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Abstract
Scalar adjectives pertain to various domain scales and vary in intensity within each scale (e.g. certain is more
intense than likely on the likelihood scale). Scalar implicatures arise from the consideration of alternative
statements which could have been made. They can be triggered by scalar adjectives and require listeners to
reason pragmatically about them. Some scalar adjectives are more likely to trigger scalar implicatures than others.
This phenomenon is referred to as scalar diversity. In this study, we probe different families of Large Language
Models such as GPT-4 for their knowledge of the lexical semantics of scalar adjectives and one specific aspect
of their pragmatics, namely scalar diversity. We find that they encode rich lexical-semantic information about
scalar adjectives. However, the rich lexical-semantic knowledge does not entail a good understanding of scalar
diversity. We also compare current models of different sizes and complexities and find that larger models are
not always better. Finally, we explain our probing results by leveraging linguistic intuitions and model training objectives.
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1. Introduction

Scalar adjectives (SAs) are words such as likely,
certain, warm, and scalding. They describe differ-
ent scales of properties. For instance, warm and
scalding describe temperature, while likely and cer-
tain describe probabilities. Scalar adjectives can
describe the same scale while differing in intensity.
For example, certain is more intense than likely on
the likelihood scale because it is used to make a
logically stronger statement about a given situation.

Scalar implicatures (Sls) arise from the consider-
ation of alternative statements that could have been
made (Figure 1). They can be triggered by SAs.
For instance, when a speaker utters ‘It is likely to
rain’, a hearer may conclude that the speaker is not
certain that it will rain. In particular, the hearer may
reason that the speaker could have provided the
logically stronger statement, ‘it is certain to rain’, but
did not do so. Psycholinguistic studies indicate that
some SAs are more likely to generate implicatures
than others (Van Tiel et al., 2014; Gotzner et al.,
2018; Ronai and Xiang, 2022). This phenomenon
is referred to as scalar diversity. For instance, likely
tends to indicate not certain, while good does not
tend to indicate not excellent.

Sl is a long-standing topic of research in prag-
matics because it reveals fundamental aspects of
human linguistic and cognitive capabilities in areas
such as the Theory of Mind (Feng et al., 2021).
Accordingly, Sls pose important challenges for the
development of NLP models with human-like capa-
bilities (Sap et al., 2022). Sls are also important
in practice for downstream tasks that include Nat-
ural Language Inference (Williams et al., 2018),
Sentiment Analysis (Socher et al., 2013), and indi-

rect Question Answering (de Marneffe et al., 2010).
State-of-the-art large Language Models (LLM) such
as GPT-4' have remarkable performance on many
classic benchmarks. However, they have proved to
be fragile in some semantic and pragmatic tasks
that are easy for humans (Liu et al., 2023a; Lin
et al., 2024). The goal of this paper is to probe this
discrepancy with an in-depth investigation of Sls
with SAs.

The speaker is
i not certain that it :
will rain. .~

; " informationis .
= i given about whether :
., itiscertainto -

Figure 1: People often mean more than what they
literally say. Humans can easily infer implied mes-
sages, while LLMs often fail to do so.

Recent research on LLMs’ understanding of SA
has focused on: (i) probing the lexical semantics of
SAs (Liu et al., 2023Db) or (ii) their scalar diversity
(Hu et al., 2022, 2023). In this paper, we investi-
gate both (i) and (ii). We first utilize two probing
methods to evaluate LLMs’ knowledge about SAs’
scale membership and intensity information. Us-
ing previously published datasets, we then assess
whether LLMs show human-like scalar diversity in
judgments about SA items. Finally, we compare
LLMs’ pragmatic and lexical-semantic knowledge

"https://openai.com/research/gpt—4
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and explain our observations based on linguistic
theory.

Our paper includes three main findings. First,
LLMs generally encode rich lexical-semantic infor-
mation about SAs (§3). Second, LLMs have un-
satisfying performance in capturing scalar diversity
despite encoding rich lexical-semantic information
about SAS (§4). Third, the size of the LLMs does
not correlate with how well they perform on our
tasks (§3 and §4): While the increase in model
size is sometimes claimed to invariably improve
performance (the so-called "scaling law"), in our
study, some large models do worse than smaller
models that have different architectures or training
objectives.?

