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Abstract
Synthetic lethality (SL) offers a promising approach for targeted anti-cancer therapy. Deeply understanding SL gene
pair mechanisms is vital for anti-cancer drug discovery. However, current wet-lab and machine learning-based
SL prediction methods lack user-friendly and quantitatively evaluable explanations. To address these problems,
we propose a prompt-based pipeline for generating natural language explanations. We first construct a natural
language dataset named NexLeth. This dataset is derived from New Bing through prompt-based queries and
expert annotations and contains 707 instances. NexLeth enhances the understanding of SL mechanisms and
it is a benchmark for evaluating SL explanation methods. For the task of natural language generation for SL
explanations, we combine subgraph explanations from an SL knowledge graph (KG) with instructions to construct
novel personalized prompts, so as to inject the domain knowledge into the generation process. We then leverage the
prompts to fine-tune pre-trained biomedical language models on our dataset. Experimental results show that the
fine-tuned model equipped with designed prompts performs better than existing biomedical language models in
terms of text quality and explainability, suggesting the potential of our dataset and the fine-tuned model for generating
understandable and reliable explanations of SL mechanisms.
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1. Introduction

Synthetic lethality (SL) is a genetic interaction
where a single gene mutation allows cell survival,
but simultaneous mutations in two genes lead to
cell death (Kaelin, 2005). Targeting an SL part-
ner gene can selectively kill cancer cells with a
specific mutation, offering a potential treatment for
undruggable mutant genes (Jariyal et al., 2020).
While many SL gene pairs have been discovered
through biological screening techniques (Huang
et al., 2020) and computational methods (Wang
et al., 2022b), their clinical applications are limited
due to unclear mechanisms. Hence, understand-
ing these mechanisms is crucial for developing anti-
cancer drug targets.

Previous computational studies explaining SL
mechanisms can be categorized into statistical
methods and machine learning methods (Wang
et al., 2022b). Statistical methods are usually
based on some hypotheses and require consid-
erable prior knowledge (Lee et al., 2018; Magen
et al., 2019; Lee et al., 2021), while machine learn-
ing methods mainly rely on knowledge graphs
(KGs) (Wang et al., 2021b; Liu et al., 2022; Zhang
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et al., 2023). KGs provide explicit and accurate
knowledge, enabling the generation of explana-
tions through graph-based reasoning (Pan et al.,
2023). However, when semantic information about
SL is sparse on the knowledge graph, interpreta-
tions of the SL mechanisms are limited. Further-
more, graph-based explanations are typically in
the form of paths or subgraph structures, but such
explanations may not be intuitive enough for down-
stream users. In contrast, natural language models
inherently contain rich domain knowledge, as they
are pre-trained on a large number of biomedical
texts, and natural language explanations are more
user-friendly (Wei et al., 2023; Wang et al., 2021a).
Therefore, we aim to combine text-based knowl-
edge and KGs to generate natural language ex-
planations for SL mechanisms. Herein, we expect
that, for any SL gene pairs, the natural language
explanation for the SL mechanism must involve the
functional connections of the two genes and how
these connections lead to cancer cell death.

The task of natural language generation is com-
mon in many domains, such as explainable rec-
ommendation and question answering (QA) (Liu
et al., 2023a; Luo et al., 2022). A basic requirement
for this task is the availability of natural language
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Figure 1: Pipeline of explanation collection by New Bing and explanation generation by a fine-tuned
language model.

datasets. For instance, in recommendation sys-
tems, we can naturally access certain user review
datasets, serving as explanation texts (Yan et al.,
2023). For biomedical QA, abstracts of published
articles can be easily collected for building the QA
dataset (Jin et al., 2019). Based on these datasets,
language models can be trained to generate nat-
ural language explanations or answers (Li et al.,
2023, 2021). However, for the task of training large
language models to generate natural language SL
explanations, there is no available dataset that ex-
plains SL mechanisms systematically, since the
causation of SL-based cancer could be complex
and diverse, and it requires deep domain knowl-
edge to summarize the mechanisms. Therefore, it
is challenging to acquire high-quality explanatory
datasets.

