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Abstract
Argument mining aims to detect all possible argumentative components and identify their relationships automatically.
As a thriving task in natural language processing, there has been a large amount of corpus for academic study
and application development in this field. However, the research in this area is still constrained by the inherent
limitations of existing datasets. Specifically, all the publicly available datasets are relatively small in scale, and few of
them provide information from other modalities to facilitate the learning process. Moreover, the statements and
expressions in these corpora are usually in a compact form, which restricts the generalization ability of models. To
this end, we collect a novel dataset AntCritic to serve as a helpful complement to this area, which consists of about
10k free-form and visually-rich financial comments and supports both argument component detection and argument
relation prediction tasks. Besides, to cope with the challenges brought by scenario expansion, we thoroughly explore
the fine-grained relation prediction and structure reconstruction scheme and discuss the encoding mechanism for
visual styles and layouts. On this basis, we design two simple but effective model architectures and conduct various
experiments on this dataset to provide benchmark performances as a reference and verify the practicability of our
proposed architecture. We release our data and code in this link , and this dataset follows CC BY-NC-ND 4.0 license.
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1. Introduction

With the rapid development of Internet technol-
ogy, millions of opinions and thoughts are thus
transmitted and stored on various web pages and
applications, containing a great deal of research
and application value. Among them, some com-
plicated scenarios bring extra challenges, such as
processing academic exchanges or movie reviews.
To this end, the task of argument mining appears
and arouses growing attention.

Given a persuasive article containing argumenta-
tive expressions, the task of argument mining aims
to automatically identify all the potential argument
components and correctly recover the correspond-
ing argument structures. Unlike the other tasks,
such as sentiment analysis or key-phrase extrac-
tion, this target requires the intelligent model to
concurrently understand both semantic information
and the logical structure and causal relationships
within data. Despite the difficulties and challenges
in the modeling process, the importance of this
task is apparent. From the academic view, it can
provide accurate information for the derivative sub-
tasks (such as argument summarization and struc-
tured argument generation) and is conducive to
understanding documents with complex semantic
structures. While for the application aspect, the
learned models can assist businesses or enter-
prises to automatically extract opinions and feed-
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back or quickly trace the core opinions of prevailing
topics without too much manual effort.

As a comprehensive and inclusive field, argu-
ment mining can be regarded as a combination of
multiple interrelated sub-goals in essence. There-
fore, to put more emphasis on academic analysis
rather than constructing a complicated pipeline,
researchers tend to discuss and address the is-
sues only in a specific section, such as argument
component detection (Gao et al., 2017; Daxen-
berger et al., 2017; Ruggeri et al., 2021), argu-
ment relation classification (Nguyen and Litman,
2016; Peldszus and Stede, 2015; Cocarascu and
Toni, 2018), and stance detection (Wei et al., 2018;
Ebrahimi et al., 2016; Johnson and Goldwasser,
2016). And to facilitate these subtasks, massive
language resources (Reed et al., 2008; Habernal
and Gurevych, 2017; Peldszus, 2015; Stab and
Gurevych, 2017; Fergadis et al., 2021) are de-
voted to providing more effective and diversified
data and supporting the learning process of mod-
els. Although the sufficient research and corpus
mentioned above have established the foundation
of this task, there is still a lack of further analy-
sis for more variable and challenging scenarios.
For example, the previous work tends to assume
that all the arguments are expressed in a compact
form, which means the statements of a single unit
will be arranged consecutively. Thus non-adjacent
clauses or sentences will be naturally regarded as
different ones. But in practice, there might be some
situations where semantic-consistent claims and
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premises get entwined with each other. Besides,
although a considerable number of visually-rich
documents are collected from social media such
as Twitter (Bosc et al., 2016), Wikipedia (Biran
and Rambow, 2011), and web blog posts (Haber-
nal and Gurevych, 2017), the valuable auxiliary
information from the other modalities is directly
deserted in the construction of datasets. Further-
more, the existing corpora are relatively small in
scale, and a large proportion of them do not sup-
port the subtask of relation prediction.

Figure 1: An example of visually-rich free-form doc-
uments in our proposed AntCritic dataset. Better
viewed with color and zoom-in.

