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Abstract
The paper presents a time-stamped multimodal dataset for reading research, including multiple time-aligned
temporal signals elicited with four experimental trials of connected text reading by both child and adult readers. We
illustrate design issues and experimental protocols, as well as the data acquisition process and the post-processing
phase of data annotation/augmentation. To evaluate the potential and usefulness of a time-aligned multimodal
dataset for reading research, we present a few statistical analyses showing the correlation and complementarity
of multimodal time-series of reading data, as well as some results of modelling adults’ reading data by integrating
different modalities. The total dataset size amounts to about 2.5 GByte in compressed format and is available

through the CLARIN infrastructure.

Keywords: text reading, eye movements, finger movements, eye-finger span, synchronisation, parallel pro-

cessing, multimodality.

1. Introduction

Reading a text for comprehension is a multi-level
cognitive task, involving i) decoding and access-
ing words and their meanings; ii) parsing an entire
clause to form a complex meaning unit or propo-
sition; iii) connecting the new meaning unit to a
growing network of propositions forming a con-
ceptual model of the text being read; iv) moni-
toring comprehension and making appropriate in-
ferences (Grabe and Stoller, 2019). Although the
most influential eye-tracking research on read-
ing has focused on reading single words or sen-
tences (Rayner, 1998, 2009), increasing concerns
with the ecological validity of behavioural language
data (Brennan, 2016; Demberg and Keller, 2019;
Hasson et al., 2018; Willems, 2015), as well as ad-
vances in data recording and processing technolo-
gies (Frey et al., 2021; Sato and Mizuhara, 2018;
Torres et al., 2021) have gradually shifted the re-
search focus away from specific, highly controlled
phenomena, towards real-time processing issues
(Jarodzka and Brand-Gruwel, 2017; Kaakinen and
Hydna, 2008; Verhoeven and Perfetti, 2008). In
some cases, such a shift turned out to challenge
traditional acquisitions from artificially restrained
experimental protocols (Coskun et al., in press;
Kamienkowski et al., 2016; Kuperman et al., 2013;
Wallot et al., 2013), proving that collection of natu-
ral reading data at scale can considerably advance
our understanding of difficulties in real-life reading.

Another dimension of reading complexity is de-
fined by the inherently multi-sensory nature of
reading. Oral reading requires the fine coordina-
tion of eye movements and articulatory move-
ments. The eye provides access to the visual stim-
uli needed for voice articulation to unfold at a rela-
tively constant rate. In turn, articulation can feed-
back oculomotor control for eye movements to
be directed when and where processing difficul-
ties arise. One specific element that makes eye-
voice coordination fairly hard to manage is the
asynchronicity of the two time series (Inhoff et al.,
2011). Eye movements are faster than voice ar-
ticulation, and are much freer to scout a written
text forwards and backwards, availing themselves
of a wide range of alternative “moves”, including
long forward saccades, regressions, refixations
and word skippings. A reader must rely on a tight
control strategy to ensure that the two processes
are optimally coordinated (De Luca et al., 2013; In-
hoff et al., 2011; Laubrock and Kliegl, 2015; Silva
et al., 2016).

Eye-voice coordination is a crucial cognitive skill
in developing reading fluency. A small but robust
line of work has examined the knowledge, skills,
and behaviours that support the development of
word reading in context in young readers. This
work has shown that the concept of word in print is
grounded in letter knowledge and beginning sound
awareness, but also in the learners’ ability to ac-
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curately pronounce a printed word in a text line
while the index finger is pointing to it (Mesmer and
Lake, 2010). The key cognitive insight in develop-
ing this ability occurs as learners are able to inte-
grate three emerging sources of information about
print and speech: the auditorily anchored un-
derstanding of syllables, the linguistic-conceptual
knowledge of words, and the unfolding visuospa-
tial understanding of printed words built upon the
visual and tactile exploration of the words’ spa-
tial dimension (Mesmer and Lake, 2010; Mesmer
and Williams, 2015). In attaining an efficient syn-
chronisation between word pointing and the on-
set of word articulation, the learner must resolve
the competing information between the multiple
syllables that she hears and feels and individual
words that she sees on a printed page (Mesmer
and Lake, 2010; Uhry, 1999, 2002).

While most of these reading aspects have been
explored and investigated independently, much
less work has been conducted so far to study
their interaction, also because of the technical dif-
ficulty with concurrently recording asynchronous
time-series of multimodal signals. In this paper,
we present the ReadlLet dataset, a finely anno-
tated collection of time-stamped, naturalistic text
reading data including silent and oral reading
sessions by both child and adult readers. Each
reading session was either finger-tracked or eye-
tracked, and all oral reading sessions were audio-
recorded. The resulting dataset is the output of
a battery of seamlessly integrated software and
hardware language technologies, ranging from au-
tomated speech recognition and text readability
scoring, to time alignment and convolutional align-
ment of independent time-series of multimodal sig-
nals (Crepaldi et al., 2022; Ferro et al., 2018; Tax-
itari et al., 2021).

