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Abstract

Second language acquisition (SLA) is a complex and dynamic process. Many SLA studies that have attempted to
record and analyze this process have typically focused on a single modality (e.g., textual output of learners), covered
only a short period of time, and/or lacked control (e.g., failed to capture every aspect of the learning process). In
Project MOSLA (Moments of Second Language Acquisition), we have created a longitudinal, multimodal, multilingual,
and controlled dataset by inviting participants to learn one of three target languages (Arabic, Spanish, and Chinese)
from scratch over a span of two years, exclusively through online instruction, and recording every lesson using Zoom.
The dataset is semi-automatically annotated with speaker/language IDs and transcripts by both human annotators
and fine-tuned state-of-the-art speech models. Our experiments reveal linguistic insights into learners’ proficiency
development over time, as well as the potential for automatically detecting the areas of focus on the screen purely
from the unannotated multimodal data. Our dataset is freely available for research purposes and can serve as a
valuable resource for a wide range of applications, including but not limited to SLA, proficiency assessment, language
and speech processing, pedagogy, and multimodal learning analytics.
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1. Introduction Data Collection
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The acquisition of a second language is a com- | k
plex and dynamic process characterized by various

milestones and challenges that learners encounter

along their journey. Many studies have attempted Tomm

to record the learning process, although most stud- ?{‘”%;\:

ies are unimodal (e.g., capturing only the textual - -

output of learners, Geertzen et al., 2014), cover * Longitudinal (~2 years)

only a short period (e.g., containing snapshots of * Multimodal (video, screen, and audio)

* Multilingual (Arabic, Spanish, and Chinese)

learner’s progress, Settles et al., 2018), and/or are * Controlied (no external exposure)

limited in control (e.g., not capturing every aspect of

the learning process, Stasaski et al., 2020). It has v

long been recognized that multimodal, longitudinal ~ Data Annotation .

interaction is a crucial factor in SLA (Hampel and

Stctier 2012 - ol
In order to shed light on the complex and dynamic tang: eng T timsTeng

nature of the SLA process, in Project MOSLA (Mo- Texe: Wnicn city is Bérenc. New York

ments of Second Language Acquisition), we cre- " Speaker diarization

ated a longitudinal, multimodal, multilingual, and fgfgﬁgéf%’:‘nﬁt?ct'a‘;gn

controlled dataset by inviting participants to learn a * Automated speech recognition

new language from scratch solely through online in- v v

struction over a span of two years and documenting SLA Linguistic Analysis Multimodal Analysis
every lesson using Zoom. This dataset, comprising F =
over 250 hours of recorded lessons, captures the :
rich and nuanced aspects of language learning, in-
cluding verbal and non-verbal communication, the
use of teaching materials, student-teacher inter-
actions, and the evolving proficiency of learners. Figure 1: Overview of Project MOSLA
Notably, the MOSLA dataset encompasses a di-

verse set of target languages—Arabic, Spanish,

and Chinese—including two languages that em-

ploy non-Latin alphabets, highlighting the dataset’s To enhance the dataset’s utility, we semi-
unique cross-linguistic scope. automatically annotated all the utterances in the
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recorded audio with start and end offsets, speaker
and language IDs, and transcripts. This annota-
tion was accomplished using human annotators
and state-of-the-art machine learning models for
speaker diarization, speaker and language identi-
fication, and automatic speech recognition. The
resulting metadata offers valuable insights into
the distribution of speech and speaker identities
throughout the learning process, as well as tran-
scriptions of spoken content.

In this paper, we provide an overview of the cre-
ation, annotation, analysis, and applications of the
MOSLA dataset. We begin by describing our data
collection method and then discuss the process
of human and machine annotation. We empiri-
cally demonstrate that fine-tuning state-of-the-art
speech models with a small amount of human-
annotated data results in substantial improvements
in speaker and language identification, as well as
speech recognition performance. Additionally, we
show that our data can reveal linguistic insights
into the learners’ acquisition process of the target
language, such as the percentage of non-English
utterances and lexical diversity. Furthermore, we
demonstrate that, through the use of deep neural
network models, we can determine where on the
screen the teacher and the learner are focusing,
solely from the unannotated multimodal video and
audio data. The MOSLA dataset represents a sig-
nificant contribution to the field of SLA research,
providing a rich source of data for investigating the
factors influencing language learning outcomes,
the role of multimodal cues in the acquisition pro-
cess, and the development of innovative educa-
tional tools.