Pre-trained language models (PLMs) have been
successfully applied to many downstream Natu-
ral Language Processing (NLP) tasks (Wei et al.,
2023). The downstream tasks mainly benefit from
the learned representations. Specifically, through
pre-training Transformer’s decoder modules, Gen-
erative Pre-trained Transformer (GPT) exhibits su-
perior performance on language generation tasks,
such as machine translation and text summariza-
tions (Li and Liang, 2021). Recently, general-
purpose pre-trained large language models based
on GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI,
2023) have shown excellent performance across
various domains, especially ChatGPT1 and New
Bing2. As New Bing incorporates search capabili-
ties, it is capable to provide users with both answers
and related sources. Users can assess the relia-
bility of the answers based on the provided search
sources. Therefore, we can harness these innova-

1https://chat.openai.com/
2https://www.bing.com/new

tive generation tools for text mining.
Recently, there have been growing interests in ap-

plying pre-trained large language models in biomed-
ical domain (e.g., MedGPT (Kraljevic et al., 2021),
BioGPT (Luo et al., 2022) and Med-PaLM (Singhal
et al., 2023)). However, since fine-tuning on large
pre-trained models requires sufficient instances,
it is challenging to directly conduct fine-tuning in
few-shot learning. Prompt learning has recently
emerged as a new research direction (Liu et al.,
2023b). Using task-specific prompts, prompt learn-
ing can imbue pre-trained models with a wealth of
knowledge that aligns with a specific task, thereby
enabling the models to better adapt to specific do-
main tasks with a few data. Prompts can be cate-
gorized as continuous prompts (i.e., learnable em-
beddings) and discrete prompts (i.e., sequences of
words) (Liu et al., 2023b; Wu et al., 2023b). The dis-
crete prompts can be either fixed for all instances
or personalized. For the task of explanation gen-
eration, personalization is very important to reflect
the characteristics of specific input instances, thus
we consider designing prompt templates and then
generating personalized prompts for different SL
gene pairs.

In this study, we propose a prompt-based frame-
work to generate natural language explanations
for SL mechanisms. Our main contributions con-
tain a natural language explanation dataset named
NexLeth3 and fine-tuning of pre-trained biomedical
language models for new explanation generation.
This is the first study that explains SL mechanisms
in the form of natural language. The overall pipeline
is depicted in Figure 1. We first design prompts and
employ New Bing to automatically mine literature on
SL mechanisms and summarize answers into com-

3https://github.com/JieZheng-
ShanghaiTech/NexLeth
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Algorithm 1: Text mining by using New Bing
1 Input: gene pairs QSL, template QueryPrompt
2 GenepairsCollection Qnb ← {}
3 AnswerCollection Mnb ← {}
4 CitationCollection Rnb ← {}
5 Qquery ← QSL
6 Qfail ← {}
7 for i← 1 to 5 do
8 for j ← 1 to len(Qquery) do
9 gene pair (u, v) = QSL[j]

10 (answer,citation)←New
Bing(QueryPrompt(u, v))

11 if FailureAnswersCheck(answer) then
12 if KeyWordsCheck(answer) then
13 Qnb ← (u,v)
14 Mnb ← answer
15 Rnb ← citation
16 else
17 Qfail ← (u,v)
18 end
19 else
20 Qfail ← (u,v)
21 end
22 end
23 Qquery ← Qfail
24 end

prehensible explanations. The curated dataset con-
tains 707 explanations, corresponding key features
and literature. NexLeth aids biologists in delving
deeper into synthetic lethality and offers a standard
for evaluating the explainability of existing expla-
nation methods. Leveraging this dataset, we then
fine tune PLMs to generate natural language for
SL mechanisms. To facilitate a better understand-
ing of domain context and task, we transform KG
subgraphs into natural language prompts in a rule-
based manner and combine them with instruction
prompts to construct novel personalized prompts.
Experiments show that the fine-tuned model em-
ploying our designed prompts outperforms existing
baseline models in terms of both text quality and
answer explainability.

2. Dataset

The first goal of our task is to construct a natural
language dataset for SL explanations. Therefore,
in this section, we first introduce the procedure
of mining the natural language explanations for
SL mechanisms, and then we present statistical
analyses of the built dataset.

2.1. Data collection
Text mining using New Bing Using New Bing
as a text mining tool based on GPT-4, our objective
is to explore literature and condense SL mecha-
nisms into comprehensible explanations for spe-

cific gene pairs. SynLethDB (Wang et al., 2022a)
is a database containing numerous SL gene pairs
with their associated literature. We selected 1,556
SL gene pairs from this database as the subjects
for our explanations. Chosen based on either bio-
logical experiments or text mining, these gene pairs
are supported by studies offering comprehensive
insight into their genetic interactions, making them
ideal candidates for clear SL mechanism summa-
rization. For New Bing, we crafted a distinct prompt
template to guide its queries. In a single-turn dia-
logue, New Bing was tasked with locating and con-
densing the SL mechanism of a gene pair based
on available literature. This text mining approach
is detailed in Algorithm 1.