2. Related Work

The analysis of eye movements with eye-tracking
data has proven to offer an instrumental window
onto the fine spatial and temporal allocation of
processing resources over a visual scene, high-
lighting universal aspects of perception (e.g., Awh
et al., 2012; Buschman and Miller, 2007), as well
as the influence of goals and processes that are
specific of reading (Rayner, 2009). Recently, Lio
et al. (2019) studied the connection between eye
movements and finger movements in the visual
exploration of a picture displayed on a computer
touchscreen. Presented with the blurred display of
a picture, subjects were instructed to deblur the
image by touching the screen area they wanted to
inspect in full resolution. A strong correlation was
observed between areas deblurred by touching
the screen, and subjects’ fixation patterns when
a full resolution version of the same image was

explored only visually. Spatial patterns of finger
movements were found to be congruent with pat-
terns of eye fixations on the same image, confirm-
ing that (i) eye-hand coordination is a form of de-
velopmentally early, natural and accurate motor
synergy (Esteve-Gibert and Prieto, 2014), and (ii)
tactile exploration of an image can be used as an
ecological proxy of visual exploration.

Another familiar situation that exploits the synergy
between eye movements and finger movements
is when a child is learning to read using the index
finger of her dominant hand to point to the letters
of written words while reading them out. This is
known to help children learn to look at print, and
supports basic early reading behaviours such as
directional movement, attention focus, and voice-
print match (Mesmer and Lake, 2010; Uhry, 2002).
Beyond this observational literature on sight read-
ing, most quantitative analyses of finger move-
ments have focused on Braille reading (Hughes
et al., 2014; Nonaka et al., 2021), showing that
finger sliding across embossed texts is charac-
terised by constant fluctuations in finger velocity
through consecutive speed-up and slow-down cy-
cles, mostly due to the bottom-up mechanisms
controlling for the programming and execution of
slow finger movements.

In reading aloud multiple items, the eyes are ob-
served to lead the voice. The eye is ahead of the
spoken words most of the times, as one would
expect, since articulation is typically the output of
a conscious oculomotor activity. The systematic
study of the temporal span between a word’s fix-
ation onset and the time the word is articulated
(commonly referred to as Eye-Voice Span or EVS)
can be traced back to Buswell's pioneering work
(Buswell, 1920, 1921). His evidence consisted in
switching off the light during the reading of a sen-
tence and counting how many words could be
articulated after the light was off. The same ap-
proach was elaborated a few decades later (Law-
son, 1961; Levin and Turner, 1968; Levin and
Cohn, 1968; Morton, 1964a,b), when some exper-
imental results appeared to support the view that
“subjects tend to read in phrase units” (Levin and
Turner, 1968, p. 208), and reading rate and EVS
were shown to increase with more structured text
materials (Morton, 1964a).

The advent of eye-tracking technology at the ser-
vices of eye movement research started a pro-
longed period of little interest in the vocal compo-
nent of reading, interrupted by Inhoff et al. (2011)
and De Luca et al. (2013), and more recently by
Laubrock and Kliegl (2015) and Silva et al. (2016).
While De Luca et al.’s (2013) data include oral text
reading data by 16 dyslexic and 16 non dyslexic
children, both Inhoff et al.’s (2011) and Laubrock
and Kliegl's (2015) materials consisted in single
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sentence reading, and Silva et al.’s (2016) in nam-
ing words and non words from a list.

In recent years, eye-tracking technology has be-
come increasingly more affordable and easy to
use in different environments, fostering the devel-
opment of more ecological, multi-line reading data
repositories. Several eye-tracking corpora of text
reading have been created, such as GECO (Cop
etal., 2017), Provo (Luke and Christianson, 2018),
Copco (Hollenstein et al., 2022) and MECO (Ku-
perman et al., 2023). This novel generation of eye-
tracking corpora has enabled researchers to fo-
cus on reading as we experience it in real life. In
addition, it provides data resources that can be
used for testing a wide range of alternative hy-
potheses, without the need to design a new ex-
periment and gather new data, which is consider-
ably time-consuming and may require expensive
equipment. Large collections of ecological reading
data are also instrumental to train and test increas-
ingly more sophisticated computational reading
models (e.g. Coltheart et al., 2001; Dilkina et al.,
2010; Engbert et al., 2005; Grainger and Jacobs,
1996; Reichle, 2021), and use machine learning
technology for diagnostic purposes (e.g. Gran Ek-
strand et al., 2021; Nilsson Benfatto et al., 2016;
Prabha and Bhargavi, 2020; Rello and Ballesteros,
2015).

Most recently developed eye-tracking corpora of
text reading, however, include data from ma-
ture and skilled readers only. The EyeRead|t cor-
pus (https://osf.io/hx2sj/) represents, to our
knowledge, the only recent collection of eye-
tracking data including both learner and adult
readers of ltalian multi-line texts. The ReadLet
dataset significantly complements EyeReadlt data
by providing the first oral, visual and tactile repos-
itory of children and adults’ data of natural text
reading, with texts annotated at multiple levels of
linguistic information. As recorded readers were
requested to answer a few comprehension ques-
tions after reading, ReadLet provides evidence of
both online and offline multimodal processing dur-
ing task execution (Libben et al., 2021).

3. Data Acquisition

3.1. Participants and Protocol

The Readlet dataset includes silent and oral read-
ing data from learner and mature readers. Partic-
ipants are i) primary school pupils (from 2 to 5
graders, 50 female and 44 male, mean age = 9,
age range = 7-12), and ii) young adults (28 female,
27 male, mean age = 27, age range = 18-39).
Children’s reading data were collected in two pri-
mary schools in Pisa city and province, with a re-
markably different socio-economic status. In each
school, whole classes, from level 2 to 5, were sam-
pled opportunistically, including pupils with spe-

cial educational needs, mainly because our data
collection campaign (from Winter 2020 to Spring
2021) extensively overlapped with the Covid 19
pandemic, and schools were granting only very
limited access to their buildings. Likewise, young
adults were recruited internally with leaflets and
word of mouth in the Pisa CNR campus and the
Sissa campus in Trieste. They were mostly post-
graduate and post-doc students and grantees, and
received no compensation for their participation in
the reading sessions.