The MOSLA dataset is freely available for re-
search and non-commercial purposes, ensuring
that it can benefit the broader academic commu-
nity and contribute to advancements in the field of
second language acquisition. It can be accessed
here: https://www.octanove.com/mosla.html.

2. Related Work

In the field of SLA, there have been many stud-
ies that aimed to record and analyze the learning
process, providing valuable insights into language
learning. However, many of these studies have lim-
ited temporal coverage, typically spanning only sev-
eral months (Vercellotti, 2015; Saito and Akiyama,
2017). Duolingo publishes the Second Language
Acquisition Modeling (SLAM) dataset (Settles et al.,
2018), which contains learner production in their
target language. However, the data covers only
a 30-day period, offering a relatively short-term
perspective on language acquisition. The CIMA
dataset (Stasaski et al., 2020) contains tutor-learner
interaction data during language learning, but

it lacks multimodal and longitudinal characteris-
tics. Similarly, the Teacher-Student Chatroom Cor-
pus (Caines et al., 2020) collected textual interac-
tions between teachers and students during online
English teaching but also lacks multimodal and lon-
gitudinal aspects.

In the realm of grammatical error correc-
tion (GEC), there is a substantial body of re-
search (Bryant et al., 2023) but relatively few
GEC corpora focus on longitudinal learning.
One noteworthy exception is the EFCamDat cor-
pus (Geertzen et al., 2014), one of the largest GEC
corpora, with a collection period spanning a few
years. However, only a few of its users participated
over the entire duration, with many starting or end-
ing their learning outside the collection period.

In other domains of learning analytics, Kubat et al.
(2007) collected two years’ worth of multimodal
data on first language development through the Hu-
man Speechome Project (HSP) (Roy et al., 2006),
primarily focusing on first language acquisition and
involving data from a single individual. Demszky
and Hill (2023) collected and analyzed transcripts
of teacher-student discourse in elementary math
classrooms.

MOSLA is closely related to the field of multi-
modal learning analytics (MMLA) (Mu et al., 2020)
and web-based language learning (WBLL) (Cong-
Lem, 2018). For example, Donnelly et al. (2017) an-
alyzed classroom audio recordings, and Monkaresi
et al. (2017) examined facial expressions as part
of the learning analytics process.

The MOSLA dataset holds the potential to be
valuable for various applications, including assess-
ment (Settles et al., 2020), proficiency estima-
tion (Vajjala and Rama, 2018), knowledge trac-
ing (Piech et al., 2015), grammatical error correc-
tion (Bryant et al., 2023), automated assessment of
speaking proficiency (Fan and Yan, 2020), and op-
timization of pedagogical approaches (Lepper and
Woolverton, 2002), among others. lts longitudinal,
multimodal nature makes it a unique resource for
studying the complexities of the SLA process.

3. Data Collection

Data collection took place between February 2021
and February 2023. The teacher and the learner
had weekly language instruction over zoom. Specif-
ically,

A learner (a complete beginner) and a teacher
have a private lesson per week online (e.g., on
Zoom) for at least two years.

» Every lesson is recorded (video, audio, and
screen share).

» The learner is not allowed to learn the target
language outside of these lessons.
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# Videos Total duration

Arabic 95 102 hrs

Spanish 85 84 hrs
Chinese 84 84 hrs

Table 1: Raw Statistics of Collected Data by Course

+ All the materials the learner is exposed to are
recorded (e.g., via screen share).

All the learners in this study were already proficient
in two or more languages (their L1 and L2, typically
English) before the study started and are generally
highly motivated individuals. Below is additional
information on the individual courses:

» ara: Arabic (Modern Standard Arabic)

Teacher L1: Levantine Arabic

Learner L1: Japanese

Learner L2s: English, Mandarin Chinese
Learner Age: 35-44
Learner Gender: Male

* spa: Spanish (Latin American)

Teacher L1: Spanish (Latin American)

Learner L1: Mandarin Chinese

Learner L2s: English, Japanese
Learner Age: 35-44
Learner Gender: Female

* zho: Mandarin Chinese

Teacher L1: Mandarin Chinese

Learner L1: Spanish (Latin American)