2. Related works

2.1,

Since the seminal work by Kamp (1975), SAs have
received a lot of attention in formal semantics and
the philosophy of language. The same cannot be
said about NLP research, where SAs have only
recently garnered attention. Some of this research
has been concerned with the lexical semantics
of SAs, particularly focusing on their scale mem-
bership and their intensities (de Melo and Bansal,
2013; Kim and de Marneffe, 2013; Shivade et al.,
2015; Wilkinson and Tim, 2016; Cocos et al., 2018).
One feature of this research is the use of static
rather than contextualized word embeddings from
LLMs. This is important because Gari Soler and
Apidianaki (2020) have found that BERT-base (De-
vlin et al., 2019) contextualized word embeddings
encode richer information about scalar intensities
in vector space. Nevertheless, Liu et al. (2023b)
report that many state-of-the-art models, even after
fine-tuning on MNLI (Williams et al., 2018), have
unsatisfying adjective degree estimations in textual
inference.

Scalar Adjective Lexical Semantics

2.2. Scalar Implicature and Scalar
Diversity Pragmatics

In a study of Sls, Schuster et al. (2020) have found
that LSTM (Hochreiter and Schmidhuber, 1997)
can be trained to infer some-not all implicatures
(e.g. ‘Some student cheated’ implicates that not
all students cheated). Jeretic et al. (2020) report
that BERT fine-tuned on MNLI nearly always pre-
dicts that the determiner some entails not all, but
that SAs are treated as synonyms regardless of
their intensity. This means that the model may
lack relevant pragmatic knowledge about adjec-
tives. In contrast, two recent studies (Hu et al.,

2Codeisin https://github.com/fangru-1lin/
1lm_scalar_adj.

2022, 2023) achieved more favorable results with
surprisal measures derived from GPT2. String-
based surprisal, which considers the surprise level
of a given strong word to appear as an alternative to
a weak word out of all possible strings in a context,
is estimated by the likelihood of a strong word to
appear in its position by a GPT-2 model (Radford
et al., 2019). Concept-based surprisal treats an
alternative as a member of a string set with similar
concepts. The surprisal rate for the alternative is
considered as an average over that of all strings in
such a set. Using these two measures, they found
that scalar diversity correlates with string-based
and concept-based surprisal. Ruis et al. (2024)
tested different LLMs on general conversational im-
plicature understanding. They found that GPT-4
is the best-performing model with 30-shot chain-
of-thought prompting (Wei et al., 2022), achieving
88.66% in generalized implicature calculation. This
is the category that our adjective-triggered Sls fall
under.

2.3. Direct and Indirect Probing

Direct and indirect probing methodologies are
widely used to understand LLMs’ knowledge. Direct
probing is used to analyze the hidden representa-
tions encoded in LLMs (Gari Soler and Apidianaki,
2020). This is only possible when the LLM is open-
source. Indirect probing is used to analyze the
representations of closed-source models. This in-
volves testing performance on various semantic
tasks. Typical tasks use textual prompts to assess
the prompted answers (Ettinger, 2020). Petroni
et al. (2019) argue that indirect probing only reveals
the lower bound of model capabilities. Follow-up
works have provided various methods to increase
the bound (Zhong et al., 2021; White et al., 2023).

We build on these results as follows. Since di-
rect probing provides a good estimate of a model’s
competence, but closed-source LLMs only allow
for indirect probing, we use both methods for some
open-source models. We then use the results on
these models to ground the results of indirect prob-
ing for other models. We make the following as-
sumption: if the two probing methods show similar
trends regarding model performance for the open-
source models, we deem our indirect probing meth-
ods as valid in comparing the relative capabilities
of different closed-source models.