Considering these aspects mentioned above, we
collect a novel dataset named AntCritic to facilitate
the research of argument mining on visually-rich
documents and free-form expressions. Concretely,
we collect a total of about 10k argumentative fi-
nancial comments from an open online forum sup-
ported by Alipay, which achieves the largest scale
in this field as far as we know. In these documents,
the visual patterns represented in the format of
HTML tags and attributes are provided along with
the text statements, and all the arguments are al-
lowed to represent in a free form, i.e., a semantic-
consistent argument might be scattered in non-
adjacent segments, which is illustrated in Figure
1. This setting broadens the original definition of
this problem and paves the way for possible future
research. On this basis, to provide a preliminary so-
lution to free-form argument mining, we propose a
fine-grained setting as an extension to this field and
explore different predictive components to tackle
the corresponding problem. As for the fusion of
visual patterns, we develop a style gate module to
measure the effect of style attributes and utilize a
joint encoding mechanism to represent the com-
plex positions in the layout of documents. More-
over, we also develop different model variants to
conduct in-depth analysis and discussions on the

granularity of modeling units.
In conclusion, our contributions in this paper can

be explained in the following three aspects.

• We collect and contribute a novel dataset Ant-
Critic to argument mining. This corpus con-
tains about 10k visually-rich free-form financial
comments, which makes it the largest corpus
in this area to our best knowledge.

• We thoroughly discuss the problem setting
and the corresponding solution to free-form ar-
gument mining and explore a possible scheme
to take advantage of auxiliary visual pattern
information, which further broadens the scope
of this field.

• We design two simple but effective model
architectures and conduct extensive experi-
ments to provide a reliable benchmark for our
proposed dataset and serve as a preliminary
solution to the task of argument mining on
visually-rich free-form documents.

2. Related Work

2.1. Visually-rich Document
Understanding

Depending on the accessibility of data organiza-
tion, visually-rich documents can be roughly cate-
gorized into two groups. The first ones are pattern-
accessible documents, such as webpages, and
markdown files, in which all the visual patterns
are controlled by clear scripts and can be explicitly
accessed by analysts. On the contrary, in pattern-
inaccessible documents like tickets and posters,
there barely exist direct clues or instructions for the
construction of documents, resulting in the vague-
ness of visual analysis for them. In this paper,
we mainly discuss the former cases because the
visual attributes represented by HTML tags are
actually pattern-accessible ones.

Guided by explicit visual instructions, the render-
ing markups can greatly help analyze documents
in a structured and human-like way. Wang et al.
(2022) consider HTML tags and linguistic tokens
as two individual sequences to model their rela-
tions in a cross-fusion way. Li et al. (2021); Deng
et al. (2022) bring the self-supervised pre-training
diagram into this field to drive models comprehen-
sively to understand the whole webpage. Apart
from these, some specialized architectures are
also devised for some downstream tasks: Ashby
and Weir (2020) regard HTML tags as auxiliary in-
formation to recognize named entities. Also, Chen
et al. (2021) collect a novel question-answering
dataset and formulate the task of structural reading
comprehension on the web. Furthermore, Wang
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et al. (2021) design a novel attention-based frame-
work to generate relational table representations in
finer granularity. These works inspire us to boost
the performance of argument mining with the help
of visual and structural information.

2.2. Argument Mining

Argument mining aims to automatically detect and
model all possible argument structures in the given
documents or text fragments. In previous studies,
researchers primarily focus on classifying argu-
ment components. Lawrence et al. (2014); Nguyen
and Litman (2016) apply Latent Dirichlet Alloca-
tion (LDA) to learn in an unsupervised way. Mad-
nani et al. (2012) employ Conditional Random
Field (CRF) to make predictions based on some
pre-defined lexical properties. Alhindi and Ghosh
(2021); Zhang et al. (2022) leverage the prevailing
BERT and Bi-LSTM modules to tackle this prob-
lem with the help of pre-training. Operating on
the constituency tree, Ruggeri et al. (2021) ex-
tract semantic information in a graph-based way.
Moreover, Daxenberger et al. (2017); Schulz et al.
(2018) explore the transferability between different
domains, and Gao et al. (2017); Kees et al. (2021)
thoroughly discuss the feasibility of reinforcement
learning and active learning in this field, respec-
tively. Besides, Nguyen and Litman (2016); Peld-
szus and Stede (2015); Cocarascu and Toni (2018)
also devise various relation modeling schemes to
identify the relations between arguments, which
further advance the identification of argumentative
structure at a higher level.