Learner L2s: English, Italian, German
Learner Age: 25-34
Learner Gender: Female

All the teachers have a minimum of five years
of professional experience teaching the target lan-
guage. Additionally, all the participants are fluent
in English, and the teaching instructions were con-
ducted in English, at least initially. The study did not
impose restrictions on the teaching methods em-
ployed by the instructors; they were free to use their
preferred approaches. However, instructors were
advised not to use copyrighted materials, such as
textbooks and online courses, as-is, unless used
in a supplementary capacity. As mentioned earlier,
learners were prohibited from learning the target
language outside of this study and were not as-
signed any explicit tasks beyond the classroom.
Nevertheless, they were encouraged to review the

recorded lesson videos for self-assessment pur-
poses.

All the teaching was conducted via Zoom, and the
video and audio were recorded using its standard
recording functionality under the default settings.
Participants used their own preferred devices for
recording audio and video, which means that there
was no quality control in regard to the devices.

4. Data Annotation

In addition to the video data for each lesson,
MOSLA includes two sets of annotations contain-
ing information about the speech of the student
and teacher: a smaller human-annotated set, and
a complete machine-annotated set. Data from the
human-annotated set is used to train machine learn-
ing models as shown in Figure 3, which generate a
complete set of data for all lessons. We release all
models trained this way for use in future research.

4.1. Human Annotation

We employ a bilingual annotator for each language
pair, such that the annotator speaks both English
and the language being learned. Annotation is
done on five minute samples, which are selected
as follows: we perform an independent random
trial with a 5% chance to succeed for each possible
sample, and keep up to one sample per lesson’.
The first and last segment of each file are excluded
from possible selection, as these often consist of
technical setup or greetings instead of language
education content.

We use Hachiue (Hayashibe, 2021) for annota-
tion, as it provides an easy to use web interface
which allows annotators to mark arbitrary sections
of the file as utterances and attach data to them.
Annotators were instructed to create segments for
distinct utterances from each speaker which include
a speaker label (teacher, student or other), a label
for the dominant language of the utterance (there
are a number of code-switched utterances contain-
ing multiple languages), and a literal transcription
of the speech. An example of segment annotations
is shown in Figure 2.

4.2. Machine Annotation

Using the human annotation data, we train and
evaluate machine learning models to perform each
task necessary for annotation: diarization, speaker
and language classification, and automatic speech
recognition. These models are then combined into
a machine annotation pipeline (Figure 3) that we

"As an exception to this, a small number of Chinese
lessons are slightly over-annotated.
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Lanauage Source Total Utterance Utterance Target Student
guag Duration Duration Count Language Utterance
Arabic Human 3.0 hrs 2.6 hrs 2,330 82% 50%
Machine 101.5 hrs 73.9 hrs 80,441 81% 57%
Spanish Human 2.5 hrs 2.2 hrs 1,006 85% 52%
P Machine  83.7hrs  61.1hrs 62,980 82% 50%
Chinese Human 4.0 hrs 3.3 hrs 4,375 66% 24%
Machine 84.4 hrs 65.6 hrs 58,917 72% 33%
Table 2: Annotation Data
fe v ® annotation data can be seen in Table 2.
‘ 4.2.1. Diarization
| |
lang: eng lang: eng We use Pyannote (Bredin, 2023; Plaquet and
spkr: t spkr: s

text: Which city is 4% text: New York

Figure 2: Example Annotation

MOSLA
Dataset
» > |
Human Annotation Raw Audio
lang: eng — ulang: eng
spkr: t spkr: s
text: Which city is H%Jtext: New York
v

pyannote Speaker Diarization

fine-tuning
v
Speaker ID
& Language ID

Whisper
encoder & ASR

fine-tuning
lang: zho lang: eng

spkr: t spkr: s

Whisper

v
ASR model ASR

lang: zho lang: eng
spkr: t spkr: s
text: H—TF text: OK

Figure 3: Overview of the annotation pipeline

use to generate a set of annotations for the full dura-
tion of every lesson. The structure of the machine
annotations are identical to the human annotations.