3. Probing Lexical Semantics

Recent research on the lexical semantics of SAs
have mostly focused on deriving their intensity infor-
mation from open-source models (Gari Soler and
Apidianaki, 2020; Liu et al., 2023b). In this section,
we describe how we probe three model families, for
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two aspects of SA lexical semantics: (i) scale mem-
bership (e.g. likely and certain are on the likelihood
scale), and (ii) adjective intensity (e.g. certain is
more intense than likely within the same scale).
We assess three model families, containing eight
models in total, to understand how different model
architectures, training objectives, and sizes affect
lexical-semantic knowledge. All models except
GPT-4 are accessed via huggingface library (Wolf
et al., 2020), and GPT-4 is accessed via OpenAl
AP|3
Encoder Models BERT-base/large(b/1)
(110M/340M) (Devlin et al., 2019), RoBERTa-
base/large(b/l) (123M/354M) (Liu et al., 2019)
Decoder Models Falcon-7B-instruct (Falcon) (Al-
mazrouei et al., 2023), GPT-4*
Encoder-decoder Models
(3.5B/11B) (Chung et al., 2022)

Flan-T5-x!/xxl

3.1. Datasets for Lexical-Semantic
Probing

3.1.1. Scalar Adjective Datasets

Following Gari Soler and Apidianaki (2020), we
use three SA datasets: DEMELO (DM) (de Melo
and Bansal, 2013), CROWD (CD) (Cocos et al.,
2018), and WILKINSON (WK) (Wilkinson and Tim,
2016) which contain 185 half-scales in total (Ta-
ble 1). For example, the positive side of the quality
scale ranges from good to awesome. Each con-
tains different categories of SAs. Some contain
adjectives describing physical appearance while
others do not.

DM | CD | WK
Half-scales 87 | 77 | 21
Distinct adjective pairs | 548 | 330 | 61

Table 1: Overview of half-scale counts and distinct
adjective pairs in SA datasets.

DM Half-scales are first collected from WordNet
3.0 (Gross, Derek and Miller, Katherine J, 1990)
and then annotated for intensity by two native En-
glish speakers.

CD Adijectives are first collected from the Para-
phrase Data Base (Ganitkevitch et al., 2013; Pavlick
et al., 2015) and then annotated by crowd workers.
Annotators are asked to identify whether given ad-
jectives are on the same scale for multiple rounds,
and then annotate the intensity of adjectives.

WK Adjectives are collected via crowdsourcing.
Crowd workers are first presented with prompt
words that belong to a full scale and asked to list

3See appendix 11.6 for more implementation details.

*We do not use LLaMA (Touvron et al., 2023) due
to our institutional requirement. We use gpt-4-0613 for
GPT-4.

other semantically related adjectives. Scales are,
then, cleaned automatically based on workers’ com-
petence and annotated manually for adjective in-
tensities. This study uses partitioned WK with half
scales in Cocos et al. (2018), which are derived
from the Paraphrase Data Base (Ganitkevitch et al.,
2013; Pavlick et al., 2015).

3.1.2. Context Sentence Datasets

To compute contextualized word embeddings for
adjectives, we use the context sentence dataset
ukWac from Gari Soler and Apidianaki (2020).
ukWac provides 10 context sentences for each
half-scale s in DM, CD, and WK. All adjectives
on s share the same context set of 10 different
sentences. Each candidate sentence contains an
adjective on s and allows lexical substitution of its
scale-mates. The acceptability after substitution
is ensured by computing their acceptability scores
using context2vec (Melamud et al., 2016). An ex-
ample is given below, where the italic word is an
adjective on s, and appears in the original context
sentence. Other scale alternatives to it are inside
the brackets.

They are extremely catchy
and are not only great to
listen to, but they are

also thrilling (interest-
ing/moving/exciting) to sing.

3.2. Probing Scale Membership

In this subsection, we assess whether LLMs en-
code the notion of scale membership. Ideally, we
would expect models to be able to assign adjec-
tives to their corresponding scales in context (e.g.
warm belongs to the temperature scale).