We then designed two post-processing steps to
automatically filter the results. The first step ex-
cludes gene pairs failing to return query results,
and the second step removes answers with insuffi-
cient explainability, since some sentences mention
gene functions but do not describe their role in cell
death. To do this, we set an SL keyword collec-
tion (e.g. “cell growth", “essential for", etc.). For
answers that do not contain any keywords from
this collection, we remove the answers and corre-
sponding gene pairs. To ensure the completeness
of our dataset, we re-attempted queries and post-
processing for the gene pairs associated with failed
responses. This is because network conditions
and chat sessions can occasionally result in un-
successful responses. By repeating this step, we
aimed to obtain the most comprehensive set of an-
swers possible. After five iterations, we obtained
the final data collection denoted as Mnb, comprising
683 qualified explanatory answers. Each answer in
Mnb has several corresponding citation literatures,
denoted as Rnb.

Human annotations Using dataset collected via
New Bing, we further annotated the extracted infor-
mation in terms of explainability. Our objective was
to validate the accuracy of generated sentences
and the consistency of the SL mechanisms with
their source literature. Drawing inspiration from
evaluation methods for explainable recommenda-
tion (Li et al., 2023), we marked key phrases re-
lated to SL mechanisms within the answers. These
annotations help assess a language model’s ex-
planatory capability. We recruited five experts with
specialization in cancer and SL to annotate the 683
answers in the dataset. The annotation procedures
are shown in the Appendix A.1. Further, these ex-
perts summarized explanatory sentences for newly
identified SL pairs from the literature. The resulting
dataset, NexLeth, comprises 707 gene pairs and
their explanations. These explanations are divided
into two categories: Mfact and Mhypo. Mfact are de-
rived from existing studies, detailing validated SL
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Table 1: Statistics of our dataset

Statistics Mfact Mhypo

# answers (gene pairs) 145 562
maximum length of answers 110 94
minimum length of answers 24 18
average length of answers 47 53
sources of
gene pairs
in SynLethDB

individual
reports 131 137

large-scale
screening 14 425

mechanisms and annotated with key features and
citations. In contrast, Mhypo serves as hypothetical
explanations and provides possible evidence for
further wet-lab validation.

2.2. Dataset statistics
Table 1 shows an overview of our dataset’s statis-
tics. Specifically, according to the gene pair
sources in SynLethDB, we categorize the sen-
tences within Mfact and Mhypo into two types, i.e.,
large-scale screening and individual reports. It can
be seen that most gene pairs correspond to Mfact
are reported individually, making their SL mech-
anisms easier to summarize. Some gene pairs
are discovered through large-scale screening, and
further literature mining uncovers in-depth studies
about their mechanisms. In contrast, most gene
pairs in Mhypo are identified from large-scale screen-
ings, indicating limited further research discussing
their SL mechanisms. For the remaining gene pairs
in Mhypo, we attempted to use ChatGPT or New
Bing to summarize their mechanisms again accord-
ing to the source reports, but the Chatbots failed to
give satisfactory answers. We noted that most indi-
vidual reports did not explicitly describe SL mech-
anisms in the abstracts or offered a few assump-
tions, and some did not mention the names of gene
pairs in abstracts. Therefore, it is challenging to
extract clear and comprehensive SL mechanisms
from these reports.

Next, we visualized the distribution of the num-
ber of distinct key features within Mfact, as shown
in Fig. 2. We can see that most explanatory an-
swers include phrases such as “cell death" and
“apoptosis", which are closely related to synthetic
lethality. In addition, DNA-related features are also
frequently mentioned such as “DNA repair" and
“DNA Damage", reflecting that DNA instability may
be a common factor leading to cell death.

3. Methods

The second goal of our task is to generate a nat-
ural language explanation Pu,v for SL gene pairs

Figure 2: Distribution of the number of distinct key
features in Mfact, ranked by the frequency of occur-
rence in all explanations.

(u, v), so as to explain the biological mechanisms
behind the SL interaction. The SL gene pair can be
provided by an SL prediction model. During both
training and testing stages, given only the names of
two genes that are predicted to have the SL relation-
ship, our trained model will generate explanations
for them. Therefore, our method is compatible with
any SL predictive model. In this section, we first
introduce an approach to extending the training
dataset, then we present a novel prompt template
and the prompt-based fine-tuning and inference for
explanation generation.

