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Abstract

The development of large language models (LLMs) raises the importance of assessing the fairness and complete-
ness of various evaluation benchmarks. Regrettably, these benchmarks predominantly utilize uniform manual
prompts, which may not fully capture the expansive capabilities of LLMs—potentially leading to an underestimation
of their performance. To unlock the potential of LLMs, researchers pay attention to automated prompt search
methods, which employ LLMs as optimizers to discover optimal prompts. However, previous methods generate
the solutions implicitly, which overlook the underlying thought process and lack explicit feedback. In this paper,
we propose a novel prompt introspective search framework, namely PromiISe, to better release the capabilities
of LLMs. It converts the process of optimizing prompts into an explicit chain of thought, through a step-by-step
procedure that integrates self-introspect and self-refine. Extensive experiments, conducted over 73 tasks on two
major benchmarks, demonstrate that our proposed PromlISe significantly boosts the performance of 12 well-known
LLMs compared to the baseline approach. Moreover, our study offers enhanced insights into the interaction
between humans and LLMs, potentially serving as a foundation for future designs and implementations. Our code

is available at https://github.com/MozerWang/promI|Se.
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1. Introduction

The nearly human-level performance of large lan-
guage models (LLMs) is rapidly reshaping this
era and raising promise to AGI (Guo et al., 2023;
Qin et al., 2023; Bubeck et al., 2023). To bet-
ter understand the strengths and weaknesses of
LLMs, various evaluation benchmarks have been
proposed (Chang et al., 2024). As human evalua-
tions (Ziems et al., 2023; Bang et al., 2023) have
high variance and instability due to the individual
and socio-cultural differences, most benchmarks
are proposed focusing on automatic metrics, such
as ARC (Clark et al., 2018), HellaSwag (Zellers
etal., 2019), MMLU (Hendrycks et al., 2021), Truth-
fulQA (Lin et al., 2022), and AGlEval (Zhong et al.,
2023). On these benchmarks, there are constantly
new and stronger LLMs in open competition us-
ing the same prompts and test samples, in pur-
suit of better evaluation performance and explor-
ing the ceiling, such as LLaMA (Touvron et al.,
2023a), LLaMA2 (Touvron et al., 2023b), and Fal-
con (Penedo et al., 2023).

Recent work has shown that LLMs are sensi-
tive to the design of prompts in the same bench-
mark '. These benchmarks mainly employ uni-
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'The scores of LLaMA and Falcon obtained on
MMLU are significantly different than that in the pub-
lished paper.

form prompts for all LLMs to be evaluated, which
may not necessarily be the optimal way to reflect
the true capabilities and results in underestimat-
ing the evaluation performance of LLMs. This un-
derscores the importance of a more comprehen-
sive examination of how prompts and evaluation
criteria influence the capabilities and limitations of
LLMs in real-world applications (Zhou et al., 2022).

It is widely recognized that the choice of prompt
plays a crucial role in the performance of LLMs
(Wei et al., 2022, 2023; Zhu et al., 2023; Li et al.,
2023). With the advantage of mitigating the human
workload, researchers proposed numerous auto-
mated prompt search methods (Li and Liang, 2021;
Zhong et al., 2021; Zhou et al., 2022; Pryzant
et al., 2023; Yang et al., 2023). Previous meth-
ods mainly involve continuous soft prompts (Li
and Liang, 2021; Zhong et al., 2021), relying on
the token probabilities from the output layers of
LLMs, which tend to produce human-unreadable
prompts and are unavailable for APIl-access LLMs
(Liu et al., 2023). Recent automatic approaches
improve discrete prompt optimization, either enu-
merating diverse prompts (Zhou et al., 2022) or fur-
ther editing current prompts (Pryzant et al., 2023),
which may lead to the local optima. Alternatively,
researchers (Yang et al., 2023) iteratively gener-
ate new prompts by utilizing LLM as an optimizer.
However, the generation of the solutions at each
round in their method is implicit and lacks explicit
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Figure 1:

The overall of our proposed prompt introspective search framework. PromlSe starts from

discovering diverse prompts through extensive search, and iteratively finds optimizing prompts by LLM-

oriented selection and introspective refinement.

feedback, which may not provide effective opti-
mization.

In order to better release the potential of LLMs,
in this paper, we propose an innovative Prompt
Introspective Search framework (PromlSe). It
starts from discovering diverse prompts through
extensive search and iteratively finds optimizing
prompts by LLM-oriented selection and introspec-
tive refinement. PromISe converts the process
of finding optimal prompts into an explicit chain
of thought, through a step-by-step procedure that
involves self-introspect and self-refine, facilitating
more nuanced and precise exploitation of prompt
search.

The main contributions are as follows:

» We identify that LLMs are sensitive to the de-
sign of prompts in the same benchmark. To
better unlock the potential of LLMs, we are the
first to find optimizing prompts tailored to each
LLM.

* We propose a novel prompt introspective
search framework namely PromlSe. It con-
verts the process of finding optimal prompts
into an explicit chain of thought, through a
step-by-step procedure, encompassing self-
introspect and self-refine.