Each participant was involved in four experimental
tasks: eye-tracked silent reading, eye-tracked oral
reading, finger-tracked silent reading and finger-
tracked oral reading. For technical reasons, it was
not possible to concurrently eye-track and finger-
track a reading session.! Adult readers were
asked to complete the entire protocol in one go.
Children conducted the eye-tracked and finger-
tracked tasks in two separate sessions, at least
one day apart. For each experimental task, par-
ticipants were asked to read a multi-page, multi-
episode text. Upon reading each text episode,
each participant was asked to answer two ques-
tions of reading comprehension. Each question
consisted of a question stem (i.e. the question
proper), one correct answer, and three distractors
(or incorrect options). Given the different number
of episodes read by pupils of different grade levels
(see section 3.2), the number of questions ranged
accordingly from a minimum of 4 (2"¢ graders) to
a maximum of 10 questions (5" graders)

Order of delivery of the tracking method and read-
ing condition were counterbalanced across partic-
ipants. Also the presentation of the different read-
ing materials alternated among participants, for
them to be equally distributed across experimental
conditions. In oral reading sessions, participants
were wearing a pair of wireless noise-cancelling
headphones with a retractable microphone.
Finger movements were recorded using a tablet in
portrait orientation as a reading book. The tablet
screen was 14.9cm x 24.5cm, with a resolution
1920 x 1200 pixels. Participants were seated at
a distance of approximately 50 cm from the tablet
screen, with the tablet being tilted on a lectern at
a 45° angle. Finger movements were sampled at
a 120Hz rate, approximately corresponding to 24
touch events per syllable when a written word is
read at a speed of 5 syllables per second.

Eye movements were recorded with an Eyelink

'In a typical experimental setting with an eye-tracker,
movements of a finger sliding across the touchscreen of
a tablet can block the infrared beams of an eye-tracker’s
camera positioned below the screen. This prevents con-
current recording of finger and eye movements. We are
currently experimenting different technological solutions
to address these technical issues.
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Portable Duo eyetracker (SR Research, Canada),
allowing for head-free eye-tracking with a reported
accuracy of 0.25° to 0.50° degrees. Only the right
eye of each participant was tracked at a 500 Hz
sampling rate. A 9-point calibration was performed
at the beginning of each reading session until the
average error was below a 0.5° visual angle. Drift
correction was performed after each text episode.
No chin-rest was used during the experiment in ei-
ther reading mode. Each participant was seated at
about 80 cm from a 24” PC screen, displaying the
same text layout used for the tablet at a resolution
of 1920x1080. The letter font size was adapted to
make the angle required to frame a single letter on
a computer screen as close as possible to the an-
gle required for the tablet. Stimulus presentation
and eye movements recording were handled with
Matlab Psychtoolbox (Brainard, 1997).

3.2. Text Materials

Four child fantasy stories were specifically writ-
ten for the purposes of ReadlLet data collection.
A single child story consists of five self-contained
episodes, with each episode being linguistically
more complex than the previous one.?  Sec-
ond graders were asked to read the first two
episodes only; third graders read the first three
episodes, forth graders the first four episodes and
fifth graders the whole story.

Each adult reading text included an excerpt from
a Roberto Saviano’s tabloid news article, and an
excerpt extracted from Lamberto Maffei's pop-
ular neuroscience book Elogio della parola (‘In
praise of words’, Maffei, 2018). All adult sub-
jects were asked to read both excerpts. Child
and adult reading texts were morpho-syntactically
annotated (Dell'Orletta et al., 2007), syntactically
chunked (Federici et al., 1996; Lenci et al., 2003),
and annotated for functional dependency links (At-
tardi, 2006). Table 1 summarises annotation statis-
tics for all ReadLet texts.

4. The Data

4.1. Raw data

To ensure readers’ anonymity in compliance with
data protection requirements, the original audio-
recordings of oral reading sessions are not made
openly accessible. They can be requested for re-
search purposes from the authors’ lab through
the local data protection officer. Nonetheless, for
each word read aloud, we provide open-access

2Readability levels were automatically computed and
controlled using Readlt (Dell'Orletta et al., 2011), a bat-
tery of annotation and classification tools scoring Italian
texts for levels of reading difficulty.

3Word frequencies are extracted from SUBTLEX-IT
(Crepaldi et al., 2013)

information about the onset and offset time of the
word’s articulation, as computed by a speech-to-
text conversion tool (4.2.3). Raw eye-tracking data
include the onset and offset time of each fixa-
tion event extracted from gaze records using the
DataViewer software by SR Research, together
with its position coordinates in the screen coordi-
nate space. Likewise, finger tracking records are
discretized into fouchmove events on the surface
of the tablet touchscreen, where each event asso-
ciated with its time onset and the event’s position
coordinates on the screen. Details of the structure
of the ReadLet database can be found in Appendix
A.