There are many new fine-tuning paradigms
equipped with prompt learning, including fixed-
prompt fine-tuning models, learning prompt-fixed
models, and learning both prompts and fine-tuning
models (Liu et al., 2023a). Here, we choose the
first paradigm, i.e. fixing prompts and fine-tuning
pre-trained biomedical language models.

3.1. Data augmentation via ChatGPT

In our dataset, the explanations in Mfact have been
validated by existing literature, thus they can be
used for both training and inference. However, the
sentences in Mfact may be insufficient to effectively
fine-tune a generative language model, therefore
we augment Mfact by rephrasing the sentences with
ChatGPT (Dai et al., 2023).

We first design a prompt template and ask Chat-
GPT to rephrase the explanations in Mfact for sev-
eral times. The template is shown in Appendix
A.2. Suppose s ∈ Mfact is an original explanation,
and Rs = {r0, ..., rN} represents a collection of all
distinct rephrased sentences for s. To ensure the
consistency between the original and rephrased
sentences, we apply the cosine similarity scores
as a measurement of similarity, which is commonly
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used in NLP tasks:

cos(s, ri) =
fs · fri

∥fs∥2∥fri∥2
, (1)

where fs and fri are embedding vectors for s and ri
respectively. Sentences are deemed to be qualified
if the similarity score is greater than 0.5.

The qualified sentences after rephrasing are
taken as new instances and added into Mfact. More-
over, although Mhypo explanations lack empirical
validation, they have been deemed reasonable
through rigorous annotation, hence they can also
be utilized as part of the training instances.

3.2. Discrete prompt
PLMs such as BERT-liked models (Devlin et al.,
2019) and GPT-liked models (Radford et al., 2018)
are typically trained on large-scale general-purpose
corpora, which may lack biomedical domain knowl-
edge. Although pre-trained biomedical language
models (e.g., BioBERT (Lee et al., 2020) and
BioGPT (Luo et al., 2022)) contain more compre-
hensive domain knowledge, their ability to transfer
to specific tasks may be inadequate. To better
adapt the pre-trained models to our task, we first
design an instruction prompt shown in Table 2. The
prompt template explicitly tells the model our task,
i.e., generating explanatory text for synthetic lethal
mechanisms. Given an SL gene pair (u, v), the
template is filled with the names of the two genes,
thereby forming a personalized prompt for (u, v).
We denote the word sequence of this personalized
instruction prompt as Su,v and the token represen-
tation of the sequence as Su,v = [s1

u,v, ...,sn
u,v],

where n is the number of tokens in Su,v. The token
representation si

u,v is calculated as

si
u,v = WtTi

u,v, (2)

where Wt ∈ Rd×|V| is the token embedding matrix,
d is the dimension of latent space and |V| is the vo-
cabulary size. Ti

u,v represents the i-th token index
vector.

Table 2: Two types of prompt templates

instruction
prompt

explain the synthetic lethality
mechanism between
u and v:

KG prompt
u and v may share common
functions, including function 1,
function 2.

Different from plain texts, KGs contain rich struc-
tured semantic information. Therefore, fusing
domain-specific KGs and language models can
assist in learning graph tasks or text tasks (Ju et al.,
2022; Pan et al., 2023). To enrich the knowledge

contained in the prompt and further characterize
different gene pairs’ prompts, we introduce a KG-
based prompt template. The prompt template is
designed based on an SL predictive model named
KR4SL (Zhang et al., 2023), which constructs an
SL KG and conducts knowledge reasoning on the
KG for predicting SL gene pairs. Meanwhile, the
model provides a subgraph structure on the KG for
each predicted gene pair and takes the subgraph
as an explanation for the prediction. A subgraph
consists of several paths, with all paths starting
from one gene in a pair and ending at the other.
For explanatory subgraphs of most gene pairs, the
paths within subgraphs follow the same schema,
i.e.,

gene u−→K−→gene function 1−→gene v, (3)

where K is a set of SL partner genes of gene u and
v /∈ K. This schema can be cast as a rule among
most subgraphs.

Based on the rule, we assume that both gene
u and gene v might be involved in gene function
1. As such, among the nodes representing gene
functions in an explanation subgraph, we randomly
sample k nodes and convert our assumption into
a prompt template shown in Table 2. An example
can be found in Appendix A.2.

For gene pair (u, v), the KG prompt template
is filled with gene names and the sampled nodes
and becomes a personalized KG prompt for this
gene pair. We thus denote the word sequence of
the personalized KG prompt as Gu,v and the token
representation as Gu,v = [g1

u,v, ...,gm
u,v], wherem is

the number of tokens of Gu,v. Then we concatenate
the KG prompt and the instruction prompt as a new
prompt Du,v = [g1

u,v, ...,gm
u,v,s1

u,v, ...,sn
u,v].