» Experiments conducted across 73 tasks
within two large-scale benchmarks demon-
strate the effectiveness of PromlSe in re-
leasing the capabilities of 12 state-of-the-art
LLMs.

2. Related Work

LLM Evaluation Over the past year, LLMs have
garnered substantial attention in the field of arti-
ficial intelligence due to their remarkable ability.
LLMs trained on extensive datasets represent a
revolutionary paradigm in Al development, leading
to the emergence of numerous exceptional mod-
els including ChatGPT (Ouyang et al., 2022), GPT-
4 (OpenAl, 2023), LLaMA series (Touvron et al.,
2023a), LLaMA2 series (Touvron et al., 2023b),
Falcon series (Penedo et al., 2023), and Baichuan
series (Zhong et al., 2023). These LLMs have
demonstrated impressive capabilities across vari-
ous scenarios, including tasks such as instruction
following, few-shot in-context learning, and zero-
shot inference.

Meanwhile, various evaluation approaches are
introduced to comprehensively assess LLMs.
While manual methods (Ziems et al., 2023;
Bang et al., 2023) provide more subjective feed-
back, they come with substantial labor and time
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/ Search Instruction

You are a professional Instruction Editor. \n Your objective is to rewrite the
given instruction into a more appropriate version to make those famous
large language models have better performance at few-shot inference.\n You
SHOULD supply more background information about the given subject.
You SHOULD try your best to optimize the formation of given instruction.
You SHOULD NOT change <question> <options> and <answer>. You
SHOULD NOT extend <question> <options> and <answer>.

(a) search instruction

/ Introspect Instruction

You are a professional Instruction Editor. \nBelow are the results of the
different instructions for completing multiple-choice questions in <task>.
The results are in JSON format, where the key is the instruction and the
value is its corresponding score. The better the instruction, the higher the
score.\nYou SHOULD analyze the results (i.e. what is good and what is bad)
in order to guide further refine of instruction. Your analysis SHOULD focus
on grouped characteristics and avoid repeating the results. Your analysis
SHOULD be brief and precise. You SHOULD NOT write a refined or
reversed instruction.

(b) introspect instruction

/ Refine Instruction

You are a professional Instruction Editor. \nBased on analysis and three
initial instructions, write one instruction for completing multiple-choice
questions in <task>. \nYou MUST keep <question> <options> and
<answer> in the refined instruction.

(c) refine instruction

Figure 2: The details of instructions. The pink
text expresses the role played; the blue text de-
scribes the optimization task; the yellow text is pre-
cautions.

costs. Automatic evaluation, which utilizes diverse
benchmarks to automatically gauge the model’'s
performance, attracts more attention. MMLU
(Hendrycks et al., 2021) presents a comprehen-
sive evaluation of LLMs in multifaceted contexts.
AGIEval (Zhong et al., 2023) is proposed to evalu-
ate the proficiency of foundation models in the con-
text of human-centric standardized exams. The
Huggingface Open LLM Leaderboard employs a
range of benchmarks such as ARC (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), MMLU
(Hendrycks et al., 2021), and TruthfulQA (Lin et al.,
2022), which delves into reasoning an general
knowledge across a wide spectrum of domains.
It is essential to note that the prompts signifi-
cantly affect LLMs’ performance. (Wei et al., 2022,
2023; Zhu et al., 2023; Li et al., 2023). How-
ever, these benchmarks mainly employ uniformed
human-crafted prompts, which may not necessar-
ily be the optimal prompt to assess LLMs. As a
result, there exists a risk of underestimating the ca-
pabilities of LLMs. To the best of our knowledge,
there has been an absence of systematic work fo-
cused on this issue. In this paper, through the uti-
lization of prompt search, we aim to improve the
evaluation performance of LLMs without training
and changing parameters.

Prompt Search Prompt search aims to iden-
tify the appropriate prompt for improving the LLMs’
performance. To reduce the human workload re-
lated to prompt design, several automated meth-
ods have been introduced. Some automatic meth-
ods employ continuous soft prompts (Li and Liang,
2021; Zhong et al., 2021), focusing on fine-tuning
the parameters of specific input tokens. However,
this approach tends to produce human-unreadable
prompts and becomes impractical for APl-access
LLM. Other automatic approaches enhance dis-
crete prompt optimization, generating or editing
natural language prompts. APE (Zhou et al.,
2022) first employs the LLM to enumerate and
select the positive prompts from the candidates,
then rephrase these samples synonymously. APO
(Pryzant et al., 2023) uses the negative samples
as pseudo-gradient to iteratively edit the previous
prompts. OPRO (Yang et al., 2023) utilizes LLM as
an optimizer to iteratively generate new prompts
guided by meta-prompt. Compared to these prior
works, our method utilizes both positive and nega-
tive prompts and iteratively discovers new prompts,
rather than merely editing or resampling. Our
framework PromlSe converts the process of dis-
covering optimal prompts into an explicit chain of
thought, which involves a step-by-step procedure
to perform introspective refinement. To further
demonstrate the effectiveness of Prom|Se, we ver-
ify our proposed method based on multiple open-
sourced LLMs, which have not been validated by
previous prompt search and optimization methods.