4.2. Preprocessing and Cleaning

4.2.1. Eye-tracking

Areas of interest were automatically defined as
the words’ bounding boxes, i.e. the rectangular
shapes surrounding each individual word making
up the text displayed on the screen. Fixation-to-
text alignment was performed using “Warp” (Carr
et al.,, 2021), at present the most reliable algo-
rithm for multi-line reading alignment, with a re-
ported accuracy of 97.9% for mature readers and
97.1% for early readers. Extremely short (50ms for
adults, 80ms for children) and long (800ms and
1200ms) fixations were taken out, resulting in the
exclusion of 2% and 3.5% of adult and children
data respectively. Out of all the recorded sessions,
we selected only those with a page coverage of
at least 70% of words being associated with at
least one fixation. This led to the removal of 16%
of data from adult readers, and 12% of data from
child readers. The resulting database includes 369
pages, 54635 fixations on 37180 word tokens for
adult readers, and 585 pages, 115196 fixations on
61761 word tokens for child readers. Eye move-
ments were finally distilled into standard eye track-
ing metrics measured either in space (saccadic
pattern) or time (fixation duration).

General descriptive statistics for eye and finger
movements of adults and children are reported in
Table 2. In the table, “first fixation duration” refers
to the duration of the first fixation landing on a
word, “first-pass duration” measures the amount
of time from the onset of a word’s first fixation to
the onset of the first saccade leaving the word, “to-
tal fixation duration” is the sum of the duration of
all fixations on a word, including refixations. The
table also reports the mean length of a (forward
or backward) saccade, the probability for a single
word to be skipped, fixated once and fixated more
than once. Most of these measures are inherent to
the specific nature of the eye-tracking signal and
have no equivalent in finger-tracking data (5.2).

*FT coverage is the ratio between the number of
tracked letters and the overall number of letters in a
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Table 1: Statistics for adults and children’s texts by text type (IPU = Implicit Prosodic Unit).

Adults all Saviano Maffei
Mean SD Mean SD Mean SD

word length [letters] 517 3.1 489 295 552 3.26
text length [words] 278.75 37.99 3085 12.79 249 26.49
chunk per sentence 6.28 3.86 6.28 3.86 9.44 571
PoS type 11.00 0.76 11.50 0.58 10.50 0.58
IPU length [words] 711 0.67 6.71  1.43 8.12 0.92
sentence length [words] 26.99 18.63 20.22 10.98 47.00 22.20
dependency length [words] 2.44  3.83 218 254 2.76 493
word log frequency?® 432 1.66 440 1.77 422 1.64

. grade 2 grade 3 grade 4 grade 5
Children Mean SD Mean SD Mean SD Mean SD
word length [letters] 4.03 246 412 254 421 263 429 275
text length [words] 293.00 1.41 459.00 4.69 628.75 6.99 806.75 11.90
chunk per sentence 6.85 0.12 766 0.27 8.53 0.20 9.23 0.16
PoS type 11.25 1.50 12.00 0.00 12.25 0.50 12.25 0.50
IPU length [words] 7.35 0.53 7.45 0.91 7.73 0.65 764 0.35
sentence length [words] 13.06 4.97 14.68 5.80 16.33 6.94 17.89 8.24
dependency length [words] 0.54  2.38 0.63 254 069 2.72 0.70 3.00
word log frequency 492 150 487 1.53 483 1.55 481 1.56

4.2.2. Finger-tracking

Text-to-finger alignment was computed using a
custom convolutional algorithm finding the closest
pattern match between text lines and touch event
sequences (see Appendix A). For each continu-
ous time series of touch events falling within a let-
ter bounding box, tracking time was computed as
the difference between the last time tick and the
first time tick in the series of touch events. Finally,
the finger-tracking time for all other units in the text
was defined as a summation of the tracking times
of the letters each unit spans over.

4.2.3. Speech processing

Speech-to-text conversion of adults’ recordings
was carried out using Vosk (Shmyrev and Vosk
Core Team, 2020), a free open-source toolkit built
on Kaldi (Povey et al., 2011). For each word to-
ken, Vosk outputs its alphabetic transcription and
the associated confidence level, together with on-
set and offset time-points of the word’s articulation.
We collected voice data for a total of 54,896 word
tokens, out of which 50520 were correctly iden-
tified (94% of the data). All cases of word repe-
tition (326 instances overall, < 1% of the data)
were dropped, leaving us with 50,194 correctly
transcribed tokens. Of these, 23,177 came from
ET sessions, and 27,017 from FT sessions.

text. FT tracking is the ratio between the number of let-
ter trackings and the overall number of letters in a text.
For each word in a text, when its tracking is larger than
its coverage, we take the word to be re-tracked.

100
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Figure 1: Finger-tracked (FT: top panel) and eye-
tracked reading data (ET: bottom panel) recorded
by two subjects reading the same sentence.

5. Data Validation

In this section, we present a few quantitative anal-
yses of children and adults’ reading data with a
view to assessing their independent quality and
reliability in both tracking modalities. We will then
be concerned with cross-modal aspects of data
analysis. At the time of writing this paper, chil-
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Table 2: Eye-tracking and finger-tracking statistics for adult and children, in aloud and silent reading.