Considering it is pretty essential to provide
enough samples and annotations for machine infer-
ence and reasoning, some valuable datasets are
also collected from various domains, covering the
types of scientific papers(Mayer et al., 2020), per-
suasive essays(Stab and Gurevych, 2017), sustain-
able development policies(Fergadis et al., 2021),
legal texts(Zhang et al., 2022) and so forth. Apart
from these, Bosc et al. (2016); Liu et al. (2017);
Habernal et al. (2018) also collect datasets con-
taining argument structures for the recognition of
emotion or opinion preferences in comments and
reviews. Lately, Mestre et al. (2021) contribute a
large-scale audio-text dataset, promoting the ap-
plication of multi-modal analysis in this area. How-
ever, these datasets are limited in scales and ex-
pression forms, and there is still no adequate re-
search to combine other information into the analy-
sis, making our research a meaningful complement
to this field.

3. Dataset

Based on the aforementioned considerations, we
aim to contribute a large-scale corpus to this field,
named AntCritic. This dataset contains about
10k Chinese financial comments collected from an
open online forum supported by Alipay, which cov-
ers the themes of fund introductions, stock market
analysis, investment advice, etc. Before collecting
all the original data from the online open forum, we
confirmed that the users had permanently and irre-
vocably licensed the rights to the published content
to the platform by means of the user agreement.
And we have obtained the right from the platform
to use the data for academic research and public
release.

3.1. Data Annotation

Annotation

Write detailed instructions Trial annotation

Instruction Definition Stage

Researchers

Update instructions
3✖

Completed instructions

Loop until Accuracy > 0.8
Kohens’ Kappa > 0.6

ARi

Annotator Training Stage

Staffs

Ground truth

Trial annotation Accuracy 

QA

ARj

ARk

Inter-annotator 
agreement

✖N

Researcher

Annotation Stage

Inspection Acceptance
100% 5%

Inspectors: three staffs with highest accuracy

Reject incorrect sample Reject incorrect sample

Annotators

Monitor agreement

Researcher
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ARk

Inter-annotator 
agreement

Figure 2: The overall annotation pipeline.

To ensure the quality of annotated data, we de-
velop our annotation pipeline shown in Figure 2.

3.1.1. Instruction Definition Stage

In this stage, we will first draw up a series of de-
tailed instructions, including the definition and for-
mat of different related terms. And then, we will
carry out several rounds of trial annotations and
refine the instructions so that the vagueness in in-
structions can be reduced to the minimum and the
instructions are practical to all kinds of data. And
here, we list some important terms as follows.
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Table 1: Statistic Information Comparison of Datasets for Argument Mining

Dataset Domain #Docs #Sents #Claims #Tokens Unit Rel? Modal Lang
Habernal

and
Gurevych

Web
Dis-

course
340 3,899 211 84,817 Token No Text EN

Mayer
et al.

Scientific
Papers 659 35,012 1,390 - Token Yes Text EN

Reed
et al.

Various
Genres 507 2,842 563 60,383 Clause No Text EN

Stab
and

Gurevych

Persuaive
Essays 402 7,116 2,108 147,271 Clause Yes Text EN

Peldszus Micro
Texts 112 449 112 8,865 Segment No Text EN

Fergadis
et al.

SDG
Policy 1,000 12,374 1,202 - Sentence No Text EN

Ours
Financial

Com-
ments

9,994 214,585 88,311 11,436,977 Segment Yes Text &
HTML CN

• A claim is defined as a group of argumentative
segments that express a clear point of view, and
the corresponding premises are defined as the
fragments containing factual statements which
underpin this opinion.

• There should be at least one claim in a docu-
ment. The maximum of claims is set as 9, and
the maximum of premises supporting the same
claim is 4. It is also allowed to annotate some
opinions as simple claims without any supporting
premises.

• All the claims and premises should be semanti-
cally complete and individual. So the annotators
may need to concatenate some non-adjacent
segments to form a single integral argument. Be-
sides, the annotators should also select a major
claim that best matches the overall opinion.

3.1.2. Annotator Training Stage

After the refinement of instructions, eight staff with
specific financial knowledge are employed to an-
notate the collected data. Before the formal an-
notation, we use some examples to help them
get familiar with this task’s goal and the corre-
sponding requirements. Then, we will conduct
rounds of trial annotations, evaluate the perfor-
mance and statistics among all the annotators, and
resolves the doubts of annotators in the QA phase.
This process will repeat until the average accuracy
reaches 80% and the Cohen’s kappa (McHugh,
2012) agreement index is greater than 60%. After-
ward, three annotators with the highest accuracy
are selected as inspectors in the next formal anno-
tation stage.