3. Proposed Method

In this paper, we tackle a particular challenge out-
lined by an evaluation benchmark denoted as D,
comprising prompt, question, and answer, which
are denoted as a triplet { P, Q, A}. This benchmark
has n tasks, each represented as D,.,,. We have
a proficient search LLM referred to as fq(-), and
the prompted LLM named f,, (-). Our problem is
an optimization challenge guided by search LLM
fs(+). The core objective is to ascertain the optimal
prompt p;; in the discrete space 7. This optimal
prompt p;;, when concatenated with the question
Q;, aims to enable prompted model M, to gener-
ate the desired output f,, (p;;, @;) and maximize
the evaluation performance e(f,; (p;;, Q;), 4;).
It's important to emphasize that our objective
is to identify the optimal prompt p;; for each task
within the evaluation benchmark, tailored to each
specific prompted LLM, where the i represents the
i-th prompted LLM and j means the j-th task in
benchmark D. Hence, the search for the optimal
prompt can be formulated as maximizing the ex-
pected score across all data (Q;, A;) drawn from
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task D, (j € n) of the benchmark D:

p;; = arg ;n%é[E(Qj,Aj)NDje(fzvg (Pi;» @), 4;) (1)

More specifically, accuracy serves as the pri-
mary performance metric for our evaluation, which
is precisely defined as a binary loss function, com-
monly referred to as the 0-1 loss:

€<fM,i (pfj»Qj)vAj) = ﬂ[fMi (pfjan) = Aj] (2)

Our method, PromlISe, consists of three main
parts: extensive search, LLM-oriented selection,
and introspective refinement. The overall frame-
work is shown in figure 1. Leveraging the capabili-
ties of the search LLM, PromISe initially finds a set
of initial prompts for each task in the benchmark.
Then according to the evaluation performance,
PromISe will select prompts with their correspond-
ing evaluation values for each specific prompted
LLM. Next, the search LLM iteratively finds new
prompts by self-introspect and self-refine. In the
subsequent sections, we provide a detailed de-
scription of each of these components.

3.1. Extensive Search

In the extensive search step, we harness the
search LLM to generate an initial set of prompts
for each task within the benchmark. However,
the search for the optimal prompt is hindered by
the discretely structured search space. This work
(Shin et al., 2020) found that initializing with man-
ual templates can provide a better starting point
for the search process. Following this idea, we in-
troduce a seed prompt pj-e‘fd which is the manual
prompt utilized in the benchmark.

During the prompt search process, we engage
the search LLM to execute targeted instruction
I%¢evch adhering closely to our predefined crite-
ria and guided by the seed prompt pi°’. The
details of search instruction can be seen in fig-
ure 2a. Specifically, we instruct the search
LLM to follow explicit guidelines, including opti-
mizing the formation of the given prompt, the
preservation of placeholders, and the avoidance
of overly verbose prompts. Through extensive
search, the LLM will generate k, prompts Pjsearch =
{Po.j>P1 js - Py, j}fOr €ach task of the benchmark:

Pisearch — fS(Isearch’p;eed)’j cn (3)

3.2. LLM-Oriented Selection

It is worth noting that during the extensive search
step, our search process is conducted in a global
space, without accounting for the sensitivity of

Algorithm 1 PromISe

Input: search LLM f(-), prompted LLM f,, (-), taskin
benchmark D;, seed prompt p;*“?, search instruc-
tion 7°¢@mM introspect instruction I"trospect | refine
instruction I7efine

Output: optimal prompt p;;

1. Extensive search
Pisearch — fS(Isea7'ch7p;_seed)

2: Evaluating for each prompted LLM:
Sy < e(fyr, (P30 Q). A))

3: Selecting the top and bottom prompts:

P < topN (Piseam“, Syj) + bottomN (Piseam“., Si)
: while not termination condition do
5:  Self-introspect:
L; < fg(Imtrospect Py Sy)
6. Self-refine:
Pirjeflne — ‘]L'S(I're:fme7 Iv',j7 Pii)

7:  Evaluating for each prompted LLM:

Sy < e(far, (PF™,Q,), 4))
8:  Selecting the top and bottom prompts:

P; < topN (P{je”“i Sj) + bottomN (Pi’ie““e, Si)
9: end while

10: pj; < arg max Sy
pij P

N

each distinct LLM. This may overlook a crucial fac-
tor: the optimal prompt is model-specific. To mit-
igate this shortage, we employ LLM-oriented se-
lection on these undifferentiated prompts, further
searching prompts for specific LLM. Following the
acquisition of the initial prompts Pjsea"’h, we employ
these prompts to make different prompted LLMs
evaluate their performance. Consequently, we ob-
tain evaluation scores:

Sj = e(fur, (P, Q). A)) (4)

For every specific prompted LLM f,, (-), we se-
lect the top k, prompts and the bottom &, prompts
of each task, determined based on evaluation
scores:

Pij = topN (Pjsearc", Sij) + bottomN (Pisearch, Sii)
(5)
Paired with evaluation scores S;;, these selected
prompts are crucial in our subsequent introspec-
tive search.

