
LREC-COLING 2024, pages 13356–13362
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

13356

PyRater: A Python Toolkit for Annotation Analysis

Angelo Basile1,2, Marc Franco-Salvador2, Paolo Rosso1,3

1Universitat Politècnica de València
2Symanto Research

3ValgrAI - Valencian Graduate School and Research Network of Artificial Intelligence

{angelo.basile, marc.franco}@symanto.com, pross@dsic.upv.es

Abstract

We introduce PyRater, an open-source Python toolkit designed for analysing corpora annotations. When creating

new annotated language resources, probabilistic models of annotation are the state-of-the-art solution for identify-

ing the best annotators, retrieving the gold standard, and more generally separating annotation signal from noise.

PyRater offers a unified interface for several such models and includes an API for the addition of new ones. Addi-

tionally, the toolkit has built-in functions to read datasets with multiple annotations and plot the analysis outcomes.

In this work, we also demonstrate a novel application of PyRater to zero-shot classifiers, where it effectively selects

the best-performing prompt. We make PyRater available to the research community.

1. Introduction

In recent years, the landscape of open-source

NLP software has undergone substantial transfor-

mation. Custom codebases traditionally released

alongside NLP research papers have partially

been absorbed into more extensive libraries. To

name a few examples, research on Transformer

models has been streamlined by the popular Hug-

gingface Transformers library (Wolf et al., 2020);

tens of thousands of datasets can be sourced and

loaded through the Datasets project (Lhoest et al.,

2021); the AllenNLP (Gardner et al., 2018) and

fairseq (Ott et al., 2019) projects have provided

several foundational components for building cus-

tom neural models and sequence-to-sequence

models respectively. It is reasonable to speculate

that the ease of use of these frameworks has in-

fluenced and partially shaped the direction of NLP

research. Despite these advancements in model

building and data loading, there is still a lack of

specialized libraries for annotation analysis. The

most common practice for dealing with datasets

with multiple annotations is to manage discrepan-

cies using majority voting and to evaluate the qual-

ity of the annotations using inter-annotator agree-

ment (IAA) metrics such as Cohen’s Kappa (Art-

stein and Poesio, 2008). Recent studies (Hovy

et al., 2013; Passonneau and Carpenter, 2014;

Paun et al., 2018; Simpson and Gurevych, 2019)

have shown that probabilistic models of annota-

tions — popular in medical research (Dawid and

Skene, 1979) — outperform both majority voting

and traditional IAAmetrics. An annotationmerging

strategy based on majority voting can fail if most of

the annotators converge on the wrong label. Sim-

ilarly, inter-annotator agreement metrics measure

only consistency and not accuracy, implying that

a pool of annotators can be consistently wrong;

more importantly, agreement metrics cannot ac-

count for the different expertise of raters and as-

sign equal value to both expert raters and noisy

ones. Annotation models can avoid these pitfalls

by jointly estimating directly the gold label, the dif-

ficulty of annotating each item and the skills of the

raters. Despite these benefits, the use of prob-

abilistic annotation models in NLP is still limited.

We believe that one reason for this is the lack of

user-friendly tools for the NLP community. This

paper introduces a new Python library designed to

handle repeated ratings using annotation models,

aiming to make these models more accessible for

NLP research and applications. More in detail, our

contributions are as follows:

• We present PyRater, an easy-to-use and ex-

tensible Python library for annotation analysis

with probabilistic models;

• We provide an implementation of popular

models;

• We present a case study on a novel appli-

cation of annotation models for unsupervised

prompt optimization for zero-shot classifiers.

2. Annotation Analysis Models

Data annotation is crucial for supervised learning

and model evaluation. Ensuring the reliability of

annotations can be challenging due to the nat-

ural variance in human perspectives and to the

objective difficulty of categorizing many linguis-

tic structures (Plank et al., 2014b; Abercrombie

et al., 2022). As multiple annotations for a sin-

gle dataset are often collected to mitigate individ-

ual rater biases and provide a more robust label

assignment, this introduces the need for a sec-

ondary layer of review, either through expert adju-

13357

dication or automated methods. Few expert anno-

tators can review smaller datasets, but for larger,

crowdsourced projects, manual review becomes

impractical. As larger annotated corpora are likely

to contain errors (Abad and Moschitti, 2016; Guru-

rangan et al., 2018), automated analysis methods

become increasingly important.