3.1.3. Annotation Stage

In the final stage, the formal annotation stage
will be carried out in three steps: Annotation-
Inspection-Acceptance. As mentioned above, a
total of five annotators are required to label the
data. And then, the other three inspectors check
all the labeled results and reject the incorrect re-
sults. Finally, we sample 5% data to monitor the
overall quality of annotation, and we accept the
final annotations if and only if the agreement index
and accuracy can reach the requirement.

3.2. Data Properties

To the best of our knowledge, our contributed Ant-
Critic is the largest argument mining dataset in
scale, and the detailed comparison can be found
in Table 1. Besides, there are also some unique
properties compared with other datasets proposed
previously, which are depicted in Figure 1 and 3,
and listed as follows. i) Multi-Modality : all the
visual patterns, structural information and linguistic
expressions can be accessed directly and explicitly.
ii) Discontinuity : the text segments belonging to
the same argument may be placed in a discon-
tinuous manner. iii) Non-Monotonicity : some
segments of different argumentative components
may be arranged alternatively.

These characteristics described above primarily
stem from the nature of the data source. Because
there are no strict writing instructions for creators
on the platform, the organization of documents may
not be compact and precise enough, thus making
the segments from different argument components
interweave with each other. Although these proper-
ties significantly increase the learning difficulty, this
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setting reduces the requirements on the corpus to
the minimum, which provides more opportunities
for further research on free-form argument mining
and improves the feasibility and generalization of
learned models in practice.

3.3. Dataset Statistics

Table 2: Training/Validation/Test corpora statistics.

Train Validation Test

# Comments 7,986 1,007 1,001
# Segments 433,342 40,296 33,913

# Claims 35,036 4,741 4,065
# Premises 37,022 4,102 3,788

# Claim
Segment 69,823 10,225 8,263

# Premise
Segment 127,379 13,620 11,321

# Character
/ Segment 22.55 22.10 22.84

# Segment
/ Claim 1.99 2.16 2.03

# Segment
/ Premise 3.44 3.32 2.99

% Font 16.85% 10.73% 18.72%
% Strong 9.98% 7.30% 10.10%
% Color 7.07% 6.03% 9.37%

% Blockquote 0.97% 0.62% 0.58%
% Supertalk 0.64% 0.69% 0.96%
% Header 0.24% 0.59% 0.78%

Table 2 demonstrates the statistic information
of our proposed AntCritic. The upper part demon-
strates the quantitative characteristics of texts, and
the lower part shows the percentage of segments
containing specified HTML tags.

4. Problem Definition

From an overall perspective, our goal of argument
mining on visually-rich free-form documents can
be decomposed into two targets, namely Argument
Component Detection and Argument Relation Pre-
diction, formulated as follows.

4.1. Argument Component Detection

As the crucial step in the task of argument min-
ing, it aims to detect and classify all the potential
argument components. Based on the annotation
of this dataset, we only consider three possible
component types, including Claim, Premise and
Non-Argument. Apart from this, the confidence of
arguments to be major claims should also get esti-
mated to serve as a reference for human decision-
making.

1 4 7 9Claim 1 Claim 2

2Premise 1 5Premise 23 8

i

Premise 3 6

:	i-th text	segment :	Related

:	Affiliation:	Co-Occurrence :	Co-Relevance

:	Others

Figure 3: A simple diagram example for argument
structures. Better viewed in color.

4.2. Argument Relation Prediction

To recover the argument structure in the docu-
ments, the relations between arguments should
be understood correctly. However, the disconti-
nuity and non-monotonicity of the dataset heavily
impede us from slicing the entire document into
multiple consecutive parts and predicting their re-
lations. In light of this, we turn to recognize the
relation types between individual segments and
construct a more dense relation network within
documents. Therefore we sort out all possible situ-
ations and accordingly define four relation types to
cover them.

• Affiliation: The i-th segment is defined to af-
filiate with the j-th one if the latter belongs to
a claim and the former is part of the premise
supporting this claim. It maintains the vertical
hierarchy of the entire document.