Aloud

2" Graders 3™ Graders 4" Graders 5" Graders  Adults
ET first fixation duration [ms] 425 (251) 365(224) 322 (184) 307 (172) 280 (133)
ET first pass duration [ms] 596 (443) 506 (403) 425 (306) 413(325) 349 (198)
ET total reading time [ms] 808 (579) 707 (523) 559 (402) 548 (426) 411 (227)
ET forward saccade length [letters] 5.62 (5.12) 5.93 (5.12) 6.35(4.88) 6.31(4.80) 7.82 (4.22)
ET backward saccade length [letters] 7.56 (8.4) 6.81(8.07) 7.02(8.26) 7.19(8.31) 5.99 (5.55)
ET word skipping probability 0.16 (0.37) 0.14 (0.35) 0.15(0.36) 0.15(0.36) 0.25(0.43)
ET single fixation probability 0.84 (0.37) 0.86 (0.35) 0.85(0.36) 0.85(0.36) 0.75(0.43)
ET refixation probability 0.60 (0.49) 0.60 (0.49) 0.58 (0.49) 0.59 (0.49) 0.22(0.42)
ET regression probability 0.24 (.43) 0.26 (0.44) 0.24 (0.43) 0.23 (0.42) 0.21(0.41)
ET fix per 100 words 163 (32) 171 (33) 150 (21) 152 (28) 117 (15)
ET word fix per minute 61 (21 77 (19) 96 (24) 98 (21) 158 (18)
FT tracking time [ms] 655 (716) 515(569) 371 (335) 347 (341) 279 (230)
FT tracking speed [syllables/sec] 2.31(0.91) 2.81(0.88) 3.95(0.99) 4.14 (0.92) 5.71(0.78)
FT coverage® 0.97 (0.10) 0.97 (0.12) 0.97 (0.10) 0.97 (0.12) 0.97 (0.13)
FT tracking * 1.06 (0.31) 1.04 (0.29) 1.00 (0.20) 0.99 (0.19) 0.99 (0.13)
FT regression prob. (tracking > coverage)* 0.14 (0.35) 0.13 (0.34) 0.05(0.23) 0.05 (0.22) 0.01 (0.12)
FT tracked words every 100 words 97 (4) 98 (3) 98 (3) 98 (2) 99 (1)
FT tracked word per minute 73 (29) 87 (28) 119 (30) 124 (29) 154 (20)

Silent

2" Graders 3™ Graders 4" Graders 5" Graders  Adults
ET first fixation duration [ms] 429 (252) 338 (204) 312(178) 288 (160) 242 (105)
ET first pass duration [ms] 603 (477) 459 (352) 406 (290) 378 (282) 278 (146)
ET total reading time [ms] 824 (668) 685 (536) 526 (399) 520 (415) 325 (199)
ET forward saccade length [letters] 5.30 (4.41) 6.08 (5.18) 6.35(4.24) 6.52 (4.70) 9.01 (4.51)
ET backward saccade length [letters] 7.16 (7.64) 7.45(8.64) 6.55(7.04) 7.33(8.38) 7.33(7.32)
ET word skipping probability 0.17 (0.38) 0.14 (0.35) 0.15(0.36) 0.16 (0.37) 0.30 (0.46)
ET single fixation probability 0.83(0.38) 0.86 (0.35) 0.85(0.36) 0.84 (0.37) 0.70 (0.46)
ET refixation probability 0.60 (0.49) 0.59 (0.49) 0.58 (0.49) 0.58 (0.49) 0.15(0.35)
ET regression probability 0.24 (0.43) 0.27 (0.44) 0.24 (0.43) 0.24 (0.43) 0.19(0.39)
ET fix per 100 words 160 (40) 174 (31) 143 (22) 149 (32) 96 (17)
ET word fix per minute 63 (26 80 (21) 105 (30) 100 (25) 223 (54)
FT tracking time [ms] 621 (715) 484 (501) 325(302) 322 (307) 226 (202)
FT tracking speed [syllables/sec] 247 (1.00) 3.14 (1.13) 4.62(1.49) 4.63 (1.42) 7.14 (1.75)
FT coverage® 0.97 (0.12) 0.97 (0.11) 0.97 (0.11) 0.97 (0.11) 0.96 (0.13)
FT tracking* 1.01(0.22) 1.03 (0.41) 0.98 (0.15) 0.98 (0.16) 0.99 (0.16)
FT regression prob. (track > coverage)* 0.08 (0.27) 0.08 (0.27) 0.03 (0.16) 0.03 (0.16) 0.02 (0.14)
FT tracked words every 100 words 97 (4) 98 (3) 98 (2) 98 (2) 99 (1)
FT tracked word per minute 79 (32) 97 (36) 140 (46) 139 (44) 193 (48)

dren’s reading data are being post-processed for
speech-to-text conversion, and only adults’ read-
ing data have been fully analysed multi-modally.
The present cross-modal analyses will thus exclu-
sively focus on adults’ data.

5.1. Classical reading effects

We managed to replicate robust effects of word
length and frequency on eye fixation and finger
tracking duration in both adults and children’s
reading data. Most notably, modelling finger-
tracking times across age ranges of early readers
confirmed subtle developmental trends (Marinelli
et al.,, 2013; Marzi et al.,, 2020). To illustrate,

longer words elicit longer eye-fixations and finger-
tracking duration, with the effect being larger for
younger, typically developing readers than older
readers (Fig. 2). Here, for increasing grade lev-
els, slopes are significantly less steep (p-values
< 0.001, in both experimental modalities: see de-
tailed model coefficients in Appendix B, Tables 10
and 11). Likewise, the use of sublexical informa-
tion and serial n-gram decoding appears to play
a more prominent role in younger readers, sug-
gesting a shortage of fully specified orthographic
representations for longer and rarer words in the
mental lexicon of less skilled or less mature read-
ers (Zoccolotti et al., 2009).
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Figure 2: Linear fitting of eye-fixation and finger-tracking times by word-length and grade levels, in aloud

reading.
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Figure 3: Distribution of offset/onset EVS/FVS in
adults’ reading (seconds).