In a typical data labelling scenario, we have a

dataset of i items, a label space consisting of k
classes, and a set of c coders. Each item i in the

dataset is annotated with a label k by a coder c; a
coder can annotate an instance 0 or more times.

Annotation analysis aims to answer the following

questions:

Q1 What is the most likely true class k for a given
instance i?

Q2 Which instances are more difficult to anno-

tate?

Q3 Among all coders c, who are the most reli-

able?

The state-of-the-art approach to answering these

questions involves fitting a probabilistic generative

model to the dataset. These probabilistic models

are the core components of PyRater. The model

parameters describe various aspects of the pro-

cess, such as annotator reliability and item diffi-

culty, based on a given annotation matrix. In this

matrix, each element ai,c is a label k assigned to

an item i by a coder c. Parameter estimation, con-

ditioned on observed annotations, is performed

through Bayesian inference. In PyRater, the full

posterior distribution of the model parameters is

estimated using the probabilistic programming lan-

guage Stan (Carpenter et al., 2017).

3. Library Overview

import pyrater as pyr

rte = pyr.load_dataset('rte')

load Dawid&Skene model
model = pyr.PyraterModel.get('d&s')

fit using Stan
model.fit(rte)

RTE has 164 annotators ...
assert model.credibilities.shape==(164,)

... and 800 instances
for which we estimate
the gold label...
assert model.labels.shape == (800,)

... and the difficulty
assert model.difficulty.shape == (800,)

Listing 1: An overview of a PyRater workflow.

Design A high-level overview of an annotation

analysis workflow with PyRater is provided in List-

ing 1. The focus of this work is twofold: i) to

enable interoperability between diverse annota-

tion models and ii) to improve the accessibility of

these models. To achieve the first goal, PyRater

defines a common API, as shown in Listing 2,

and employs a registry system via Tango (Groen-

eveld et al., 2023). This allows users to easily

list and register available models, as outlined in

Listing 3. For the second goal, the library aligns

loosely with the scikit-learn Model API (Pedregosa

et al., 2011), providing familiar model.fit() and

model.predict() methods. Additionally, PyRater

includes built-in corpora with multiple annotations,

such as RTE (Dagan et al., 2005; Snow et al.,

2008), facilitating self-contained examples. For

easier installation, PyRater can be installed via

pip, and a Docker image is available to avoid

portability issues.

Backend Choice In developing PyRater, we con-

sidered various backend options such as Tensor-

Flow Probability (Abadi et al., 2015), NumPyro

(Phan et al., 2019), and PyMC (Oriol et al., 2023)

before finally choosing Stan (Carpenter et al.,

2017). Several reasons informed this decision.

First, Stan has a fast and reliable sampler, which

is crucial for the computationally intense tasks of

Bayesian inference. Second, compiled Stan mod-

els can be used with multiple programming lan-

guages. While Pyrater offers a Python interface to

Stan through CmdStanPy, interfaces for R, MAT-

LAB, Julia, and other languages are also available.

Lastly, Stan’s well-written documentation is helpful

for new users who wish to create new models. It

is worth noting that although GPU support in Stan

is currently somewhat limited, it is rapidly matur-

ing and is available through OpenCL, sidestepping

the installation issues often associated with Nvidia

CUDA1.

Examples Several examples and tutorials for

users are included in PyRater. These tutorials are

available as easy-to-run Python notebooks. While

the primary focus is on human annotation mod-

eling, the examples also extend to other applica-

tions like dataset cartography (Swayamdipta et al.,

2020) and prompt optimization (briefly presented

in Section 4). To ensure the examples are self-

contained, the library includes datasets with multi-

ple annotations that are ready to be loaded.