• Co-Occurrence: The i-th and j-th segments
are defined to form a Co-Occurrence relation
if they belong to the same argument. Without
loss of generalization, every argumentative seg-
ment builds a co-occurrence relation with itself.
It reveals the internal composition of a single
argument component.

• Co-Relevance: The i-th and j-th segments are
defined to form a Co-Relevance relation if they
belong to the sibling components which support
the same argument. And we assume that all the
claims are trivially defined to support a virtual
main topic. This kind of relationship can help
recover the horizontal argumentative structure of
the document.

• Other: The Other relation includes all the cases
not covered by the definitions listed above.

Their diagram can also be found in Figure 3. It is
straightforward to notice that there tend to be some
redundancies in the relation annotations. These
redundancies seem unnecessary, but they can en-
hance the robustness of relation predictions and
act as an extra constraint to guide the model to
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consider the global argumentative structure and
understand the relation types in depth.

5. Method

5.1. Model Architecture

This section will describe our proposed prelimi-
nary solution to the aforementioned problem set-
ting on the AntCritic dataset. Given a structured
webpage with various markups and attributes D =
{(di,mi, pi, si)}ni=1, our goal is to predict the la-
bels of text segments L = {li}ni=1, the confidence
to be major claims {ci}ni=1, and the relations be-
tween them R = {{rij}ni=1}nj=1, where n is the
total number of text segments and the quadruple
(di,mi, pi, si) represents the token sequence, style
marks, paragraph position and segment position
of the i-th text segment respectively. To quantify
the impact of modeling granularities on the pre-
diction, we construct the token-level and segment-
level architectures to extract information and make
predictions individually.

5.1.1. Token-Level Model

Because of the exceeding number of input tokens,
we process each segment separately and only con-
duct the argument component detection task in this
part. The overall pipeline of this model is demon-
strated in the appendix. We consider both the char-
acter and word sequences of the input segments
to investigate all the possible modeling schemas
and further explore the dataset’s properties. Con-
cretely, we extract the aggregated representations
via character-based and word-based backbones in
a First-Last-Avg manner and finetune these mod-
els. Afterward, we apply a simple multi-layer per-
ceptron to generate class probabilities. And follow-
ing the approach proposed by Wei and Zou (2019),
three kinds of strategies for text augmentation are
also employed to enhance the robustness of pre-
dictions, namely Random Mask, Random Swap
and Random Repeat. In this computing process,
we leave out the HTML tags from the calculation
because the marks for a single segment can only
provide quite limited structural information and vi-
sual difference for the label prediction.

5.1.2. Segment-Level Model

In the initialization, we also adopt the First-Last-
Avg mechanism to generate the segment-level
features, but all the parameters in backbones are
frozen for less computation resource requirements.

Afterward, we project these features into the
same latent space, denoted as f ci and fwi for the
character-base and word-based aggregations of
the i-th segment, respectively. Next, considering

that these two groups of embeddings are com-
plementary semantic views of the input segments
that emphasize different semantic aspects, we fuse
these two representations into a single feature se-
quence. To be more specific, we apply a cross-
gate module to calculate the fused representations
adaptively. The formulae are given as

gc
i = σ(Wcf ci + bc), gw

i = σ(Wwfwi + bw),
(1)

fi = Wo · [gc
i · fwi ;gw

i · f ci ] + bo, (2)

where g∗
i ∈ (0, 1)d, f∗i ∈ Rd and the variables

b∗ ∈ Rd, Ww,Wc ∈ Rd×d, Wo ∈ Rd×2d are all
learnable parameters. σ(·) is the sigmoid function
and [; ] is the concatenation operator.

Meanwhile, the visual pattern mi and structural
position information (pi, si) are also encoded into a
series of embeddings denoted as vi and ei, which
can be given by

ei = [Ep
pi
;Es

si ], vi = Emmi, (3)

where mi ∈ {0, 1}6 is the stack of indicators
for font, strong, color, blockquote, supertalk and
header tags / attributes in the i-th segment, respec-
tively. And Ep,Es ∈ RN×(d/2),Em ∈ Rd×6 are the
trainable weights of look-up tables.