3.2.1. Scale Membership Direct Probing

Method

We directly probe scale membership by getting con-
textualized representations of SAs and half-scales
and calculating their similarities. We retrieve word
embeddings using ukWac by sampling different
sentences for each adjective a on a half-scale s
to obtain its contextualized representation . We
derive a scale vector 3 for each s by adding the
representations of the weakest and strongest ad-
jectives on s. For instance, for the scale adequate-
fine-fitting-good, where adequate is the least in-
tense and good is the most intense adjective, §
is adeqﬂate + goEd. Then, the cosine similarity
cos(d, §) between each adjective a in a SA dataset
D, and all other 3'in the dataset is computed. The
scales are ranked by cos(d, 5) for each adjective;
the scale with the highest cos(d, ) is considered to
be the most likely scale for a to belongs to, and so
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forth. For evaluation, the ranking of the scale s that
a belongs to (ranks) is considered. We consider
Mean Reciprocal Rank (MRR) as the evaluation
metric; see Equation (1).

1 1
MRR = — — 1
|D,| SEZD rankg (1)

Intuitively, the higher the scale that an adjective
belongs to is ranked, the closer MRR will be to 1.
For instance, if all adjectives are aligned on their
corresponding scales, the MRR will be 1. If models
fail to rank the correct scales as closest, it means
that they do not encode word polysemes and fine-
grained distinction among different scales.

3.2.2. Scale Membership Direct Probing
Experiment and Results

When target adjectives are tokenized as multiple
segments, token representations are averaged as
the adjectives’ final representations. We use layer-
wise adjective word embeddings to evaluate infor-
mation in each layer (e.g. @ and § have 12 rep-
resentations using a 12-layer model). The exper-
iment is repeated ten times with different random
seeds for context sentences. We use fast-text static
word embeddings® (Mikolov et al., 2018) trained on
600B Common Crawl data as a baseline. For the
baseline, we add the representations of strongest
and weakest adjectives on s as §, then also rank
cos(d, §) for each a to calculate MRR. Here, we only
report the results for the best-performing layer for
non-baseline models in Table 2.

Models DM CD WK
fast-text 0.842 0.716 0.983
BERT-b 0.829,10.010 | 0.797 £0.010 | 0.997 L0 004
BERT-I 0.853.10.007 | 0.805.:0011 | 0.997 1 006
RoBERTa-b | 0.668.( 914 | 0.70540.007 | 0.90640.018
RoBERTa-I 0.777 +0.011 0.7571+0.008 | 0.9771+0.010

Table 2: Direct scale membership probing results,
subscripted numbers are standard deviation in ten
runs. The best results per dataset are in bold.

The fast-text baseline is quite strong consider-
ing its training data size. All LLMs encode rich
scale information as they mostly outperform (with
some behaving on par with) the baseline. Model-
wise, BERT models encode more information than
RoBERTa. Within the same architecture, the bigger
a model is, the better they are. Across datasets,
WK is relatively easy because it (i) has fewer poly-
semous adjectives with the same forms on different

Shttps://github.com/facebookresearch/
fastText/

5We also tried other alternative methods to compute
membership, which does not generally work as well as
the method we report here. See Appendix 11.1.

scales and (ii) has fewer scales for classification
than the other two datasets.

3.2.3. Scale Membership Indirect Probing
Method

Inspired by Lorge and Pierrehumbert (2023) and
de Melo and Bansal (2013), we use four templates
including ADJyeqk, if not ADJg¢rong 10 indirectly as-
sess LLMs’ knowledge about scale membership.
Adjectives on the same scale are more likely to
co-occur in these constructions than those that are
not (e.g. warm, if not hot should be more likely to
appear than warm, if not thin).”

For each adjective on a half scale that is not the
strongest item, we use it as ADJ,,.qi in our tem-
plates and obtain 5 most likely words as ADJrong-
For instance, for scale adequate-fine-fitting-good,
we prompt models to answer what is likely to be
ADJsir0ng in adequate/fine/fitting, if not ADJ gty on,g-
We consider a case to be correct if any top-5 word
in ADJsirong is On the same scale with ADJyeqk,
and the overlap is not trivial (e.g. adequate or even
adequate is a trivial completion, good or even ade-
quate is considered to be correct despite the wrong
intensity ranking).