3.3.

Instead of sorely sampling from the initial prompts,
we consider employing the search LLM to intro-
spect the previous proposal and iteratively exploit-
ing the search space, which provides more tar-
geted prompt optimization for each specific LLM
and enhances the likelihood of success.

We fully leverage the introspection and sum-
marization capabilities of the search LLM fq().
Initially, for each prompted LLM f,, (-), we use
[introspect 1o instruct the search LLM to introspect

Introspective Refinement
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Table 1: Main results on MMLU benchmark

Model Humanities Social Sciences STEM Others Average
Manual APE  Ours | Manual APE  Ours | Manual APE Ours | Manual APE  Ours | Manual APE Ours
LLaMA(7B) 34.07 34.07 3522 | 38.32 3838 40.27 | 30.68 31.31 34.43 | 38.37 3890 41.61 | 3527 35.44(A0.17) 37.63(A2.36)
LLaMA(13B) 4414 45.61 4554 | 53.66 54.63 55.22 | 3592 38.37 40.72 | 52.71 53.36 54.53 | 46.44 47.82(A1.38) 48.69(A2.25)
LLaMA(33B) 56.26 56.96 58.04 | 67.27 67.73 68.57 | 46.82 48.28 48.71 64.56 64.71 65.67 | 58.56 59.24(A0.68) 60.11(A1.55)
LLaMA(65B) 6196 62.38 63.25 | 73.35 73.64 74.78 | 51.95 5345 54.21 67.55 68.82 69.59 | 63.59 64.41(A0.82) 65.30(A1.71)
LLaMA2(7B) 42,08 4291 46.18 | 52.06 5258 53.72 | 36.55 38.57 39.89 | 5290 53.64 55.12 | 45.58 46.57(A0.99) 48.55(A2.97)
LLaMA2(13B) 52.58 54.56 55.96 | 63.70 64.97 65.03 | 43.84 4536 47.38 | 61.60 6225 63.57 | 55.22 56.64(A1.42) 57.86(A2.64)
LLaMA2(70B) 64.97 66.63 67.31 80.31 81.11 81.74 | 5799 59.38 60.40 | 74.65 75.39 76.03 | 69.06 70.27(A1.05) 71.00(A1.94)
Falcon(7B) 26.46 27.27 28.69 | 25.06 26.55 27.75 | 26.47 2823 29.19 | 27.76 28.69 29.49 | 26.46 27.65(A1.19) 28.78(A2.32)
Falcon(40B) 46.35 47.27 48.14 | 57.13 57.82 59.51 | 39.76 41.39 43.07 | 57.77 5867 59.90 | 49.94 50.95(A1.01) 52.26(A2.32)
Baichuan(7B) | 39.34 40.00 41.32 | 49.20 49.98 50.60 | 35.09 37.44 39.17 | 48.33 50.28 50.62 | 42.66 44.01(A1.35) 45.04(A2.38)
Baichuan(13B) | 45.48 47.84 49.44 | 56.97 58.92 60.45 | 38.90 42.38 43.77 | 55.34 57.09 59.16 | 48.86 51.23(A2.37) 52.88(A4.02)
MOSS(7B) 37.64 38.36 39.77 | 4504 46.08 48.42 | 33.63 34.63 37.38 | 46.24 4719 49.35 | 40.39 41.29(A0.90) 43.36(A2.97)
Table 2: Main results on AGIEval benchmark
Model GAOKAO&SAT LSAT GRE&GMAT CSE Average
Manual APE  Ours | Manual APE  Ours | Manual APE Ours | Manual APE  Ours | Manual APE Ours
LLaMA(7B) 23.97 26.24 29.55 | 2240 23.29 25.67 | 24.02 24.02 25.98 | 26.80 28.42 30.18 | 24.40 26.10(A1.70) 28.74(A4.34)
LLaMA(13B) 29.55 30.89 36.04 | 29.14 29.44 34.49 | 19.69 19.69 23.62 | 29.42 30.18 33.18 | 28.92 29.83(A0.91) 34.34(A5.42)
LLaMA(33B) 35.83 37.80 44.84 | 40.83 43.51 46.88 | 22.05 2244 26.38 | 36.87 37.25 40.02 | 36.42 38.03(A1.61) 43.04(A6.62)
LLaMA(65B) 41.83 44.30 46.35 | 46.78 48.27 51.83 | 24.41 24.41 2559 | 38.25 38.79 40.71 41.00 42.64(A1.64) 44.92(A3.92)
LLaMA2(7B) 27.37 29.30 35.21 23.19 2567 30.62 | 21.26 27.95 27.17 | 30.34 30.72 31.87 | 26.98 28.86(A1.88) 32.98(A6.00)
LLaMA2(13B) 39.10 40.53 44.01 36.37 39.15 43.21 18.90 22.05 27.17 | 36.33 38.25 38.71 36.78 38.70(A1.92) 41.59(A4.81)
LLaMA2(70B) 5197 53.73 57.59 | 59.66 59.66 63.13 | 23.62 26.38 31.10 | 47.62 48.69 5246 | 50.94 52.21(A1.27) 56.01(A5.07)
Falcon(7B) 22.72 23.64 2795 | 19.62 2220 24.48 | 18.90 18.90 22.83 | 23.04 23.73 2596 | 21.98 23.13(Al.15) 26.46(A4.48)
Falcon(40B) 32.61 35.21 40.15 | 31.81 33.30 36.47 | 22.05 25.20 24.41 31.11 31.11 34.87 | 31.51 33.23(A1.72) 37.20(A5.69)
Baichuan(7B) | 32.73 37.01 4216 | 2240 25.67 29.44 | 2559 26.77 2874 | 31.11 33.03 36.10 | 29.83 33.12(A3.29) 37.29(A7.46)
Baichuan(13B) | 39.61 4484 47.78 | 28.74 30.03 35.78 | 19.69 23.62 27.17 | 36.56 37.10 39.09 | 35.57 38.70(A3.13) 41.99(A6.42)
MOSS(7B) 28.29 30.18 34.12 | 23.98 25.07 27.65 | 2362 2362 25.20 | 2750 2796 28.80 | 26.96 28.22(A1.26) 30.94(A3.98)
the selected prompts P;; along with their evaluation ~ 4.1. Benchmarks