3.3. Prompt-based fine-tuning of a PLM
We take a pre-trained GPT model as our back-
bone. Suppose Eu,v is the explanation word se-
quence for gene (u, v), and Eu,v = e1

u,v, ...,eL
u,v is

the token representation of Eu,v. During the train-
ing stage, we concatenate the representations of
prompt tokens and explanation tokens as the in-
put, i.e. H0

u,v = [d1
u,v, ...,d

n+m
u,v ,e1

u,v, ...,eL
u,v]. After

passing through all the hidden layers of the pre-
trained model, the hidden representation is finally
mapped into a vocabulary space by an output pro-
jection layer. For instance, in the predicted token
sequence, the probabilities of all possible tokens
at the j-th position are calculated as

pju,v = σ(Wohj
u,v + bo), (4)

where Wo ∈ R|V|×d and bo are weights. σ(·) is
softmax function. hj

u,v is the hidden representation
at the j-th position.



13136

We fine-tune the token representation layer and
the output projection layer, i.e. Wt, Wo and bo are
learnable parameters during training. We adopt
negative log-likelihood (NLL) as the loss function.

L =
1

|C|
∑

(u,v)∈C

1

Lu,v

Lu,v∑
j=1

− log p|Du,v|+j
u,v . (5)

Here C is the set of gene pairs for training, Lu,v is
the number of explanation tokens for (u, v), and
p
|Du,v|+j
u,v is the probability of ground truth token at

position |Du,v|+ j. Note that we take an offset with
the length of prompt tokens |Du,v|, since we only
calculate the loss on the explanation tokens at the
end of sequence.

3.4. Text generation
During the inference stage, given a test gene pair,
the prompt is denoted as D of length |D|, and the
model generates a word sequence P ∗ with the max-
imum log-likelihood:

P ∗ = argmax
P∈ε̂

L∑
j

log p|D|+j , (6)

where ε̂ is the set of all possible generated se-
quences, and L is the length of the output se-
quence. We adopt the nucleus (top-p) sampling
strategy to decide each predicted token (Holtzman
et al., 2020). Specifically, at each generation step,
we choose the smallest possible set of words as the
set of prediction words, whose cumulative proba-
bility exceeds a specified probability, then the prob-
abilities are redistributed among the set of words.
For each predicted word, we append it to the input
sequence to form a new sequence, and the new
input is fed into the model for the next generation.
Such process is repeated until the model generates
end-of-sequence token < eos >.

4. Experiments

4.1. Evaluation settings
Benchmark models We assess the performance
of the following four biomedical pre-trained models
on our dataset, all of which are pre-trained using
auto-regressive approach:

• BioGPT is initialized using GPT-2Medium with 347
million parameters (Luo et al., 2022), pre-trained on
a large collection of PubMed abstracts.

• BioGPT-Large is an upscale model of BioGPT, it
leverages GPT-2XL as the backbone and has 1.5
billion parameters (Radford et al., 2019).

• BioMedLM is pre-trained on the PubMed abstract
dataset using GPT-Neo, it contains 2.7 billion pa-
rameters (Venigalla et al., 2022).

• PMC-LLaMA, taking LLaMA as the original pre-
trained model, is fine-tuned on the PubMedQA and
MedMCQA datasets and tested on the USMLE
dataset, the model has 7 billion parameters (Wu
et al., 2023a).

Evaluation scenarios We test and fine-tune the
above models under two scenarios:

• Zero-shot inference: Models are only used for infer-
ence without training. We test all the models in this
scenario.

• Parameter-efficient fine-tuning: LoRA (Low-Rank
Adaptation) (Hu et al., 2022) enables efficient fine-
tuning of large pre-trained models without learning
all parameters, which greatly saves the computa-
tional cost. We utilize PEFT LoRA (Mangrulkar
et al., 2022) to fine-tune token embedding and out-
put projection layer of a model.

Metrics For text generation tasks, the evaluation
metrics usually measure the text quality, i.e., the rel-
evance between generated texts and ground truth
texts based on n-gram. Here we choose two typ-
ical metrics, i.e., BLEU (n=1,4) (Papineni et al.,
2002) and ROUGE (n=1,2) (Sennrich et al., 2016).
Higher text quality scores mean that the generated
explanations are more similar to the ground truth
explanations. However, the two metrics may not
reflect real explainability. For instance, the mod-
els may generate many repeated sentences for
different gene pairs, resulting in high text similar-
ity scores. However, if the key phrases associated
with SL mechanisms specific to gene pairs are omit-
ted, it can lead to low explainability. Therefore, to
evaluate such explainability of generated texts, we
adopt three metrics following Li et al. (2023):

• USR (Unique sentence ratio) calculates the ratio of
unique sentences among all generated sentences.