Models PyRater includes implementations of sev-

eral models that are ready to use and also serve

as a reference for the development of new mod-

els. A registry system makes it possible to list all

the available models:

from pyrater import PyRaterModel as pm

1https://developer.nvidia.com/cuda-toolkit

https://developer.nvidia.com/cuda-toolkit

13358

class PyRaterModel:

def fit(...):
...

@property()
def labels()

"""
Return the predicted true labels.
This can answer Q1: given multiple
annotations for an instance , which
is the true label?
"""
...

@property()
def difficulty()

"""
Return the predicted difficulty
of each item. This can answer Q2:
which are the most difficult
instances to label?
"""
...

@property()
def credibilities()

"""
Return the credibility of each
rater. This can answer Q3: how
is the best rater?
"""
...

Listing 2: A partial view of the main PyRater-

Model class. After fitting, the object ex-

poses the labels(), difficulty() and
credibilities() methods that can be used

to address the most common problems in annota-

tion analysis.

assert pm.list_available() == [
'd&s',
'hier_d&s',
'mace',
...
'kappa_majority_voting']

@pm.register('my-model')
class MyNewModel(pm):

...

assert 'my-model' in pm.list_available()

Listing 3: An example usage of the model registry.

Additional Features PyRater also provides a set

of utilities such as plotting functions for visualizing

the posterior distributions computed by the Stan

model, data loading tools for easier data prepara-

tion and data loading, and a command-line inter-

Figure 1: Accuracy score distributions for IMDB

and Yelp using different prompts. Each point de-

notes zero-shot model accuracy. In red: the best

and worst scores, each annotated with its corre-

sponding prompt text. + and - denote the prompt

for the positive and negative class, respectively.

Jittering is added for enhanced readability.

face:

$ pyrater [OPTIONS] -m MODEL <input file>

4. Case Study: Unsupervised

Prompt Optimization

In addition to analyzing human annotations,

Pyrater can also be used for scenarios that in-

volve repeated model predictions. This is partic-

ularly relevant for prompt selection in zero-shot

models. In a genuine zero-shot environment, se-

lecting the optimal prompt is challenging due to

the lack of labeled development data. A solution

to this issue involves collecting repeated predic-

tions from a zero-shot model prompted in differ-

ent ways. Pyrater can then analyze these multiple

predictions and i) estimate the performance of dif-

ferent prompts and ij) predict the true label, effec-

tively simulating an ensemble model.

In this section, we conduct a case study on prompt

selection, using the Yelp (Zhang et al., 2015)

and IMDb (Maas et al., 2011) binary sentiment

analysis datasets and a dual-encoder architecture

(sentence-t5-large, (Ni et al., 2022)) for zero-
shot learning. First, we craft a diverse set of

prompts per class, as shown in Table 1. Sec-

ond, we assess how the model’s performance

varies depending on the selected prompts. Next,

we evaluate how the inferred gold labels using

PyRater contrast with those obtained through sim-

ple majority voting. Finally, we investigate the cor-

relation between predicted prompt reliability and

the model’s true accuracy, evaluated using gold

label data.

13359

Positive Negative

this is good quite bad

text is great this is terrible

very positive very negative

… …

Table 1: Sample Label Descriptions for binary

sentiment analysis.

Dual-encoder zero-shot classifiers (Müller et al.,

2022) work by calculating the similarity between

the embedding of an input text and label descrip-

tions, commonly referred to as prompts. The class

corresponding to the label description that is clos-

est to the input text is selected as the predicted

class. For binary sentiment classification tasks,

the user begins by crafting a label description for

each class: for instance, This text is positive and

This text is negative could serve as label descrip-

tions for the positive and negative classes, respec-

tively. Such zero-shot classifiers are sensitive to

the phrasing of label descriptions: well-crafted but

differently phrased descriptions can result in sig-

nificant performance variations (Shin et al., 2020;

Lu et al., 2022).