scores S;;. The details of introspect instruction can
be seen in figure 2b. The inherent characteristics
of both high-quality and low-quality prompts are an-
alyzed explicitly during the self-introspect phase,
and refinement advice is given:

Iij — J(‘S(Iim‘,rospe(:if7 Pij7 S||)7] cn (6)

Then, guided by this introspective feedback,
the search LLM is tasked with instruction
Irefine refining the top prompts of Py, ac-
tively generating k&, improved alternatives
piriefine_

_'{pOJJap1JJ7-~7pk3¢J}:

Pirjefine _ Jt‘S(Irefine7 Iij’

(7)
Subsequently, we employ these new prompts to
perform LLM-oriented selection again where steps
two and three can be integrated into an iterative
process. Our methodology allows for the itera-
tive pursuit of the optimal prompt until the termina-
tion condition is satisfied. The complete procedure
is provided in Algorithm 1. The extensive experi-
ments have unequivocally validated the effective-
ness of our approach.

Pij).j€n

4. Experiments

In this section, we present the evaluation results
for prompt search. Our experiments unequivocally
showcase that PromlISe yields a substantial perfor-
mance boost across various LLMs.

We use well-established evaluation benchmarks,
MMLU (Hendrycks et al., 2021) and AGIEval
(Zhong et al., 2023), to validate our methods.
These two benchmarks examine the knowledge
level of the large model through multiple-choice
questions.

MMLU encompasses a total of 57 distinct tasks,
featuring a total of 14,079 test samples for evalua-
tion. Each subject within MMLU is represented by
a minimum of 100 test examples.

AGIEval incorporates bilingual tasks in both Chi-
nese and English, encompassing 20 tasks with a
human-centric focus and consisting of 8,062 ques-
tions for evaluation. In line with established re-
search practices (Zhong et al., 2023), our selection
has focused exclusively on multiple-choice ques-
tions in AGIEval, comprising 16 tasks and 4,951
questions.

In the absence of training datasets in both
benchmarks, we follow the treatment adopted in
the baseline method APE (Zhou et al., 2022) for
fair comparison, which employs a random sam-
pling approach to extract a small portion of training
samples from the test dataset for prompt search.
In our experiment, we randomly extract 15% of the
dataset for prompt introspective search and iden-
tify the best prompt p;; for each LLM. For testing
p;;» we also follow the mainstream evaluation con-
vention as in works (Zhou et al., 2022; Yang et al.,
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2023) and verify the best prompt p;; on the rest of
the dataset.

4.2. Experimental Setup

Models In our experiments, we employ GPT-3.5
(Ouyang et al., 2022) as our search LLM, which is
accessed through API. This choice is predicated
on its outstanding understanding and generation
capabilities, which are integral to the success of
our method. Additionally, our experiments are
verified on several state-of-the-art open-sourced
prompted LLMs, including Falcon (Penedo
et al.,, 2023), LLaMA (Touvron et al., 2023a),
LLaMA2 (Touvron et al.,, 2023b) , Baichuan
(Zhong et al., 2023), MOSS (Sun et al., 2023).
Specific versions of LLMs are: gpt-3.5-turbo,
LLaMA-7b,LLaMA-13b,LLaMA-33b,LLaMA-65b,

LLaMA2-7b,LLaMA2-13b,LLaMA2-70b,MOSS-7b,

Falcon-7b,Falcon-40b,Baichuan-"7b,
Baichuan-13b

Baselines We compare PromISe against two
prompt-based approaches: Manual Prompts
(Hendrycks et al., 2021; Zhong et al., 2023) and
APE (Zhou et al., 2022). Manual Prompts are
human-crated prompts used in evaluation bench-
marks MMLU and AGIEval. APE enumerates and
selects the positive prompts from the candidates.