• FCR (Feature coverage ratio) calculates the ratio of
distinct features among all generated sentences:

FCR =
Nf

|F| (7)

whereNf is the number of unique features of all gen-
erated sentences and |F| is the number of unique
features of all ground truth explanations.

• FMR (Feature matching ratio) in Li et al. (2023) is
denoted as whether the generated explanations in-
clude the ground truth features. Since each ground
truth explanation in our dataset may be annotated
with more than one feature, we modify the metric
as:

FMR =
1

|Ctest|
∑

(u,v)∈Ctest

∑
fu,v∈Fu,v

I(fu,v ∈ Pu,v)

|Fu,v|
(8)

where Ctest contains all test gene pairs, Fu,v is a
set of features for test gene pair (u, v) and Pu,v is
the predicted explanation. I(x) = 1 when x is true,
otherwise I(x) = 0.
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Table 3: Performance comparison of zero-shot inference and fine-tuning. B-n, R-nF, R-nR, R-nP are short
for BLEU-n, ROUGE-nF1, ROUGE-nRecall, ROUGE-nPresision respectively, where n is used for n-grams.
The best performance in each column is bolded, and the second-best performance is underlined.

Method
Explainability Text quality

FCR FMR USR B-1 B-4 R-1F R-1R R-1P R-2F R-2R R-2P
zero-shot inference

BioGPT-D1 0.11 0.01 1.0 3.58 0.08 14.21 10.68 26.16 1.39 1 2.82
BioGPT-D2 0.16 0.02 1.0 6.94 0.45 16.98 13.05 28.76 2.83 2.12 5.36
BioGPT-Large-D1 0.23 0.05 1.0 15.55 0.92 20.45 26.83 17.25 2.97 4.33 2.3
BioGPT-Large-D2 0.21 0.05 1.0 16.21 1.27 20.75 26.99 17.55 3.6 5.23 2.88
BioMedLM-D1 0.19 0.04 1.0 17.71 1.2 21.23 23.57 20.91 3.67 4.44 3.43
BioMedLM-D2 0.18 0.07 1.0 18.99 2.02 20.79 22.03 21.79 4.6 5.33 4.52
PMC-LLaMA-D1 0.20 0.06 1.0 19.37 1.49 22.63 23.51 22.82 3.91 4.41 3.67
PMC-LLaMA-D2 0.18 0.05 1.0 19.69 1.72 22.51 23.89 22.21 4.47 5.1 4.17

fine-tuning
BioGPT-D1 0.18 0.06 0.53 11.48 2.08 11.95 12.53 12.84 3.04 3.52 2.97
BioGPT-D2 0.27 0.11 0.94 19.79 3.42 23.33 24.63 24.27 5.84 6.97 5.45
BioMedLM-D1 0.29 0.13 1.0 27.69 9.14 33.03 34.13 33.55 12.43 13.89 11.82
BioMedLM-D2 0.29 0.14 1.0 27.14 9.22 31.95 32.06 34.11 12.79 13.81 12.82

Table 4: Effects of data augmentation and our de-
signed prompts. B-n, R-nF are short for BLEU-n,
ROUGE-nF1 respectively, n is used for n-grams.

Method Explainability Text quality

FCR FMR B-1 B-4 R-1F R-2F
BioMedLM-D2 0.29 0.14 27.14 9.22 31.95 12.79
BioMedLM-D2
(woaug) 0.19 0.08 15.0 3.04 17.95 4.76

BioMedLM
(woprompt) 0.24 0.06 19.62 4.15 22.95 5.26

4.2. Implementation details

Explanations in original Mfact are first split by
25/20/100 for training/validation/test. Then we aug-
ment the training set and select 7 qualified rephrase
sentences for each training sample. We also in-
clude Mhypo into the training set. In this way, 762 ex-
planations were used for training. Adam algorithm
(Kingma and Ba, 2015) is used as the optimizer.
We tune the learning rate in [10−5, 10−3] with the
maximum epoch 50. The batch size is tuned in
[10, 100], the dropout rate of LoRA is 0.1, and the
attention dimension of LoRA is tuned in [32, 128].
For KG prompt template, we sample 3 functional
nodes from a KG subgraph to fill the template. Dur-
ing the inference stage, the probability of sampling
a set of predicted tokens is tuned in [0.6, 0.92]. We
run each experiment five times on an NVIDIA A40
GPU and compute the average results.