Then, we utilize a style gate to dynamically con-
trol the density of semantic information according
to the style appearances and reveal what the au-
thors want to emphasize. The pattern-aware em-
bedding {f̂i}ni=1 will be consequently generated as

gg
i = σ(Wg[vi; fi] + bg), f̂i = (1 + gg

i )fi, (4)

where gg
i ∈ (0, 1)d, f̂i ∈ Rd, and Wg ∈ Rd×2d,bg ∈

Rd are learnable parameters.
And next, we need to utilize a sequence model to

integrate the global information and form a series
of context-aware representations given by

(f̃1, . . . , f̃n) = Ω((f̂1 + e1), . . . , (f̂n + en); Θ), (5)

where Ω(·; Θ) denotes the sequence modeling
component. In practice, we select Transformer
(Vaswani et al., 2017) and GRU (Chung et al.,
2014) as typical choices in the experiment.

Consequently, context-aware representations
will be used to detect all the arguments and recog-
nize the relations between segment pairs. For argu-
ment component detection, we employ two linear
layers to obtain the class probabilities ai ∈ (0, 1)3

and major confidence ci ∈ (0, 1), given by

ai = ϕ(Waf̃i + ba), ci = σ(Wmf̃i + bm), (6)

where Wa ∈ R3×d,Wm ∈ Rd,ba ∈ R3, bm ∈ R
and ϕ(·) is the softmax operator.

And for the task of argument relation prediction,
we first project the features into the subspaces
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corresponding to the source and destination ends
of relations, given as

f∗i = W∗
2(ReLU(W∗

1fi+b∗
1))+b∗

2, ∗ ∈ {s, d}. (7)

where the dimension of parameters keeps consis-
tent with Equation 1. Next, two different pair-wise
classification components are utilized to calculate
the relation probabilities rij ∈ (0, 1)4, which can be
formulated as

• Mul-Add:

rij = ϕ(Wr[f si + fdj ; f
s
i · fdj ] + br), (8)

• Biaffine:

rij = ϕ([f si ; 1]
TU[fdj ; 1] + br), (9)

where U ∈ R(d+1)×4×(d+1),Wr ∈ R4×2d,br ∈ Rd

are trainable parameters. And the detailed calcu-
lation mechanism of the segment-level model is
shown in the appendix.

5.2. Training and Inference

As illustrated in the descriptions in the sections
above, the overall calculation can be conducted
end-to-end. Considering the entire task is com-
posed of three subtasks (including major confi-
dence estimation), we optimize the model by com-
bining these three objectives, formulated as fol-
lows.

Argument Component Detection The subtask
of argument component detection is essentially a
multi-classification problem, so we apply the cross-
entropy loss function to tackle this.

Lc = −
n∑

i=1

2∑
j=0

I(l̂i = j) log((ai)j), (10)

where the ground-truth component label l̂i equals
to 0, 1, 2 if the i-th segment is annotated as non-
argument, claim and premise, respectively.

Argument Relation Prediction Similarly, the op-
timization constraint of argument relation prediction
can be given by

Lr = −
n∑

i=1

n∑
j=1

3∑
k=0

I(r̂ij = k) log((rij)k) (11)

where the ground-truth relation label r̂ij is assigned
as 0, 1, 2, 3 where the relation between i-th and
j-th segments is considered as other, affiliation,
co-occurrence and co-relevance, respectively.

Major Confidence Estimation The estimation of
major confidence will be approximated as a binary
classification task and get solved by

Lm = −
n∑

i=1

(m̂i log(ci)+(1−m̂i) log(1−ci)), (12)

where m̂i = 1 if the i-th segment is annotated as a
part of the major claim, otherwise m̂i = 0.

Finally, the segment-level model will be opti-
mized in a multi-task manner, and the overall loss
function is given by

L = λcLc + λrLr + λmLm, (13)

where λ∗ are the balancing hyper-parameters. As
for the token-level model, we only calculate the
first term because the other two subtasks are not
conducted on this.

While in the inference, we directly output the
major confidence ci and choose the labels with the
highest probabilities as the prediction results.

6. Experiment

6.1. Metrics

We adopt three trustworthy criteria to evaluate our
proposed solutions, namely Component F1 Score,
Relation F1 Score and Major Density. For the
Component & Relation F1 Scores, we calculate
the micro-, macro- and weighted-F1 scores on the
results of argument component detection and re-
lation prediction. It’s worth noting that the Other
type of relation will not be considered in the met-
ric calculation because this type does not mean
that there is no relationship between the corre-
sponding segments. As for the Major Density, we
choose to normalize all the confidences of claim
segments and sum up the scores corresponding to
the ground-truth major claims, which can be given
by

M =

∑n
i=1(c̃i · I(m̂i = 1))∑n

j=1 c̃j
(14)

in which c̃i = ci when l̂i = 1 and otherwise c̃i = 0.
In this mechanism, we can quantify the relative
confidence density of major claims without being
affected by the ratio of major segments.