Implementation Details To ensure the stabil-
ity of LLM generation, we use the greedy decod-
ing strategy and restrict the maximum number of
new tokens to 1. Considering the context window
length of different models, we consistently cap the
maximum input token limit at 2048 tokens. We ex-
ecute experiments to assess the performance of
LLMs in five-shot and answer-only settings, where
we instruct the prompted LLMs to generate an-
swers directly. Instead of comparing the probabili-
ties associated with specific token groups, our ap-
proach involves generating text directly from the
model. In PromlSe, we designate the number of
search rounds as the termination condition for it-
erative search. Specifically, the prompt search
round is set at two. In the step of extensive search,
we instruct the search LLM several times to gen-
erate 50 prompts for each task. As part of LLM-
oriented selection, we select the top 5 and the
last 5 prompts based on evaluation scores for
each prompted LLM. In the self-introspect and self-
refine part, we leverage the search LLM to refine
and generate new 15 prompts for each task. The
prompts we used to instruct the search LLM are
shown in figure 2.

4.3. Main Results

We calculate the average accuracy across all
the questions within benchmarks. Table 1 and
2 presents the detailed results obtained from all

Table 3: Ablation study of CoT component.

Model & #Param. | w/o ColT COT
LLaMA2(7B) 4.71 5.90
LLaMA2(13B) 4.02 4.61
LLaMA2(70B) 2.60 4.69
Baichuan(7B) 6.79 6.91
Baichuan(13B) 4.46 5.27

prompted LLMs. Each of these two benchmarks is
divided into four subjects, and the average repre-
sents the total evaluation score of each prompted
LLM. After conducting PromlSe, we observed
significant improvements in the performance of
prompted LLMs compared to the baseline values.
Specifically, compared to the manual prompt in the
MMLU, PromISe achieves enhancements ranging
from 1.5 to 4 points, while in the AGIEval, improve-
ments ranged from 4 to 7.5 points. Notably, the
Baichuan-13B model exhibits the most substan-
tial improvement of 4 points in the MMLU, while the
Baichuan-7B model shows the highest improve-
ment of 7.5 points in the AGIEval. Compared with
previous works APE, our method delivers signifi-
cantly better results. These results affirm the ef-
fectiveness of our proposed methodology.

It is worth mentioning that the observed perfor-
mance generally correlates with the model size, as
models with larger parameter sizes tend to yield
better results. Therefore, it is essential to note
that these improvements remain bound by the in-
herent limitations imposed by the model’s param-
eter magnitude. Remarkably, on the AGIEval, the
evaluation scores of certain prompted LLMs even
outperform models with larger parameter sizes.
For instance, the LLaMA-33B model achieves a
score of 42.78, surpassing the evaluation score
of the LLaMA-65B model using uniform man-
ual prompt, while the Baichuan-78 model at-
tains a remarkable score of 36.74, exceeding the
Baichuan-13B model. What we aim to under-
score is that our methodology optimizes model per-
formance to the fullest extent possible without al-
tering the model’s parameters. These outcomes
resoundingly underscore the efficacy of our ap-
proach.

4.4. Ablation Study

Impact of CoT component We conduct an ab-
lation study on the effectiveness of the integration
of introspect search to evaluate the performance
that converts the process of optimizing prompts
into an explicit chain of thought. The detailed
ablation results on the AGIEval benchmark and
five LLMs about CoT are shown in Table 3, which
presents the accuracy delta compared to the man-
ual prompt. The optimizing prompt was searched
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Figure 3: The results after four rounds of prompt
search with PromISe.

from Step 3 Introspective Search, and the results
show that LLMs with the integration of CoT reason-
ing achieve better performance gains than LLMs
with the absence of the CoT component. Specially,
the larger the model parameters, the greater the
performance benefit of CoT.

Impact of Search Round To ascertain the im-
pact of search rounds in PromlSe, we employ
Baichuan-7b, Baichuan-13b, LLaMA-7b, and
LLaMA-13b to undertake a more extensive series
of iterations. The results are shown in figure 3.
Remarkably, it is clear that the most significant
improvements are observed during the initial two
rounds. As we incrementally increase the number
of search rounds, the rate of improvement grad-
ually diminishes. The improvement brought by
prompt search will be less obvious. Consequently,
we opt to adhere to two search rounds in PromISe.