5.2. Cross-modal evidence

Fig. 1 pictures a few seconds of the time-bound
dynamics of eye and finger movements vs. ar-
ticulation in oral reading. The acoustic and tac-
tile recordings of a reading session are continu-
ous in time. Finger movements are also continu-
ous in text space, as they tend to fully cover text
letters, punctuation marks and blank spaces, with
a limited number of orthographic text units being
skipped. In the plots, both the eye and the finger
start “scanning” the text ahead before voice artic-
ulation sets in. The voice delay — known in the lit-
erature as Eye-Voice Span (EVS) or Finger-Voice
Span (FVS) — is varyingly modulated across the
text, and occasionally reversed into negative val-
ues, e.g. when the voice is reading out a word at
position n in the text, while the finger is pointing to
(or the eye is fixating) a word at position n-k. Fig.
3 depicts the distribution of EVS and FVS, calcu-
lated from the onset (cyan bell) and the offset (red
bell) of word articulation. Notably the peak of the
offset-FVS bell is centred on 0, meaning that, most
of the times, the finger leaves a word wy, at the ex-
act moment in time the voice completes the artic-

ulation of wy,.

A finger’s sliding movement is typically broken at
the end of each text line, where the reader lifts her
index finger from the screen to shift it backwards
across the current line and land it on the beginning
of the ensuing line.

This dynamic is in sharp contrast with the series of
fixations that are typically made on single words by
the eye. Eye fixations are interspersed with rela-
tively instantaneous “jumps” (saccades) whereby
the eye leaves the currently fixated word to land
on a different word. Notably, the landing site of an
eye’s saccade may not be the immediately ensu-
ing word in the text line, but a word further away,
either in the reading direction or backwards.

eye finger

r=0.35p<22e-16

r=0.7,p<2.2e-16

Reading Time

1.50.0 0.5 1.0 15

Voice Duration

0.0 0.5 1.0

Figure 4: Correlation between speech duration
and first-pass duration (left) and finger tracking
time (right) across adult readers.

The different dynamic between the “reading” finger
and the “reading” eye makes the two time series
of movements asynchronous. How far ahead the
eye goes is a function of several factors, includ-
ing the reader’s articulatory rate and phonological
working memory, the length and frequency of a
fixated word, the large meaningful syntactic units
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Figure 5: Eye (blue) and finger’s (yellow) word
tracking times in aloud and silent reading.

where words occur (Laubrock and Kliegl, 2015;
Silva et al., 2016; Nadalini et al., 2024).

Although the finger somehow “chases” after the
eye, adult readers tend to keep their finger as
temporally and spatially close as possible to the
currently articulated word (Nadalini et al., 2024).
Such a self-monitoring process accounts for the
robust correlation between finger-tracking times
and word articulation times (Fig. 4), causing the
finger’'s pace to slow down when the span be-
tween the finger and the voice is longer than one
word or two. This is similar to what has been ex-
tensively observed for the eye-voice span (Inhoff
et al., 2011; Laubrock and Kliegl, 2015), as shown
by the bell-shaped distributions of Figure 3. Con-
versely, the asynchrony between eye and finger
movements accounts for the apparently paradox-
ical observation that word fixations are, on aver-
age, longer than word finger-tracking times (Fig.
5). The token-level gap between eye-tracking and
finger-tracking times is nonetheless made up for at
the sentence level, where time differences virtually
disappear (Figure 6 ) and their correlation (Pear-
son r) approaches 1 in both modalities (Figure 7).

aloud silent
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14
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Tracking Type

Figure 6: Eye (blue) and finger’s (yellow) sentence
tracking times in aloud and silent reading.

The evidence suggests that, differences in local
dynamic notwithstanding, both tracking modalities
reflect the same high level processing constraints,
shedding light on a unique underlying dynamic,
and possibly complementing each other at low

aloud silent

30 r=0.99,p<2.2e-16

r=0.97,p<22e-16

Reading Time Finger

0 10 20 300 10 20 30
Readina Time Eve

Figure 7: Scatter plot of adult sentence reading
times as measured by eye- and finger-tracking.

processing levels. In fact, although the two time
series happen to be more weakly (but nonetheless
significantly) correlated at the token level, consid-
erable information about which words are fixated
in eye reading can be gained from the observation
of alternating speed-up and slow-down patterns of
finger movements (Nadalini et al., 2022). Most no-
tably, an increase in finger-tracking time is shown
to correlate with decreasing word skipping proba-
bilities when we control for word length (Figure 8).

RV

T T T
5 10 15 20

finger—tracking time

token length

Figure 8: Contour plot of effects of word length
and finger- tracking time on word skipping log odds
(from white = high to green = low: model details in
Appendix B).

6. Discussion and Outlook

Of late, in both linguistic and cognitive domains
there has been a growing interest in the poten-
tial of research on cross-modal interaction (Lio
et al., 2019), with a view to interdisciplinary syn-
ergy. Reading research has considerably bene-
fited from this convergence (De Luca et al., 2013;
Inhoff et al., 2011; Laubrock and Kliegl, 2015; Silva
et al., 2016) and recent, dramatic advances in dig-
ital technologies have played a fundamental role
in fostering the process. The ReadlLet dataset is
a further step in this direction, paving the way to
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cross-modal data collection at scale for reading re-
search and education.