6.2. Comparison and Analysis

In this section, we conduct a series of experiments
to estimate the performance of the token-level and
segment-level models and provide benchmark re-
sults on our proposed AntCritic dataset.
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Table 3: Results of different settings for segment-level models. The best results are given in bold.

Row Module Relation
Modeling

Using
HTML?

Component Detection Relation Prediction
Mac. Mic. Weig. Major Mac. Mic. Weig.

1 MLP Biaffine Yes 63.24 66.68 66.35 43.27 20.26 26.05 20.64
2 MLP Mul-Add Yes 62.59 66.07 65.75 42.29 22.61 27.18 22.93
3 TransFM Biaffine Yes 65.78 69.01 68.79 47.49 21.64 26.34 22.27
4 TransFM Mul-Add No 65.16 68.49 68.10 46.01 21.60 26.55 22.94
5 TransFM Mul-Add Yes 65.24 68.67 68.28 46.30 23.84 28.58 24.11
6 Bi-GRU Biaffine Yes 67.23 70.22 70.02 48.75 21.66 26.27 21.68
7 Bi-GRU Mul-Add No 66.24 69.72 69.16 49.28 22.00 27.55 23.03
8 Bi-GRU Mul-Add Yes 67.05 70.00 69.84 49.88 23.49 29.84 24.77

6.2.1. Analysis of Token-Level Model

The performances of different settings for the token-
level model are listed in Table 4. The first two
rows display the performances of word-based and
character-based pipelines, respectively. And in the
Ensemble setting, the final outputs are given as
the average results of these two streams. From the
table, we can find that the Ensemble setting out-
weighs the others in general, and the word-based
stream is inferior to the character-based one. This
can be explained in the following three folds. First,
the character-based backbone is trained on the fi-
nancial corpus, and the word-based one is trained
on the data of Wikipedia and news commentaries.
There will be a larger domain and semantic gap
for the word-based backbone to fit our proposed
dataset. Second, the word vocabulary is much
bigger than the character one, making the token
embeddings of some low-frequency words not well-
tuned. Besides, the ensemble strategy can reduce
the vagueness and uncertainty of probabilities and
enhance the stability of predictions.

Table 4: Results of different settings for token-level
models. The best results are given in bold.

Setting Macro Micro Weighted
Word 54.30 61.64 58.73

Character 57.62 63.39 61.56
Ensemble 58.32 63.87 62.15

6.2.2. Analysis of Segment-Level Model

Table 3 demonstrates the evaluation results corre-
sponding to different components and input modal-
ities choices. And we try to analyze the perfor-
mances in the following three aspects.

Impact of Modal Inputs As shown in Row
4,5,7,8 of Table 3, it is evident that the visual pat-
terns and structural information indeed improve the
performances of all these tasks to different extents,
which implies that the authors and creators tend

to utilize some special attributes and layouts to
emphasize their opinions and the corresponding
expressions, and our proposed gating mechanism
can capture this auxiliary information and help the
model to focus on both semantic information and
visual appearances of segments.

Choice of Sequence Modeling Components
Both Row 1,3,6, and Row 2,5,8 illustrate the effects
of different sequential modules. It is explicit that
the Bi-GRU module is superior to the Transformer,
and both of them achieve better performances than
the simple MLP. We intuitively speculate that the
range of dependency modeling may lead to the per-
formance gap between different modules. Consid-
ering the related claims and premises are usually
close in position, we infer that the Bi-GRU module
keeps semantic dependencies within a relatively
short term, which provides enough information for
message passing and aggregation and prevents
long-term noise in the calculation.

Choice of Relation Predictors Comparing Row
1,3,6 with Row 2,5,8, we can find that the choices
of relation modules bring a noticeable impact on
relation prediction, and slightly affect the perfor-
mance on argument component detection. The
Biaffine method generally behaves worse than the
Mul-Add strategy. The reason can be inferred that
the inner-product of the biaffine module mixes the
information along the embedding dimension, which
may smooth the differences within it. However,
the operation of Mul-Add individually models the
weights of different positions and maintains the
discrepancy information on this dimension.