Figure 1 illustrates the distribution of scores for

the same model when prompted with different la-

bel descriptions. As observed, the performance

can vary widely, ranging from nearly random to

approaching the state-of-the-art. When multiple

plausible label descriptions are available and la-

beled data cannot be used to identify the best-

performing description, the situation becomes

analogous to human annotation analysis. How-

ever, in this case, the “annotations” are zero-shot

model predictions rather than human ratings.

We evaluate PyRater on two tasks: label predic-

tion, assessed by accuracy (Q1), and prompt rank-

ing, evaluated by Pearson coefficients (Q2). As

shown in Table 2, the model-based approach sig-

nificantly outperforms both the Kappa agreement

metric and majority voting. The correlation pa-

rameters for the ranking task — 0.83 for Yelp and

0.94 for IMDB— indicate that probabilistic models

can accurately select the best prompt from a pool

of available options, largely outperforming ranking

using Kappa.

5. Related Work

Annotation AnalysisWhile probabilistic, genera-

tive models of annotation have been extensively

applied in fields such as psychometrics, epidemi-

ology, and education, their adoption in NLP re-

mains relatively limited. In contrast, NLP re-

searchers frequently rely on agreement metrics

like Kappa (Artstein and Poesio, 2008). Although

suitable for small pools of expert raters, these met-

Dataset Task Method Metric

Yelp

Ranking
Kappa 0.76

PyRater 0.83

Accuracy
Majority Voting 72.5

PyRater 74.9

IMDb

Ranking
Kappa 0.87

PyRater 0.94

Accuracy
Majority Voting 66.5

PyRater 68.7

Table 2: Performance comparison on Yelp and

IMDb datasets. The ranking metric is Pearson cor-

relation coefficient.

rics become less reliable with larger, noisy an-

notation sets (Passonneau and Carpenter, 2014;

Paun et al., 2018). As crowdsourcing platforms

like Mechanical Turk gained popularity for annota-

tion tasks (Callison-Burch and Dredze, 2010), the

use of annotation models in NLP has increased

(Snow et al., 2008; Hovy et al., 2013) to maintain

the quality of expert annotators using a broader set

of noisy raters. Concurrently, separate research

lines aim to avoid the annotation analysis and label

adjudication steps by directly training models on

multiple labels per instance, rather than a single,

aggregated one (Plank et al., 2014a; Rodrigues

and Pereira, 2018; Fornaciari et al., 2021). For a

comprehensive overview of statistical annotation

analysis, readers are advised to refer to Paun et al.

(2022).

NLPOpen Source SoftwareAlthough various im-

plementations of models for annotation analysis

are available (Hovy et al., 2013; Pullin, Jeffrey and

Vukcevic, Damjan and Saxhaug, Lars-Mølgaard,

2020; Simpson and Gurevych, 2019; Carpenter,

2013), a dedicated, comprehensive framework is

still lacking2. This work synthesizes ideas from two

lines of existing libraries. First, like Transformers

and AllenNLP, it consolidates various implemen-

tations under a unified interface. Second, in terms

of user experience, it draws inspiration from the

simplicity and ease of use found in NLTK (Loper

and Bird, 2002) and scikit-learn (Pedregosa et al.,

2011).

Applications to NLP Models Basile et al. (2022)

discuss the application of annotation models to

zero-shot classifiers, and similar efforts have been

made in the context of few-shot models (Zhao

et al., 2022) and ensemble learning (Simpson

et al., 2013).

2It is worth noting that the probabilistic programming

library Numpyro (Phan et al., 2019) lists several anno-

tation models in its example documentation.

13360

6. Conclusion and Future Work

We introduced PyRater, an open-source library

designed to simplify annotation analysis. We be-

lieve PyRater will facilitate broader adoption of

state-of-the-art annotationmodels. Going forward,

wewelcome community feedback to inform the de-

velopment of future features for PyRater.