We randomly select 20% of annotated segments
for each language to use as evaluation data, and
use the remainder of the annotated data as train-
ing data. Summary statistics about both sets of

Bredin, 2023) for speaker diarization. We experi-
ment with both fine-tuning the speaker embeddings
and segmentation model and with fine-tuning the
diarization hyperparameters, but ultimately find the
default pipeline to be the most performant. Note
that because we perform speaker classification as
a separate supervised task, we do not actually use
the speaker clustering labels from the diarization
pipeline, and care only about speech segmentation.
This means that we could perform only voice activity
detection (VAD) instead of full speaker diarization,
but we found that diarization outperformed plain
VAD for speech segmentation. Diarization also has
the benefit of allowing us to process overlapping
utterances from different speakers.

Segmentation F1-score for our system can be
seenin Table 3. While Pyannote’s diarization model
performed well enough to produce useful results,
it is also the weakest component of our pipeline,
likely due to background noise and fluctuating audio
quality in the lesson recordings. We experimented
with other diarization models such as those from
the NeMo toolkit (Harper et al., 2019), but were
unable to find any which outperformed Pyannote.

Diarization VAD Only
Arabic 79.6 79.0
Spanish 69.4 66.6
Chinese 86.1 84.6

Table 3: Segmentation F1 score, computed as the
harmonic mean of purity and coverage?

2For details on purity, coverage and Segmentation F1
computation, see the Pyannote metrics documentation.
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4.2.2. Utterance Classification

We treat language and speaker identification as
supervised classification tasks, where the input is
the audio of a single utterance and the output is
a label representing the dominant language in the
utterance or the speaker of the utterance, respec-
tively.

We primarily experiment with Whisper (Radford
et al., 2022) for these tasks, as it is known to per-
form well not only on automated speech recognition
(ASR) but also on related speech and sound detec-
tion tasks (Gong et al., 2023). We found that Whis-
per (the whisper-large-v2 model) performs
quite well when fine-tuned on our data. For speaker
classification, we remove Whisper’s autoregressive
decoder component and replace it with a simple lin-
ear classification head with one hidden layer, such
that the output of Whisper’s encoder is fed directly
into the classifier. As can be seen in Table 4 and
the classification row for Table 5, this configuration
performs fairly well on our data.

Arabic Spanish Chinese
90% 92% 95%

Classification

Table 4: Speaker identification accuracy

We try the same classifier configuration for lan-
guage identification, but find that our best perfor-
mance comes from using the standard Whisper
architecture, including decoder, fine-tuned on our
data. That is, we use our ASR model for language
identification by taking a single decoding step and
selecting the most likely language token represent-
ing either English or the target language. We hy-
pothesize that this performance gap exists because
Whisper is already trained to output language to-
kens, and consequently has learned how to per-
form language identification using parameters in its
decoder.

Arabic Spanish Chinese

whisper-large-v2 ~ 46% 59% 76%
ASR fine-tuned 95% 95% 92%
Classification 95% 89% 90%

Table 5: Language identification accuracy

4.2.3. Automatic Speech Recognition

We also use Whisper for automatic speech recog-
nition (ASR), finding once again that fine-tuning
on our annotated data substantially improves per-
formance. For both training and evaluation, the
input in all cases is a single utterance as anno-
tated by our human annotators, with the annotated

speech as gold output labels. Note that we also pro-
vide the language of the utterance to the model by
forcing the first decoded token to be the language
token representing the utterance’s dominant lan-
guage. We use human-annotated gold language
labels when training and evaluating our ASR mod-
els. Both classification and ASR models were fine-
tuned for three epochs with a batch size of eight
and a learning rate of 1 x 1079, using the cross-
entropy loss. We measure ASR performance with
character error rate (CER), in part because there is
no standard way to calculate word error rate (WER)
for languages without spaces like Chinese. Charac-
ter error rate can be thought of as a measurement
of the edit distance between the output of the model
and the reference transcription. That is, given a
reference of length N characters and model output
which can be transformed into this reference with
S substitutions, D deletions and I deletions, CER
is computed as:

S+D+1

CER = — (1)
ASR model performance can be seen in Table 6.
Fine-tuning the model improves performance on
all languages, but most dramatically for Arabic and
Chinese, where the error rates after fine-tuning
are nearly half of the original. We speculate that
Whisper may have benefited more from fine-tuning
in these two languages because it was weaker in
them to begin with: Whisper’s reported ASR per-
formance on Arabic and Chinese was substantially
worse than Spanish in the original work (Radford
et al., 2022).