6.2.3. Comparison between Different Models

Comprehensively comparing the evaluation results
shown in Table 3 and 4, we can notice that the
interaction between segments brings a more signif-
icant effect than the dependency modeling within
a single segment. This result aligns with the intu-
ition that the context semantic information is more
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important than the inner structure of expression
for the reasoning and detecting argument compo-
nents.

7. Conclusion

In this paper, we discuss a meaningful problem ex-
tension in the field of argument mining, i.e., the pro-
cessing of visually-rich free-form documents, and
explore the corresponding preliminary solutions
to utilize auxiliary visual information and generate
free-form fine-grained predictions. Besides, we
further collect and contribute a large-scale corpus
AntCritic to facilitate this setting. The comprehen-
sive experiments verify the reliability of this dataset
and the feasibility of our proposed architectures.
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A. Implementation Details

We employ the Sentence-BERT architecture pro-
posed by Reimers and Gurevych (2020) as the
word-based backbone. It is constructed on the ba-
sis of BERT-like architectures and gets pre-trained
on the dataset of BUCC mining task (Zweigenbaum
et al., 2017), which is composed of Wikipedia arti-
cles and news commentaries. And the character-
based backbone is adapted from FinBERT (Ltd,
2020), an open-source Chinese BERT model re-
leased by the AI lab of Value Simplex. The corpus
used to pre-train this model is collected from the
finance domain, including financial news, research
reports & announcements, and financial Wikipedia
entries. The maximal number of segments N in
a single document is set to be 400. Except for
the parameters in the pre-defined structures, the
dimension d of intermediate representations and
learnable parameters are set to be 384. The num-
ber of layers in the Transformer and GRU compo-
nents is 3, the number of heads in the attention
mechanism is 4, and the layer number of the final
MLP-based label predictor is set as 3. In the train-
ing process, the maximum of learning rate is set
to be 1e-4, and the balancing hyper-parameters
λc, λr, λm are set as 1, 1 and 0.5, respectively.
For both token-level and segment-level models,

https://github.com/valuesimplex/FinBERT
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Figure 4: Overall diagram of segment-level model. Better viewed in color.

the learning rate is tuned with warm-up mecha-
nism (Vaswani et al., 2017) and cosine annealing
strategy (Loshchilov and Hutter, 2017) where the
warm-up epoch is set as 1. To prevent overfitting,
a dropout strategy with p = 0.4 is applied in the
model. The training will last for 15 epochs and we
select the checkpoint with the best performance on
the validation dataset. As for the optimizer configu-
ration, the AdamW (Loshchilov and Hutter, 2019;
Reddi et al., 2018) optimizer with weight decay of
5e-5 is employed. The batch size is fixed to be
16. Apart from these, the probability of data aug-
mentation for the token-level model is set as 0.3
and the ratio of modified tokens is 0.15. And in the
overall experiment, the random seed is fixed and
the details can be referred in the code files.

B. Limitation and Potential Risks

This section will discuss the limitations and po-
tential risks related to our proposed dataset and
architecture. In the overall view, we extend the orig-
inal problem of argument mining and contribute a
novel dataset to facilitate this setting. But because
there is a lack of such discussion in the prior works,
we fail to conduct some transfer/transplant experi-
ments in this problem setting. Besides, this dataset
is constructed in Mandarin, which may impede the
researchers or developers in other countries from
understanding and utilizing this corpus. As for the
potential risks, the inherent bias in data collection
may affect the further development of this dataset.

C. Architecture

We attach our segment-level model and token-level
model architecture in Figure 4 and 5.

Character-Based Model Word-Based Model

风险明显降低
( Risk is significantly reduced. )

风险 明显 降低风 险 明 显 降 低

明显 风险 降低风 险 明 显 低 降

风险 风险 降低风 险 明 显 降 低

风险 明显 明显 降低风 险 险 明 显 降 低

Segment-level  Aggregation

Pre dictor

Original

Random Swap*

Random Mask*

Random Repeat*

C P O
Target

C P O C P O

L oss

Pre dictor

Figure 5: Overall diagram of the token-level model.

D. More Dataset Samples

We attach more visual-rich free-form documents
examples here.
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Figure 6: Example 1

Figure 7: Example 2

Figure 8: Example 3

Figure 9: Example 4
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