There are several reasons to recommend cross-
modal data collection for reading research. As re-
cently emphasised by Libben et al. (2021) “[...] a
key challenge in the design of psycholinguistic re-
search on lexical processing is to create experi-
ments that have ecological validity and at the same
time are sulfficiently controlled so that specific vari-
ables and hypotheses regarding their effects can
be examined.” A reading task should thus be eval-
uated according to two dominant parameters: i)
whether the task allows investigators to collect ev-
idence of online processing ease/difficulty for the
reader, and ii) whether the reading task is mod-
elled in a “natural” way. The ReadLet dataset ad-
dresses both concerns. The use of a friendly and
widely accepted electronic device such as a tablet
as a reading book allows investigation of con-
nected text reading in highly ecological conditions,
combining the benefits of large naturalistic data
collection, with technological portability, accuracy
and lack of intrusiveness.

A further bonus of having multiply time-aligned
multi-modal data streams is that, in processing raw
data, noise in one channel can be reduced by in-
tegrating synchronous information coming from a
less noisy channel. For example, the vertical drift
of an eye-tracking signal in a particular time win-
dow, can be spotted and corrected by using the
voice signal sampled and text-aligned in the same
time window, as the latter can provide reliable in-
formation about which text line the reader is cur-
rently processing. This is expected to offer bet-
ter eye-tracking, finger-tracking and spoken data,
which can be aligned more reliably both individu-
ally with the text being read, and with each other.

In principle, this also speaks in favour of integrat-
ing more data streams through the ReadLet pro-
tocol, for example by adding EEG data recording
and yet other, potentially very informative biologi-
cal signals. Although nothing prevents from pursu-
ing this line of development in more controlled ex-
perimental settings, it should be appreciated that
ReadLet was originally designed and intended as
a non-intrusive, ecological, and ubiquitous proto-
col for the collection of large data repositories. For
this reason, we are currently more interested in
exploring a trade-off between data quantity and
the ecological validity of our experimental tasks. In
fact, the great potential of mobile information tech-
nology and cloud computing for huge data collec-
tion and analysis makes finger-tracking especially
suitable for extensive reading assessment activ-
ities in primary schools. The ReadlLet computing
framework supports highly parallel and distributed
processes of data acquisition, which can be deliv-
ered in real time to research, clinical and education

centres as terminals for data modelling and quan-
titative analysis. Large-scale studies can be con-
ducted, paving the way to more generalisable re-
sults than ever in the past. In addition, the possibil-
ity to take single-subject measurements on more
occasions and in different settings makes finger-
tracking evidence suitable not only for group stud-
ies, but also for individual diagnostic purposes and
large developmental studies.

At present, the ReadLet database includes Italian
reading data only. Preliminary experiments have
been conducted with reading Modern Standard
Arabic, English, French, German, Modern Greek,
and Hebrew, with yet other languages (e.g. Bul-
garian) and scripts (Cyrillic) being currently exper-
imented with. In fact, the portability and language-
independent nature of our technology for data col-
lection, makes the ReadLet database easily scal-
able multilingually, paving the way to large-scale
screening of children’s reading skills across lan-
guages. In the end, we believe this technology to
have the potential to define a converging perspec-
tive between cognitive (Pollatsek and Treiman,
2015), computational (Reichle, 2021) and educa-
tional (Grabe and Stoller, 2019) approaches to
reading research, both within and across modal-
ities (e.g. sight reading vs. Braille reading).
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A. Appendix: Overview of Dataset
Structure

AA1.

An abridged version of the table structure for raw
tracking data is provided in Table 1, where only
finger-tracking (FT) events are shown. Here, the
type (eventType), timing (timeOffset) and duration
measured in seconds (dt) of each touch event is
associated with a reading session (idSession) and
the event’s x and y coordinates in the touchscreen
space. The last two rows in the table contain in-
formation about the association of a single touch
event with a specific letter box (bid) and its em-
bedding word token (tid) after the alignment of
tracking data with the reading text is computed.
The same table structure is used to expose eye-
tracking data.

Automated text-to-finger alignment is enforced
through a convolutional algorithm that finds the
nearest spatial match between text lines and touch
event sequences. First, finger-tracking data along
the time axis are projected onto a static im-
age. After elimination of possible outliers, the im-
age is shifted vertically (i.e. convoluted) onto the
bounding-box image of the text, until a point is
reached that maximises the overlap of the two
images. This convolution operation is repeated
across a search space that includes scaling and
rotation of the finger-tracking image, to compen-
sate for any spatial drift of the tracking signal rela-
tive to the positioning of the text on the page.

Reading sessions are grouped into data acquisi-
tion campaigns, where information about the pro-
tocol being administered (e.g. text material and
layout options) is provided, as shown in Table 2.
Information about individual readers (idUser) and
reference to reading sessions (idSession) are pro-
vided in Table 3 and 4 respectively, with the latter
containing information about the text being read
(idDoc), tracking modality (idDevice), and read-
ing modality (idReadingType). The association be-
tween readers (idUserData) and campaigns (id-
Campaign) shown in Table 5 makes provision for
longitudinal data being encoded.