Impact of Model Output Way In order to ex-
plore the impact of different ways of the model
output, we also compare two main ways: getting
text generation directly and getting the probabili-
ties. The experiment is conducted on the MMLU
dataset and the result can be seen in table 4. The
‘Directly’ is the same as our main experimental set,
which uses the greedy decoding strategy and gets
the text generation directly. Another one, the 'Prob-
ability’ only compares the probabilities associated
with specific token groups—A, B, C, and D, choos-
ing the one with the highest probability. From the
table 4, we can see that the way of getting the
probabilities improves the results slightly because
the selection of tokens has been narrowed and
the token with the highest probability other than
ABCD will not be selected. However, from our
point of view, this approach could be tolerant and
cannot objectively reflect the performance of the
model, which also becomes unavailable when as-
sessing APl-access LLM. To ensure a more gen-
eralized approach, we opt for direct generation as

Table 4: Two different ways of model output.

Model & #Param. | Directly  Probability
LLaMA(7B) 35.27 35.29
LLaMA(13B) 46.44 47.08
LLaMA(33B) 58.56 58.50
LLaMA(65B) 63.59 63.62
LLaMA2(7B) 45.58 45.89
LLaMA2(13B) 55.22 55.73
LLaMA2(70B) 69.06 69.07
Falcon(7B) 26.46 26.45
Falcon(40B) 49.94 49.96
Baichuan(7B) 42.66 42.67
Baichuan(13B) 48.86 50.59
MOSS(7B) 40.39 40.40
our method.

4.5. Case Study

To provide valuable insights into optimizing prompt
design for evaluation, we extend our analysis to
task and prompt characteristics.

Task Characteristic The figure 4 and 5 illustrate
the differences in accuracy for the Baichuan-13b
among prompts searched by PromlSe compared
to manual prompts. In this analysis, we will be-
gin by examining various tasks and delving into
the reasons behind the impact of prompts. For
the AGIEval benchmarks, it becomes evident that
certain subjects experience the most substan-
tial improvements, such as gaokao-biology,
gaokao-english, lsat-rc,gaokao—-chinese,
and gaockao-chemistry, which place a strong
emphasis on conceptual understanding and read-
ing comprehension skills. In these cases, the
role of prompts is to assist the model in contex-
tualizing the given question and triggering the re-
trieval of relevant knowledge it has acquired. How-
ever, when dealing with subjects like logiga-en,
sat-math, logiga-zh, gackao-mathga, and
sat-en-without-passage, our approach does
not exhibit significant improvements due to these
subjects heavily rely on reasoning abilities. The
LLM tends to guess randomly, and achieving the
correct answer solely through prompt engineer-
ing becomes unrealistic. In the context of MMLU
benchmarks, our approach exhibits a consistent
pattern. It demonstrates greater effectiveness
in subjects that demand a comprehensive under-
standing of knowledge. Notably, this effective-
ness is particularly pronounced in conceptual sub-
jects, such as computer science, chemistry,
politics, history. However, for subjects that
require higher levels of logical reasoning ability,
such as philosophy, math, physics, the over-
all improvement is relatively less obvious.

Prompt Characteristic We proceeded to ana-
lyze the prompts that yielded significant improve-

13126



80 = Manual
60 Promise
o
< 40
20
0
Delta
10
s
a
o
o
g s
0
SO OSSO TS TIEFETESETEIESLESTSELSTLEELS
o S S5 P RSP P S .& O FEITIEILSELIS 8 NS S & 9 IS &9
S & L 9.5 S & S LT LT LS ISR FSos & S & B T I N DD CINST LT & o
F o3I O T oL L &P N RSP A A O T ST T F LR SLE L3I . < SIS
N & ROINORRIIvS > SIS I SN Folr N 5 o ¥ Iy FS IS A & § £ .5 & FSEPSEP NN S S &S
' & o/ o7 o7 B & g 990 L9 S ¢ £ ST T L ILE <. 2 SIS gs ¢ S L OV 85T F LSS S
S T F ST s &N ES S99 EIFTPEFTETIT G E S5 S EN5T78 CEEEILES 57 5.9 & IS I ASEY
IS SRS '’ TG o/ C I 5 §F & 7 ~7 >/ 9 S’ g 7 NS XS NTSE T Q5O O s &
2 g £ FIRESEPS < 7 o’ & ARSI ° S & > & S Y YIS\ E TS S S & S g 5935 &
I &g § ¥ S £ e/ £ 552 ¢ & o S g ¢ X 3 L OF o o'.&8 § RS ;g S
Ny 9 &S S S &9 L > & S .3 o o N P SN L o .¢ @ & & < g & N N N7
IS TELEES LTSS IS &35 & &8 LSS ETELESoesd £ & SR
ST PSS ELE ofs @8 & g9 FTELT TS ELTIH T &S LSS S
8 N &g S g &S 5 &L 8 S & B
o/ 57 8 S's §°8 s g S § 8 £& & © gs &
S S F & < P Q.9 & S o/ £ SF® ¢
SE&S & 53 < s g S ¥ § < Q
o< </ 57 o s S @
S $ $ S
< < N <
v
<
S
<

Figure 4: On 57 MMLU tasks, the accuracy differences among prompts found by PromISe.