Arabic Spanish Chinese
whisper-large-v2  60% 33% 32%
ASR fine-tuned 25% 28% 17%

Table 6: CER on each language for ASR models.
Punctuation and Arabic diacritics are excluded for
all CER computation.

4.2.4. Pipeline Scoring & Error Propagation

Scores in the previous sections are computed by
comparing model outputs to human outputs for
each human-annotated utterance. However, when
running the machine annotation pipeline there is
no guarantee that output from diarization or other
steps will be correct, and consequently we can
expect some degree of error propagation to later
tasks in the pipeline. In particular, errors in speech
segmentation are potentially damaging to all other
tasks, and errors in language classification could
lead to worse ASR output because the utterance
language is used to bias the ASR model’s output.
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Because diarization output will not line up per-
fectly with human annotated utterances, we com-
pute metrics per five minute human-annotated seg-
ment instead of per utterance in order to accurately
gauge the performance of our pipeline. CER is
computed by concatenating the speech in all ut-
terances output by the pipeline and comparing it
to the concatenation of all human-annotated utter-
ance text. For speaker and language identification,
we compute the identification error rate (IER) for
each. IER can be thought of as a measurement of
the percentage of the total duration that is classified
incorrectly in some way, and is calculated as:

f+m—+c
t

IER = 2)

Where f is the duration of false positives (non-
speech incorrectly identified as speech), m is the
duration of missed speech (speech incorrectly iden-
tified as non-speech), ¢ is the duration of correctly
identified speech assigned the wrong classifica-
tion label, and ¢ is the total duration. Note that
because f and m both depend exclusively on the
performance of the model identifying speech, IER
is particularly sensitive to diarization performance.

Arabic Spanish  Chinese

Gold Seg 5% 10% 4%

SPkID  pioeline  24%  27% 17%
Lana ID Gold Seg 4% 3% 5%
9 Pipeline ~ 24%  23% 21%
Gold Seg 23% 27% 16%

ASR —Gold Lang 28% 27% 17%
Pipeline 34% 33% 31%

Table 7: Error rates for pipeline components: CER
for ASR and IER for classification

In Table 7, we present the performance of our
pipeline components using human-annotated gold
speech segmentation, and pipeline diarization. We
also include ASR with gold speech segmentation
but pipeline language identification. As we can see
from these results, errors in diarization have a sub-
stantial effect on the performance of downstream
tasks. Precise start and end times for utterances
are arguably not necessary for downstream analy-
sis focused on speech content, suggesting that the
increase in |ER for classification tasks may not mat-
ter in some cases, but errors in diarization also lead
to an average increase in CER of approximately
10% for ASR. We leave speech segmentation ap-
proaches which are more resilient to issues such
as variable audio quality to future work.

5. Experiments

5.1. Linguistic Analysis

To demonstrate the kind of analysis that our data
can be used for, we compute summary statistics to
track changes in the learner and teacher’s speech
over time. We use a mix of human and machine-
annotated data for this, using human data where
available and machine-annotated data otherwise.

We begin by examining the percentage of utter-
ances made in the target language by both the
teacher and student in each lesson. This is impor-
tant both because listening and speaking practice
are critical to language acquisition, and because
for students the degree of target language use in a
learning context has been linked to proficiency in
that language (Turnbull and Dailey-O’Cain, 2009;
Carranza, 1995). We find that the percentage of
target language utterances consistently increases
over time for both the student and teacher: Spear-
man’s p for the correlation between lesson number
and % of target language utterances ranged from
0.32 to 0.73, with all p values < 0.01. Data for the
Spanish student can be seen in Figure 5. All figures
presented in this section are linear regressions with
95% confidence intervals.

Spanish Utterance %

0 20 40 60 80
Lesson Number

Figure 5: Student Spanish utterance %

Next, we look at metrics designed to measure lexi-
cal diversity in speech, as they have been shown
to correlate with assessments of learner ability (En-
gber, 1995) and can grow over time for language
learners (Hsieh, 2016). For computing these met-
rics, we tokenize Spanish and Chinese using spaCy
(which internally uses pkuseg for Chinese) (Hon-
nibal et al., 2020; Luo et al., 2019), and Arabic
with CAMeL tools (Obeid et al., 2020). Token data
is then cleaned by removing tokens consisting of
punctuation, numbers, whitespace and stop words.