7. Acknowledgements

We thank the anonymous reviewers for their

helpful comments. The work of Paolo Rosso

was in the framework of the FairTransNLP re-

search project (PID2021-124361OB-C31), funded

by MCIN/AEI/10.13039/501100011033 and by

ERDF, EU A way of making Europe. The

work from Symanto has been partially funded

by the Pro2Haters - Proactive Profiling of Hate

Speech Spreaders (CDTi IDI-20210776), the

XAI-DisInfodemics: eXplainable AI for disin-

formation and conspiracy detection during in-

fodemics (MICIN PLEC2021-007681) and the

ANDHI - ANomalous Diffusion of Harmful Informa-

tion (CPP2021-008994) R&D grants.

Bibliographical References

Azad Abad and Alessandro Moschitti. 2016. Tak-

ing the best from the crowd:learning question

passage classification from noisy data. In

Proceedings of the Fifth Joint Conference on

Lexical and Computational Semantics, pages

136–141, Berlin, Germany. Association for

Computational Linguistics.

Martín Abadi, Ashish Agarwal, Paul Barham,

Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving,

Michael Isard, Yangqing Jia, Rafal Jozefow-

icz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dandelion Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya

Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu, and Xiao-

qiang Zheng. 2015. TensorFlow: Large-scale

machine learning on heterogeneous systems.

Software available from tensorflow.org.

Gavin Abercrombie, Valerio Basile, Sara Tonelli,

Verena Rieser, and Alexandra Uma, editors.

2022. Proceedings of the 1st Workshop on

Perspectivist Approaches to NLP@LREC2022.

European Language Resources Association,

Marseille, France.

Ron Artstein and Massimo Poesio. 2008. Sur-

vey article: Inter-coder agreement for compu-

tational linguistics. Computational Linguistics,

34(4):555–596.

Angelo Basile, Marc Franco-Salvador, and Paolo

Rosso. 2022. Unsupervised ranking and aggre-

gation of label descriptions for zero-shot clas-

sifiers. In International Conference on Applica-

tions of Natural Language to Information Sys-

tems, pages 119–126. Springer.

Chris Callison-Burch and Mark Dredze, editors.

2010. Proceedings of the NAACL HLT 2010

Workshop on Creating Speech and Language

Data with Amazon’s Mechanical Turk. Associa-

tion for Computational Linguistics, Los Angeles.

Bob Carpenter. 2013. pyanno. python package

for dawid and skene (1979) maximum likelihood

estimator for categorical data coding models.

https://github.com/bob-carpenter/pyanno.

Bob Carpenter, Andrew Gelman, Matthew D. Hoff-

man, Daniel Lee, Ben Goodrich, Michael Betan-

court, Marcus Brubaker, Jiqiang Guo, Peter Li,

and Allen Riddell. 2017. Stan: A probabilistic

programming language. Journal of Statistical

Software, 76(1):1–32.

Ido Dagan, Oren Glickman, and Bernardo

Magnini. 2005. The pascal recognising textual

entailment challenge. InProceedings of the First

International Conference on Machine Learning

Challenges: Evaluating Predictive Uncertainty

Visual Object Classification, and Recognizing

Textual Entailment, MLCW’05, page 177–190,

Berlin, Heidelberg. Springer-Verlag.

Alexander Philip Dawid and Allan M Skene.

1979. Maximum likelihood estimation of ob-

server error-rates using the em algorithm. Jour-

nal of the Royal Statistical Society: Series C

(Applied Statistics), 28(1):20–28.

Tommaso Fornaciari, Alexandra Uma, Silviu

Paun, Barbara Plank, Dirk Hovy, and Mas-

simo Poesio. 2021. Beyond black & white:

Leveraging annotator disagreement via soft-

label multi-task learning. In Proceedings of the

2021 Conference of the North American Chap-

ter of the Association for Computational Linguis-

tics: Human Language Technologies, pages

2591–2597, Online. Association for Computa-

tional Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind

Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew

Peters, Michael Schmitz, and Luke Zettlemoyer.