3.2.4. Scale Membership Indirect Probing
Experiment and Results

For encoder models, we put [MASK] and a comma
in the position of ADJ,trong (€.9. ADJyear, if not
[MASK],) as preliminary experiment results show
that BERT mostly predicts punctuation marks as
top 5 predictions for [MASK] when it appears as the
last token. The comma is used because it does not
constrain whether its preceding adjective is attribu-
tive (i.e. can be immediately followed by a noun) or
predicative (i.e. cannot be immediately followed by
a noun). For non-baseline models except GPT-4,
we directly generate ADJ,,.,g given the preceding
prompt. We use a similar generation objective for
GPT-4 with the best template in other models (see
appendix 11.7). We use the Google Ngram cor-
pus slice for 2019 (Lin et al., 2012) as the indirect
probing baseline with a similar setting, to obtain
the 5 most likely completions for ADJtron4 in €ach
construction. In Table 3, we report the best results
among all templates in the assessed dataset (we
report results based on selecting the best templates
with held-out datasets in Table 13).

Indirect probing always underperforms direct
probing for all models. This result aligns with
Petroni et al. (2019). The relative rankings of dif-
ferent models are largely consistent. BERT is bet-
ter than RoBERTa given the same size class, and
larger encoder models are better than smaller ones

’See Appendix 11.3 for all templates.
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Models DM CD WK
Google Ngram | 0.287, | 0.075; | 0.368;
BERT-b 0.425, | 0.066; | 0.167;
BERT-I 0.504; | 0.1093 | 0.250,
RoBERTa-b 0.2714 | 0.064; | 0.114,
RoBERTa-I 0.463; | 0.100, | 0.286;
Falcon 0.265; | 0.045; | 0.167;
GPT-4 0.540 | 0.273 | 0.500
Flan-T5-xI 0.544; | 0.1775 | 0.5005
Flan-T5-xxI 0.5153 | 0.1563 | 0.364;

Table 3: Indirect probing results for scale mem-
bership. The best results per dataset are in bold.
Subscripts refer to the indices of the best templates.

with the same architecture. These observations
support the validity of our methods.

We find that all models except Falcon encode
rich information about scale membership, in that
they either behave on par with the baseline or out-
perform it. GPT-4 and Flan-T5-xl each achieve the
best results on two benchmarks. While GPT-4 has
competitive results with Flan-T5-xl in DM and WK,
it is much better for CD. Therefore, we conclude
that GPT-4 is the best-performing model in this
task. Within the same model family, the scaling
law tends to hold (i.e., larger is better). However,
scaling does not fully explain the pattern of results.
For instance, Falcon underperforms much smaller
encoder models and even the baseline, and Flan-
T5-xxI underperforms Flan-T5-xI.

3.3. Probing Scalar Intensity

In this section, we describe how we probe whether
LLMs understand that SAs on the same scale have
varied intensities (e.g. hot denotes a higher tem-
perature than warm).

3.3.1. Scalar Intensity Direct Probing Method

Unlike previous methods which ground SAs in iden-
tical contexts and calculate them in separate runs
(e.g. Itis a good/great/wonderful/awesome movie)
(Gari Soler and Apidianaki, 2020) (G&A), we use
a novel method, which involves binding all SAs on
the same scale as one single input to obtain their
contextualized representations (e.g. good great
wonderful awesome), as illustrated in Figure 2. Our
assumption is that people are more likely to notice
scalar words have different intensities when they
are salient in the same context (Ronai and Xiang,
2023a).

For each half-scale s, we shuffle and bind all
SAs a on s ten times to get 10 different inputs (e.g.
good great wonderful awesome, great wonderful
good awesome, etc.). For each a, we average
the representations of it in 10 inputs to get its final

representation. This is to avoid potential heuristic
associations between word order and scalar inten-
sity.