4.3. Prompt-based results
Zero-shot inference We first investigated the per-
formance of the four pre-trained generative models
in the zero-shot inference scenario. Each model
adopts two types of prompts respectively. The re-
sults are shown in Table 3. Models named “*-D1"
means only the instruction prompts are used for
input gene pairs, while “*-D2" means that the in-
struction prompts and KG prompts are combined.
We can see that the performance of most models
is improved with increased model parameters. For
each model, combining instruction with KG prompts
yields better results than using only the instruc-
tion prompts. Such comparison is more obvious in
BioGPT, the model with the least parameters. As
the model parameters increased, the combination
of instruction and the KG prompts mainly improved
the text quality of the generated explanations, es-
pecially ROUGE-2-based scores.

LoRA fine-tuning Next, we evaluated pre-trained
models in a parameter-efficient fine-tuning sce-
nario. Considering the size of our dataset, we
fine-tuned BioGPT and BioMedLM. (PMC-LLaMA
cannot be fine-tuned due to the computational re-
sources) The experimental results are displayed
in Table 3. Compared to zero-shot inference re-
sults, the performance of fine-tuned BioGPT and
BioMedLM is noticeably improved, demonstrating
that the fine-tuning strategy is beneficial for gener-
ating explanations. Furthermore, BioGPT-D2 out-
performs BioGPT-D1 across all metrics, consistent
with the observation of zero-shot inference, mean-
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ing that KG prompts can boost the quality of ex-
planations generated by BioGPT. For BioMedLM-
based models, BioMedLM-D2 performs better than
BioMedLM-D1 on FMR score, meaning that KG
prompts can enhance the SL-related features for
specific explanations. Interestingly, BioMedLM-
D2 also surpasses BioMedLM-D1 on BLEU-4 and
ROUGE2-based scores, indicating that combining
instruction with KG prompts can aid the model in
capturing more semantic information.

Ablation study To validate the efficacy of data
augmentation method, we removed the 175 aug-
mented training samples and then fine-tuned
BioMedLM again. Moreover, to further test whether
our designed prompts are beneficial for fine-tuning,
we removed prompts and took only the names of
target gene pairs as the input words for fine-tuning
BioMedLM.

Table 4 shows the results evaluated by seven
metrics. We can see that compared to BioMedLM
using all training samples (i.e., BioMedLM-D2), ex-
cluding augmented training samples decreases the
model performance. This means that the rephrased
explanations effectively assist in fine-tuning the
model. Additionally, compared to BioMedLM model
taking prompts, removing prompts decreases per-
formance across all metrics. When inspecting the
predictions of BioMedLM without prompt, we found
that many of these sentences explained the wrong
target gene pairs, although these sentences in-
clude the ground truth features. This gene-pair-
mismatch issue was substantially mitigated when
we integrated prompts into the input sequences
(see section 4.4 for specific cases). This is proba-
bly because the personalized prompts can provide
specific SL knowledge for gene pairs, thereby guid-
ing the model for more reasonable predictions.

4.4. Case study
We provide specific examples to demonstrate the
effectiveness of fine-tuning and our prompts for
generating SL explanations, as shown in Fig. 3.
In the first case, given the same gene pair and
prompts (both instruction and KG prompts), the
zero-shot inference from BioGPT-D2 is too short
and not reasonable, while the prediction of fine-
tuned BioGPT-D2 is more reasonable, although
gene functions are not included. For BioMedLM,
the zero-shot explanation mentions that ERH is im-
portant to KRAS-mutant cancer cells. However, the
response does not illustrate the specific functions
of ERH that make it so essential. After fine-tuning,
the generated sentence points out why ERH is im-
portant for KRAS mutation, i.e., ERH plays a vital
role in regulating RNA-related transcriptions. This
reason reveals a more profound SL mechanism
and is closer to the key features in the ground truth,

indicating that the model can better capture the
knowledge in the KG prompts after fine-tuning, thus
enhancing explainability.

In the second case, the fine-tuned model without
prompt conducts an explanation for a wrong gene
pair. However, when given a prompt encapsulating
specific knowledge for a gene pair, the fine-tuned
model does not lose the target gene pairs for the
explanation. Moreover, since the prompt highlights
DNA-related functions, the generated explanation
also emphasizes the key role of DNA repair in the
SL interaction between BRCA2 and RAD52.