2018. AllenNLP: A deep semantic natural lan-

guage processing platform. In Proceedings of

https://doi.org/10.18653/v1/S16-2018
https://doi.org/10.18653/v1/S16-2018
https://doi.org/10.18653/v1/S16-2018
https://www.tensorflow.org/
https://www.tensorflow.org/
https://aclanthology.org/2022.nlperspectives-1.0
https://aclanthology.org/2022.nlperspectives-1.0
https://doi.org/10.1162/coli.07-034-R2
https://doi.org/10.1162/coli.07-034-R2
https://doi.org/10.1162/coli.07-034-R2
https://aclanthology.org/W10-0700
https://aclanthology.org/W10-0700
https://aclanthology.org/W10-0700
https://github.com/bob-carpenter/pyanno
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://doi.org/10.18653/v1/2021.naacl-main.204
https://doi.org/10.18653/v1/2021.naacl-main.204
https://doi.org/10.18653/v1/2021.naacl-main.204
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501

13361

Workshop for NLPOpenSource Software (NLP-

OSS), pages 1–6, Melbourne, Australia. Associ-

ation for Computational Linguistics.

Dirk Groeneveld, Akshita Bhagia, and PeteWalsh.

2023. AI2 Tango. https://github.com/
allenai/tango.

Suchin Gururangan, Swabha Swayamdipta, Omer

Levy, Roy Schwartz, Samuel Bowman, and

Noah A. Smith. 2018. Annotation artifacts in

natural language inference data. In Proceed-

ings of the 2018 Conference of the North Amer-

ican Chapter of the Association for Computa-

tional Linguistics: Human Language Technolo-

gies, Volume 2 (Short Papers), pages 107–112,

New Orleans, Louisiana. Association for Com-

putational Linguistics.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish

Vaswani, and Eduard Hovy. 2013. Learning

whom to trust with MACE. In Proceedings of

the 2013 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies,

pages 1120–1130, Atlanta, Georgia. Associa-

tion for Computational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine

Jernite, Abhishek Thakur, Patrick von Platen,

Suraj Patil, Julien Chaumond, Mariama Drame,

Julien Plu, Lewis Tunstall, Joe Davison, Mario

Šaško, Gunjan Chhablani, Bhavitvya Malik, Si-

mon Brandeis, Teven Le Scao, Victor Sanh,

Canwen Xu, Nicolas Patry, Angelina McMillan-

Major, Philipp Schmid, Sylvain Gugger, Clé-

ment Delangue, Théo Matussière, Lysandre

Debut, Stas Bekman, Pierric Cistac, Thibault

Goehringer, Victor Mustar, François Lagunas,

Alexander Rush, and Thomas Wolf. 2021.

Datasets: A community library for natural lan-

guage processing. In Proceedings of the

2021 Conference on Empirical Methods in Nat-

ural Language Processing: System Demonstra-

tions, pages 175–184, Online and Punta Cana,

Dominican Republic. Association for Computa-

tional Linguistics.

Edward Loper and Steven Bird. 2002. Nltk: The

natural language toolkit. https://www.nltk.
org/.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian

Riedel, and Pontus Stenetorp. 2022. Fantasti-

cally ordered prompts and where to find them:

Overcoming few-shot prompt order sensitivity.

In Proceedings of the 60th Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), pages 8086–8098,

Dublin, Ireland. Association for Computational

Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T.

Pham, Dan Huang, Andrew Y. Ng, and Christo-

pher Potts. 2011. Learning word vectors for sen-

timent analysis. In Proceedings of the 49th An-

nual Meeting of the Association for Computa-

tional Linguistics: Human Language Technolo-

gies, pages 142–150, Portland, Oregon, USA.

Association for Computational Linguistics.

Thomas Müller, Guillermo Pérez-Torró, and Marc

Franco-Salvador. 2022. Few-shot learning with

Siamese networks and label tuning. In Proceed-

ings of the 60th Annual Meeting of the Associ-

ation for Computational Linguistics (Volume 1:

Long Papers), pages 8532–8545, Dublin, Ire-

land. Association for Computational Linguistics.