Raw data

Table 1: Column headings for FT data by touch
events.
heading type gloss example

idSession num reading sessionid 2263
eventType string type of touch event touchstart
timeOffset num time of touch event 13.2396

dt num tracking duration  0.017

X num event x-coordinate 0.058263
y num event y-coordinate 0.311007
tid num word token position 7

bid num letter token position 39
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Table 2:  Column headings by measurement

campaigns.
heading type gloss example
idCampaign num campaign id 103
title string label CNR - adults
options json default parameters {...}

Table 3: Column headings by subjects.

heading type gloss example
idUser  num subject id XXYY
idHand  num subject’'s dominant hand id_r

idGender num subject’'s gender id_ m

Table 4: Column headings by reading sessions.

heading type gloss example
idSession num reading session id 2263
idCampaign ~ num campaign id 103
idDevice num tracking modality 1 (finger)
idUser num subject id XXYY
idDoc num text identifier 38
idReadingType num reading mode id_silent
dt num total tracking time 160.778
questTime num time spent for questions 16.84
coverage num tracked letter coverage 0.945
tracks num tracked letter rate 0.948
questAcc num comprehension acc. 1.0

Table 5: Column headings by user data.

Table 6: Column headings by word tokens.

heading type gloss example
idSession num reading session id 2263

tid num  position of word token 7

token string word token string di
lemma string word token lemma di

dt num total tracking duration 0.367

t num tracking onset time 13.2396
len num word token length 2

freq num word token frequency 2202526
FPOS string word token part of speech E

(idSession), the associated token in the text (tid),
and the transcriber’s level of confidence, ranging
from 0 (no confidence) to 1 (full confidence).

Table 7: Headings by transcribed tokens.

heading type gloss example
idSession num reading session id 2004

tid num position of word token 7

token string word token string di
timeOnset num articulation onset 3.4202
timeOffset num articulation offset 3.5402
confidence num transcription confidence 1

B. Appendix: Data Modelling

heading type gloss example
idUserData num subject data id 15
idUser num subject id XXYY

idCampaign num measurement campaign id 103
gradelLevel num subject’s grade level 18
age string subject’s age 28;5
notes string subject’s notes

Logistic regression models fitting word skipping
probabilities with finger-tracking time and word
length (Table 8) and finger-tracking time and word
frequency (Table 9) as predictors, and adult read-

A.2. Post-processed data

Table 6 epitomises the structure for post-
processed finger-tracking data, viewed by word
tokens and reading sessions. The tracking onset
time (t) gives the time point when the tracking of
a word starts (measured in seconds elapsed from
the beginning of the reading session). The total
tracking duration (dt) indexes the total amount of
time a single word token was tracked, including
possible regressive movements. A more time-
bound view of word tokens’ data can be extracted
along the timeline, grouping raw data (Table 1)
by consecutive touch events on individual word
tokens.

Table 7 contains the output of the Vosk transcriber
by word tokens. Here, information about the articu-
lation onset (timeOnset) and offset (timeOffset) of
each automatically recognised token is provided,
together with an indication of the reading session

ers and word tokens entered as random effects.

Table 8:

Logistic regression model coefficients:

eye skipping ~ finger-tracking time + word len,

(adult users = re), (token = re).

estimate st. err z value p-value

intercept (aloud) 0.91 0.19 485 < 0.001
tracking time (aloud) -0.54 0.04 -12.87 <2e—16
silent reading 0.39 0.01 3248 <2e-—16
tracking time (silent) 0.48 0.05 873 <2e—16
word length -0.72 0.03 -26.41 <2e—16
random effects <2 —16 R? 0.38

Table 9:

Logistic regression model coefficients:

eye skipping ~ finger-tracking time + word log fre-
quency, (adult users = re), (token = re).

estimate st. err z value p-value

intercept (aloud) -9.98 0.35 -28.78 < 2e—16
tracking time (aloud) -0.56 0.04 -1325 <2e—16
silent reading 0.39 0.01 3251 <2e-—16
tracking time (silent) 0.47 0.05 857 <2e—-16
word log frequency 0.65 0.04 1815 <2e—16
random effects <2 —16 R? 0.38
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Generalised Additive Models (GAMs) fitting eye-
fixation and finger-tracking times as a function of
word length and grade level, with word tokens and
children as random effects, are reported in Table

10 and Table 11.

Table 10: GAM coefficients: eye-fixation time ~
word length x grade levels, (child users = re), (to-

ken =re).

estimate st. err z value p-value

intercept (2" grade)  0.45
word length (2" grade) 0.09
intercept (3 grade)  -0.14
word length (3 grade) -0.02
intercept (4" grade)  -0.20
word length (4" grade) -0.04
intercept (5" grade) ~ -0.20
word length (5 grade) -0.04
random effects < 0.001

0.06
0.01
0.09
0.01
0.08
0.01
0.08
0.01

7.50
26.73
-1.65
-2.63
-2.42
-10.11
-2.63
-10.05
R2

< 0.001
< 2e—16
> 0.05

< 0.05

< 0.05

< 2e—16
< 0.01

< 2e—16
0.36

Table 11: GAM coefficients: finger-tracking time
~ word length x grade levels, (child users = re),

(token =re).

estimate st. err z value p-value

intercept (2™ grade)  0.30
word length (2" grade) 0.10
intercept (3 grade)  -0.14
word length (3 grade) -0.01
intercept (4" grade)  -0.19
word length (4™ grade) -0.03
intercept (5" grade)  -0.21
word length (5" grade) -0.03

0.07
0.01
0.10
0.01
0.09
0.01
0.09
0.01

random effects < 2e—16

4.19
42.06
-1.43
-4.80
-2.08
-11.22
-2.29
-12.04
R2

< 0.001
< 2e—16
> 0.05

< 0.001
< 0.05

< 2e—16
< 0.05

< 2e—16
0.42
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