction,
temporal, location, and more. Depending on the
specific type of ARGM, ReCAP can paraphrase the
caption accordingly. For instance,Figure 9 depicts
four annotations of the same image. In subfigure
(a), the background is annotated as ARGM-TMP
(temporal), while in subfigure (b), the same bbox
is annotated as ARGM-DIR (direction). Thus, for
(a), ReCAP generates "“... as he walks down a
snow covered road” (noting that the main predicate
here is wearing, as the clothing bbox is ARG1).
Conversely, in (b), ReCAP produces “... is walking
down a snow...” In (c), the image has both ARGM-
DIR and ARGM-LOC, resulting in the generated
caption “walking along a trail in the snow.”

5. Limitations

One major limitation of ReCAP is its tendency to
omit copula verbs in generated sentences, as seen
in the caption of Figure 10(d). The reason for this
is that during training, SRL annotated images are
paired with proposal-specific sub-sentences, as de-
scribed in subsection 4.1. To address this issue, we
implemented a solution by generating multiple sen-
tences per image and selecting the one with better
grammar and object grounding using CLIP-S and
grammar scores (Cho et al., 2022a). The selected
caption was then passed to the OpenAI ChatGPT3
(Brown et al., 2020) for grammar correction. For
example, the corrected sentence for Figure 10(d)
would be ‘A man is wearing...’. Similarly, the sen-
tence in Figure 10(a) would be corrected as ‘A man
wearing a black shirt is cleaning...’. Despite the
addition of the verb wearing in the corrected sen-
tence, the predicate-argument structure remains
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ARG0

Two girls are playing soccer

ARG0

ARG1

A young girl is wearing a red
and white soccer uniform

ARG0
ARG0
ARG0

ARG0

Two girls wearing uniforms are
playing soccer

a b c d e

ARG0

ARG2

Two girls playing soccer are
going for the ball

ARG0
ARG1

A young girl is wearing a
white shirt

Figure 7: Diversification of captions based on SRL. (a) and (c) depict inclusion of gerund in the noun
phrase based on added bbox annotation. (b) differs in the main verb based on annotation of the ball. (c)
and (d) demonstrate the alternation of the agent and patient in the generated caption for the same verb.
a and e highlight the contrast in the amount of information conveyed in the generated captions.

ARG0 ARG0 ARG0
ARG0 ARG0

ARGM-DIR

A group of people walking down a
sidewalk lined with trees.

ARG1 ARG1 ARG1
ARG1 ARG1

a b
A group of people is standing in a park.

Figure 8: Depending on the SRL, the generated
caption can produce either an activity or a stative
verb.

ARG0
ARG1

ARGM-TMP

A person wearing a yellow jacket
and blue hat as he walks down a
snow covered road.

ARG0
ARGM-DIR

A person is walking down a snow
covered road.

ARG0

ARGM-DIR

A person is walking along a trail in
the snow.

ARGM-LOC
ARG0

A person is walking on a trail in the
snow near a forest.

ARGM-LOC

ARGM-LOC

ARGM-LOC

a b

c d

Figure 9: ReCAP has the ability to distinguish
among different ARGM roles. ReCAP can effec-
tively paraphrase the caption depending on the
specific type of ARGM.

unchanged.
However, it is important to note that the correction

made by ChatGPT sometimes change the desired
verb order thereby changing semantic roles for the
sentence generated by ReCAP. For instance, the
main verb in the generated caption for Figure 9(a)

ARG0
ARG1

A man in a black shirt
cleaning a green
bucket in a lobby.

ARG1
ARG1

ARG1ARG0

A large wooden log has
fallen over in the woods.

ARG0
ARG1

A man wearing a black hooded
sweatshirt and a hard hat.

ARG0 ARG0
ARG0 ARG0

ARG0

ARG0
ARG1

ARG1

Two men holding up signs
that say " free hugs ".

a b

c d

Figure 10: Limitations of ReCAP. a) wrong verb b)
ARG0 is not included in the sentence c) hallucinate
wrong description d)over generation

is wearing, but it lacks a copula verb. Note that
as the bbox for snow covered road is annotated
as ARGM-TMP, walking is the sub-ordinate event.
The ChatGPT correction produced: “A person wear-
ing a yellow jacket and a blue hat is walking down a
snow covered road.” This corrected sentence has
similar predicate argument structure compared to
the original sentence generated by ReCAP (such
as wearing and walking) but walking became the
main verb. Moreover the corrected sentence did
not incorporate ARGM-TMP.

Despite generating sentences with correct SRLs,
ReCAP sometimes misidentifies the predicate. In
Figure 10(a), the person is using the green bucket
instead of cleaning it. Additionally, ReCAP some-
times disregards the bbox and its annotation, as
seen in Figure 10(b). The underlying language
model of BART can occasionally hallucinate and
generate excessive descriptions. In Figure 10(c),
ReCAP hallucinates about “signs that say free
hugs.” Lastly, in Figure 10(d), the caption includes
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the sweatshirt, even though the image only has
an annotation for the hat.

6. Conclusion

In this paper, we introduce ReCAP, a caption gen-
eration system that incorporates visual SRL to en-
hance the process. Existing approaches for cap-
tion generation using visual and language mod-
els yield accurate descriptions of images but lack
user controllability and interpretability. By utilizing
semantic roles with the input image, ReCAP not
only generates diverse captions but also provides
linguistically informed interpretability. Additionally,
semantic roles allow for directing the generated de-
scriptions to adhere to specific predicate-argument
structures. We propose the use of SMATCH as a
metric to assess the quality of descriptions in terms
of predicate-argument structure. However, obtain-
ing semantic role annotated images still poses a
significant challenge, which can be addressed by
leveraging advancements in grounded situation
recognition (Pratt et al., 2020; Cho et al., 2022b;
Cheng et al., 2022; Bhattacharyya et al., 2023).
We are also interested in incorporating semantic
role information into existing language and vision
models (Li et al., 2023; Dai et al., 2023).
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