Jianmo Ni, Gustavo Hernandez Abrego, Noah

Constant, Ji Ma, Keith Hall, Daniel Cer, and Yin-

fei Yang. 2022. Sentence-t5: Scalable sentence

encoders from pre-trained text-to-text models.

In Findings of the Association for Computa-

tional Linguistics: ACL 2022, pages 1864–1874,

Dublin, Ireland. Association for Computational

Linguistics.

Abril-Pla Oriol, Andreani Virgile, Carroll Colin,

Dong Larry, Fonnesbeck Christopher J.,

Kochurov Maxim, Kumar Ravin, Lao Jupeng,

Luhmann Christian C., Martin Osvaldo A., Os-

thege Michael, Vieira Ricardo, Wiecki Thomas,

and Zinkov Robert. 2023. Pymc: A modern

and comprehensive probabilistic programming

framework in python. PeerJ Computer Science,

9:e1516.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela

Fan, Sam Gross, Nathan Ng, David Grangier,

and Michael Auli. 2019. fairseq: A fast, ex-

tensible toolkit for sequence modeling. In Pro-

ceedings of the 2019 Conference of the North

American Chapter of the Association for Com-

putational Linguistics (Demonstrations), pages

48–53, Minneapolis, Minnesota. Association for

Computational Linguistics.

Rebecca J. Passonneau and Bob Carpenter.

2014. The benefits of a model of annotation.

Transactions of the Association for Computa-

tional Linguistics, 2:311–326.

Silviu Paun, Ron Artstein, and Massimo Poesio.

2022. Statistical methods for annotation analy-

sis. Springer Nature.

Silviu Paun, Bob Carpenter, Jon Chamberlain,

Dirk Hovy, Udo Kruschwitz, and Massimo Poe-

sio. 2018. Comparing Bayesianmodels of anno-

tation. Transactions of the Association for Com-

putational Linguistics, 6:571–585.

https://github.com/allenai/tango
https://github.com/allenai/tango
https://github.com/allenai/tango
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://aclanthology.org/N13-1132
https://aclanthology.org/N13-1132
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://arxiv.org/abs/cs/0205028
https://arxiv.org/abs/cs/0205028
https://www.nltk.org/
https://www.nltk.org/
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
https://doi.org/10.18653/v1/2022.acl-long.584
https://doi.org/10.18653/v1/2022.acl-long.584
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.7717/peerj-cs.1516
https://doi.org/10.7717/peerj-cs.1516
https://doi.org/10.7717/peerj-cs.1516
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.1162/tacl_a_00185
https://doi.org/10.1162/tacl_a_00040
https://doi.org/10.1162/tacl_a_00040

13362

F. Pedregosa, G. Varoquaux, A. Gramfort,

V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay. 2011. Scikit-learn:

Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830.

Du Phan, Neeraj Pradhan, and Martin Jankowiak.

2019. Composable effects for flexible and accel-

erated probabilistic programming in numpyro.

arXiv preprint arXiv:1912.11554.

Barbara Plank, Dirk Hovy, and Anders Søgaard.

2014a. Learning part-of-speech taggers with

inter-annotator agreement loss. In Proceedings

of the 14th Conference of the European Chapter

of the Association for Computational Linguistics,

pages 742–751, Gothenburg, Sweden. Associ-

ation for Computational Linguistics.

Barbara Plank, Dirk Hovy, and Anders Søgaard.

2014b. Linguistically debatable or just plain

wrong? In Proceedings of the 52nd Annual

Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages

507–511, Baltimore, Maryland. Association for

Computational Linguistics.

Pullin, Jeffrey and Vukcevic, Damjan and Sax-

haug, Lars-Mølgaard. 2020. rater: Sta-

tistical models of repeated categorical rating

data. https://cran.r-project.org/package=
rater.

Filipe Rodrigues and Francisco Pereira. 2018.

Deep learning from crowds. Proceedings of

the AAAI Conference on Artificial Intelligence,

32(1).

Taylor Shin, Yasaman Razeghi, Robert L. Lo-

gan IV, Eric Wallace, and Sameer Singh. 2020.