5. Conclusion

In this study, we propose a prompt-based pipeline
for generating natural language explanations. We
first present NexLeth, a dataset for elucidating syn-
thetic lethality mechanisms for existing gene pairs
which is built using New Bing. NexLeth offers valu-
able insights for comprehensive research. Factual
explanations in NexLeth can support biologists in
analyzing the regularities of SL mechanisms, while
the hypothetical explanations provide direction for
wet-lab experiments and the identification of po-
tential drug targets. Additionally, NexLeth acts as
a benchmark for evaluating SL explanation mod-
els. We then designed personalized prompts by
merging KG subgraph structures with instructions.
Based on the prompts, we fine-tuned BioGPT and
BioMedLM, two pre-trained biomedical language
models, via an efficient tuning method. The exper-
imental results demonstrate the effectiveness of
our proposed prompt and the fine-tuning model in
generating reliable SL explanations, positioning the
fine-tuned model as a valuable tool for explaining
new SL gene pairs.

In the future, we plan to continue updating
NexLeth using our data collection pipeline and fine-
tuning the model iteratively. The fine-tuning pro-
cess can be refined by Reinforcement Learning
from Human Feedback, incorporating expert feed-
back and using their selected explanations as train-
ing samples. We will also adopt knowledge graphs
with more comprehensive SL knowledge and en-
hance the reasoning ability of language models,
so as to further improve the explainability of gen-
erated natural language explanations. Our current
model can only interpret potential SL gene pairs,
without predicting the relationships of gene pairs.
A more realistic scenario is to first predict the rela-
tionship between any gene pairs and then interpret
the predicted results. Therefore, we will consider
enhancing the model with predictive abilities before
interpretation.
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Figure 3: Two cases of explaining SL mechanisms. We compared the predictions under different settings,
i.e., zero-shot inference vs. fine-tuning and without prompt vs. with prompts. Key features are highlighted.

A. Appendix

A.1. Human annotation pipeline

Algorithm 2: Human annotation
1 Input: GenepairsCollection Qnb,

AnswerCollection Mnb, CitationCollection Rnb
2 FactGenePairsCollection Qfact ← {}
3 FactAnswerCollection Mfact ← {}
4 FactCitationCollection Rfact ← {}
5 FeatureCollection Ffact ← {}
6 HypotheticalAnswerCollection Mhypo ← {}
7 for i← 1 to len(Mnb) do
8 gene pair (u, v) = Qnb[j]
9 answer← Mnb[i]

10 citations← Rnb[i]
11 if AnnotatorReadandCheck(answer, citations)

then
12 features← FeatureAnnotation(answer)
13 Qfact ← (u, v)
14 Mfact ← answer
15 Rfact ← citations
16 Ffact ← features
17 else
18 add answers to Mhypo
19 end
20 pairsnew ←

AnnotatorMiningNewpairs(citations)
21 if pairsnew ̸= ∅ then
22 answersnew←

AnnotatorSummarization(citations)
23 features← FeatureAnnotation(answers)
24 Qfact ← pairsnew
25 Mfact answersnew
26 Rfact ← citations
27 Ffact ← features
28 end
29 end

A.2. A case of data augmentation prompt
You are a helpful assistant that rephrases text and makes
sentences smooth. I will give you a sample, please
rephrase the partial sentence after the word “because" of
the sample, then give me 10 rephrased answers. Each
answer should include the exact noun phrases which
I will give you, and each answer must start with “be-
cause". The complete sample is: TP53 and CDK2 have
a synthetic lethality relationship, because TP53 is a tu-
mor suppressor that regulates cell cycle arrest, apoptosis
and DNA repair, and CDK2 is a cyclin-dependent kinase
that controls cell cycle progression and DNA replication.
Therefore, inhibition of CDK2 in TP53-mutant cells results
in synergistic cell death due to impaired DNA repair and
increased DNA damage. The phrases are “DNA repair",
“DNA damage", “cell cycle progression", “cell death".

A.3. From a KG subgraph to a
personalized KG prompt

According to Fig. A.3, RAD52 shares two functions with
BRAC2’s SL partner genes, so we assume that RAD52
and BRAC2 also share the functions. The KG prompt for
BRAC2 and RAD52 is: BRAC2 and RAD52 may share
common functions, including DNA Damage Response,
DNA repair.

Figure 4: A KG subgraph for SL pair (BRCA2, RAD52).
Light blue nodes are target genes, grey nodes are other
genes having SL relationships with BRAC2, and dark
blue nodes are gene functions.
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