Token-type ratio (TTR) is one measure of lexi-
cal diversity which is commonly used in linguistics
research (Thomas, 2005). TTR is calculated as
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Guiraud's Index

0 20 10 60 80
Lesson Number

(a) Student

0 20 10 60 80
Lesson Number

(b) Teacher

Figure 4: Guiraud’s index for the Chinese student and teacher

the number of unique tokens (words) divided by
the number of total tokens, and ideally would be
expected to increase over time as the learner’s vo-
cabulary expands and the teacher moves on to
using more complex language. However, TTR has
been shown to be unstable in some circumstances,
such as when there is substantial variance in the
total number of tokens (Van Hout and Vermeer,
2007). This instability is mirrored in our results:
while TTR grows over time for some students and
teachers in some languages, correlations are often
weak or have p values substantially higher than
0.05 suggesting no correlation at all.

Some alternatives to TTR have been proposed
to address its shortcomings. In particular, we look
at Guiraud’s index (Guiraud, 1954), which mitigates
the influence of total number of tokens by using the
square root of the total token count as the denom-
inator. We present standard TTR and Guiraud’s
index below as TTR and TTR gyrquq below, where
N is the total number of tokens and V' is the number
of unique tokens.

Vv

\%4
TTR = N TTRguiraud = ﬁ (3)

Metric Arabic Spanish  Chinese

Student 0.58 0.48 0.46

o,

Targetlang % qoacher 072 032 0.73
Guiraud's Index Student 0.32 0.38 0.30

Teacher 0.37 0.55 0.53

Table 8: Spearman’s p for correlation between sum-
mary statistics and lesson number. All correlations
have p < 0.01.

We find that Guiraud’s, like % of target language
utterances, consistently increases over time (i.e.

correlates with lesson number) for both students
and teachers as can be seen in Table 8. Spear-
man’s p ranges from 0.30 to 0.55 with all p val-
ues < 0.01. Interestingly, this effect is measurably
stronger for teachers, who had a mean p of 0.48
as opposed to students’ 0.33. A comparison of
change in Guiraud’s index for the Chinese student
and teacher can be seen in Figure 4. Assuming
that students made measurable progress over the
course of their lessons and that teachers gradually
increased the difficulty of lesson content, these re-
sults show that this progression is reflected in our
data, and also speak to the suitability of Guiraud’s
index as a metric.

5.2. Multimodal Analysis

We also illustrate how the rich multimodal data in
the MOSLA dataset can be harnessed to gain in-
sights into teacher and student behaviors using
modern machine learning techniques.

Our objective here is to use machine learning
techniques to determine the area of focus for both
the teacher and the student on the screen, based
solely on unannotated raw audio and video data.

Specifically, we use the Matchmap method, as
described in (Harwath et al., 2018), to align the raw
audio and the image in an unsupervised manner.
The underlying principle of this method is that when
parts of the input image and the audio co-occur fre-
quently, it results in a high similarity score for that
combination. The Matchmap method, as shown in
Figure 6, encodes an image and an audio clip using
separate encoders, producing a grid or sequence
of latent representations for each modality. Let a; ,,
be the u-th element of the audio representation vec-
tor a, attime ¢, and i, ,, ,, be the u-th element of the
image representation vector i, ,, at position (z,y).
After applying a linear projection layer (f, and f;,
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Figure 6: Overview of the Matchmap method

respectively) to each modality, the method com-
putes a three-dimensional matrix called Matchmap
as:

Mz,y,t = fi(i)?;,yfa(a)h (4)

which quantifies the degree of “compatibility” be-
tween the image at position (z, y) and the audio at
time ¢. Finally, the Matchmap matrix is aggregated
to determine the overall similarity (referred to as
SISA—Sum Image, Sum Audio) between a given
image I and audio A instances using a simple arith-
metic mean:

1
SLA) = T NN, g:t Mas ©)
where N, N,, N; denote the width and height of
the encoded image, and the length of the encoded
audio sequence, respectively.