AutoPrompt: Eliciting Knowledge from Lan-

guage Models with Automatically Generated

Prompts. In Proceedings of the 2020 Confer-

ence on Empirical Methods in Natural Language

Processing (EMNLP), pages 4222–4235, On-

line. Association for Computational Linguistics.

Edwin Simpson and Iryna Gurevych. 2019. A

Bayesian approach for sequence tagging with

crowds. In Proceedings of the 2019 Con-

ference on Empirical Methods in Natural Lan-

guage Processing and the 9th International

Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), pages 1093–1104,

Hong Kong, China. Association for Computa-

tional Linguistics.

Edwin Simpson, Stephen Roberts, Ioannis Pso-

rakis, and Arfon Smith. 2013. Dynamic bayesian

combination of multiple imperfect classifiers.

Decision making and imperfection, pages 1–35.

Rion Snow, Brendan O’Connor, Daniel Jurafsky,

and Andrew Ng. 2008. Cheap and fast – but is

it good? evaluating non-expert annotations for

natural language tasks. In Proceedings of the

2008 Conference on Empirical Methods in Natu-

ral Language Processing, pages 254–263, Hon-

olulu, Hawaii. Association for Computational

Linguistics.

Swabha Swayamdipta, Roy Schwartz, Nicholas

Lourie, Yizhong Wang, Hannaneh Hajishirzi,

Noah A. Smith, and Yejin Choi. 2020. Dataset

cartography: Mapping and diagnosing datasets

with training dynamics. In Proceedings of

the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages

9275–9293, Online. Association for Computa-

tional Linguistics.

ThomasWolf, Lysandre Debut, Victor Sanh, Julien

Chaumond, Clement Delangue, Anthony Moi,

Pierric Cistac, Tim Rault, Remi Louf, Morgan

Funtowicz, Joe Davison, Sam Shleifer, Patrick

von Platen, Clara Ma, Yacine Jernite, Julien Plu,

Canwen Xu, Teven Le Scao, Sylvain Gugger,

Mariama Drame, Quentin Lhoest, and Alexan-

der Rush. 2020. Transformers: State-of-the-art

natural language processing. In Proceedings of

the 2020 Conference on Empirical Methods in

Natural Language Processing: System Demon-

strations, pages 38–45, Online. Association for

Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun.

2015. Character-level convolutional networks

for text classification. In Advances in Neural In-

formation Processing Systems, volume 28. Cur-

ran Associates, Inc.

Mengjie Zhao, Fei Mi, Yasheng Wang, Minglei

Li, Xin Jiang, Qun Liu, and Hinrich Schuetze.

2022. LMTurk: Few-shot learners as crowd-

sourcing workers in a language-model-as-a-

service framework. In Findings of the Asso-

ciation for Computational Linguistics: NAACL

2022, pages 675–692, Seattle, United States.

Association for Computational Linguistics.

https://doi.org/10.3115/v1/E14-1078
https://doi.org/10.3115/v1/E14-1078
https://doi.org/10.3115/v1/P14-2083
https://doi.org/10.3115/v1/P14-2083
https://cran.r-project.org/package=rater
https://cran.r-project.org/package=rater
https://doi.org/10.1609/aaai.v32i1.11506
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/D19-1101
https://doi.org/10.18653/v1/D19-1101
https://doi.org/10.18653/v1/D19-1101
https://github.com/edwinrobots/pyIBCC
https://github.com/edwinrobots/pyIBCC
https://aclanthology.org/D08-1027
https://aclanthology.org/D08-1027
https://aclanthology.org/D08-1027
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.18653/v1/2022.findings-naacl.51
https://doi.org/10.18653/v1/2022.findings-naacl.51
https://doi.org/10.18653/v1/2022.findings-naacl.51

	Introduction
	Annotation Analysis Models
	Library Overview
	Case Study: Unsupervised Prompt Optimization
	Related Work
	Conclusion and Future Work
	Acknowledgements