e oo gy presented with
= v “Your. task related
60 Promise .
a i
only one lawr -
| Belon w3 3
40 believe :

2 v test your hest S sieio

most appropriate

Let get

have

Delta

ng

154 £ o ?
© £ o one COFFEC} . need >
* 3 10 understanding /i e
S s F S P e S E S
BRI A O S A A Y Figure 6: The word cloud of optimizing prompts
« Specific Guidance: Specific guidance on how
Figure 5: On 16 AGIEval tasks, the accuracy dif- to answer the questions, along with clarifica-
ferences among prompts found by PromISe. tion that only one correct answer, is worth

ments. In the case of MMLU benchmarks and

B

common characteristics:

36.84%. This clarity helps prevent confusion.

In addition, we draw the word cloud diagram of
these optimizing prompts in figure 6. Turning at-
tention to AGIEval benchmarks, we identify distinct
patterns. For Chinese prompts, conciseness and
« Careful Consideration: About 91.23% of the  directness are key characteristics, with a focus on
presenting questions and options without extrane-
ous text. Conversely, English prompts tend to be
more elaborate in content. They also stress the
importance of careful reading of the passage and
explicitly mention the format of the correct answer.

aichuan-13b, the optimizing prompts share

prompts emphasize on careful consideration,
encouraging LLMs to thoroughly ponder all
options before selecting an answer. This stim-
ulates the model’s critical thinking and atten-
tion to detail.

« Welcome Message: Almost 80.7% of prompts We also conduct the prompt differences be-
begin with a We|coming message, Oﬁering a tween different LLMs on the same task. The de-

clear overview of the quiz or question format.  tails about prompts are shown in table 5. Our find-

ings yield several noteworthy conclusions. Firstly,
Encouraging Tone: Nearly 75.44% prompts ~ We observed pronounced performance disparities
are delivered in a warm and encouraging tone, among various LLMs when utilized with manual

such as Good luck, Let's get started. Pprompts. Surprisingly, even smaller-parameter-
sized LLMs outperformed their larger counterparts,

Background Information: Prompts containing  underscoring the limitations of existing evaluation
the inclusion of a background message ac- methodologies. Secondly, in contrast to man-
count for 40.35%, which provide an overview  ual prompts, the optimizing prompts PromISe de-
of the subject’s scope. rived contains more comprehensive information,
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Table 5: The optimizing prompt of different LLMs
on computer security in MMLU. The baseline value
is the evaluation result using the manual prompt.

Prompts

Manual:
The following are multiple choice questions (with answers) about
computer security.\n\n<question>\n<options>\nAnswer: <answer>

Baichuan-7b (64.00->66.00)*:

Welcome to the multiple choice quiz on computer security! In
this quiz, you will be presented with a series of questions re-
lated to computer security. Each question will have multiple op-
tions, and you need to select the correct answer from the given
choices.\n\nPlease read each question and the corresponding op-
tions carefully. Once you have chosen your answer, indicate
your choice by selecting the corresponding option. The correct
answer for each question is provided at the end.\n\nLet's get
started\n\n<question>\n<options>\nAnswer: <answer>

Baichuan-13b (55.00->67.00)*:

Welcome to the computer security multiple-choice question section!
In this section, you will find a series of questions related to computer
security. Please choose the correct answer from the provided op-
tions for each question. Your objective is to select the option that best
answers the given question.\n\n<question>\n<options>\nAnswer:
<answer>

LLaMA2-7b (60.00->61.00)*:

Welcome to the computer security multiple choice quiz! In this
quiz, you will be presented with a series of questions, and
you need to select the correct answer from the options pro-
vided.\n\n<question>\n<options>\nAnswer: <answer>

* means the improvement of accuracy by using PromISE compared
to baseline value.

corroborating our earlier analysis. Thirdly, while
the semantic content of optimizing prompts re-
mained largely consistent across different LLMs,
the phrasing and resulting improvement effects
exhibited significant variation. Specifically, both
Baichuan-13b and Baichuan-7b achieved no-
tably high accuracy when their optimal prompts
included welcoming messages, careful consider-
ations, and background information. Conversely,
LLaMA2-7b showed less pronounced improve-
ment, likely due to its comparatively concise
prompt structure.

5. Conclusion

To better release the capabilities of LLMs, we
propose a novel framework PromlSe, first us-
ing prompt introspective search to find optimiz-
ing prompts tailored to each LLM. Extensive ex-
periments on 73 tasks in two large-scale bench-
marks demonstrate the superiority of PromlSe,
consistently outperforming both manual prompts
and existing methodologies, resulting in substan-
tial performance enhancements on 12 state-of-the-
art LLMs. Moreover, we provide valuable insights
into the optimal prompt design. Our systematic
evaluations aspire to provide a more profound un-
derstanding of the intricate interplay between indi-
viduals and LLMs. These evaluations hold the po-
tential to establish a solid foundation for inspiring
future design paradigms and practical implemen-
tations within this domain.
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