To learn the Matchmap matrix without the need
for labels, we adopt a contrastive learning approach.
This approach maximizes the similarity between
true image-audio pairs (I;, A;) while minimizing
the similarity between randomly chosen “imposter”
images I;"” and audio A;™”. Specifically, the
Matchmap method uses the following loss function
as the learning objective:

Ny
=% (maX(O, S(I;, A™P) — S(I, A;) + 1)

i=1

+ max(0, S(I™, AT — S(I, A;) + n)) 6)

where N is the number of instance per batch. Im-
poster images and audio were created by randomly
permutating the instances within each batch. We
set n = 1 in our experiments.

We initially extracted 100 random 10-second
chunks from each Arabic lesson video. Images
were generated by calculating the average of all the
frames within each chunk. In this experiment, we
used the pretrained VGG16 model (Simonyan and
Zisserman, 2015) before the last pooling layer for
encoding images and the Whisper (Radford et al.,

Figure 7: Example visualization of Matchmap

2022) encoder (base model) for audio. Audio repre-
sentations were downsampled by averaging every
10-frame window, resulting in 7 x 7 feature maps
for images and 50 frames for audio. Both image
and audio representations were then transformed
using a 512-dimensional linear layer before comput-
ing the matchmap. The entire network, including
the encoders and linear layers, was optimized us-
ing Adam with a learning rate of 1.0 x 10~* for 30
epochs, with a batch size of 32.

Figure 7 displays some examples of visualized
matchmaps. These images were generated by
slicing the computed matchmap at time ¢ when
discourse is taking place, whether initiated by the
teacher or student, and then overlaying it as a
heatmap onto the original image. As can be seenin
the figure, the matchmap highlights relevant parts
of the input image, such as the speaker (a) and/or
the learning content (b). While we have not con-
ducted a formal evaluation of this model, these
results suggest that similar multimodal analytics
approaches may prove effective for tasks such as
speaker diarization, automated speech recognition,
and facial expression analysis.

6. Conclusion

In Project MOSLA (Moments of Second Language
Acquisition), we address the complexity of SLA
by creating a longitudinal, multimodal, multilingual,
and controlled dataset that captures every moment
of SLA learners’ experiences through online instruc-
tion. With human and machine annotations gen-
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erated using state-of-the-art speech models, the
MOSLA dataset provides insights into the distribu-
tion of spoken language, speaker identities, and the
content of spoken discourse. Our experiments high-
light the potential of this resource in revealing target
language usage and lexical development, as well
as in identifying the areas of focus for both learners
and educators during interactions. By offering open
access to the MOSLA dataset for research and non-
commercial purposes, we hope to inspire a wide
array of studies, fostering a deeper understanding
of the multifaceted nature of SLA and facilitating
the development of more effective pedagogical ap-
proaches for second language learners.

7. Ethical Considerations

As itis difficult to imagine possible harms as a result
of further research or technology built on a dataset
about language acquisition, our primary ethical con-
cerns relate to the fairness of compensation and
exposure to risk for participants in the study. In re-
gards to compensation: all participants—students,
teachers, and annotators—were paid well above
the minimum hourly wage in the country in which
this research was conducted.

We view risk to participants as consisting broadly
of two categories: possible exposure of personally
identifiable information (PIl) relating to teachers or
students, and possible appropriation of teaching
material. Our primary mitigation against these risks
is that access to MOSLA data will require consent-
ing to a terms of use document which explicitly
prohibits attempts to extract Pll, appropriate teach-
ing materials, redistribute the data, or otherwise
use it for anything other than research. There is
no explicit Pll included anywhere in the data; our
concern is only preventing the possibility of Pll be-
ing inferred from conversation content in lessons.
Furthermore, all participants knew from before their
first lesson that they were being recorded with the
intent of eventually publishing the data, had the op-
tion to withdraw at any point, and had and continue
to have the right to request removal of any data, at
any time, for any reason.

One other possible area of concern is copy-
righted materials. In order to address this, teachers
were asked to refrain from using copyrighted mate-
rials except in a supplementary capacity, and we
are confident that any such usage included in the
MOSLA lessons falls under fair use for teaching
and research.

Finally, in place of an IRB or equivalent institu-
tional review board which we did not have access to,
we had a third-party ethics review conducted by an
external resesarcher with an extensive background
in Al and data ethics.
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