After getting the representation of all a, we utilize
the best method (DiffVec) in Gari Soler and Apidi-
anaki (2020) (G&A) to get the intensity ranking for
them. Specifically, the intensity of all adjectives a in
dataset D, is measured by their cosine similarities
to an external global intensity vector d‘fec derived
from another SA dataset D,.. (Dyec # D,).2

For every half-scale s in D,.., the mildest and
the extreme adjectives on s are notated as a,,,s and
acs- We calculate dy .. with Equation (2).

> 1
dVec= ———— tes — ams  (2)
|Dvec \ Da| Z

8€Dyec\Da

Forall s € D,, adjectives on s are ranked by their
cosine similarities to d{ec: higher similarity means
higher intensity. If two adjectives have the same
similarity, they are treated as equally intense.

3.3.2. Scalar Intensity Direct Probing
Experiment and Results

We probe layer-wise word embeddings in BERT-b/I,
RoBERTa-b/l and report the best results for pair-
wise accuracy across layers using dv .. in different
datasets. We again provide fast-text embeddings
as a baseline here. For the baseline, we use static
embeddings of a.s and a,, for all s € D,.. \ D, to
derive dVec as in Equation 2.

Results are averaged over adjective pairs and
shown in Table 4.

Model Method DM cD WK
fast-text - 0.637“/1{ 0685DM 0.8360D
G&A | 0.646cp | 0.735,,; | 0.902,,;
BERT-b Ours | 0.639¢p | 0.706p4; | 0.967 pas
BERTA G&A | 0.695., | 0.731p1 | 0.918pu
Ours 0-673C'D 0-727D1\1 0902DU
G&A | 0557w« | 0.6455,; | 0.820p1;
ROBERTa-b | '« | 06480p | 07481y | 0.934pn
G&A | 0.595., | 0.6825,; | 0.836p1;
ROBERTa-l | o | 0.664cp | 0.752p1 | 093411

Table 4: Direct scalar intensity probing with our
method and G&A on different models. Subscripted
letters refer to the source dataset of dxfec. The best
results per dataset are in bold. The best results
using the same model are underlined.

We find that our simple method is generally bet-
ter than G&A.® Globally, our method achieves the
best-ranking results in two out of three datasets.
Although G&A marginally outperforms our method

8We don't use the global intensity vector in D, due to
the concern of generalisability.

°Qur method is also superior to Gari Soler and Apidi-
anaki (2020) in other metrics. See appendix 11.2.
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Figure 2: The process to derive intensity vector d,.... First, an adjective half-scale is randomly shuffled ten
times for the order of adjectives as inputs to a language model. Then the encoded word vectors for the
same word in different inputs are conducted with the Hadamard mean to derive the final representation
of the word. After that, intensity vector d,.. is calculated by subtracting layer-wise representation of the
weakest adjective from the strongest adjective (awesome — go_éd in this case) then averaging over all
relevant half-scale subtractions in a dataset. Then layer-wise d... is used to probe language models’

knowledge for adjective intensities.

in some of the datasets in BERT, our method uni-
formly largely outperforms G&A in RoBERTa, show-
ing that it is more robust across different models
and datasets.

All models encode rich information about SA in-
tensity by outperforming the baseline. Across mod-
els, BERT models again dominate in two out of
three datasets, showing that they encode more in-
tensity information than RoBERTa, which indicates
that larger models are not always better. Across
datasets, WK is again relatively easy because it
does not contain ties.

3.3.3. Scalar Intensity Indirect Probing
Method

To complement closed-source models, we indirectly
probe intensity using a similar objective as in Lorge
and Pierrehumbert (2023). Specifically, for each
pair of SAs to compare intensities, we compare
the perplexity of minimal-pair prompts containing
these adjectives such as 'good but not awesome’
and ‘awesome but not good’, with the former featur-
ing correct order of scalar adjectives and the latter
incorrect. ldeally, models should always compute
lower perplexity for the first prompt, as the latter is
infelicitous or even ungrammatical.

We adopt all 34 templates used in the data col-
lection of de Melo and Bansal (2013). '° For each

9Except ADJstrong(;) OF very ADJycqr because some
adjectives examined in this study are extreme ones (Par-
adis, 1998) which cannot be modified by very (e.g. very

template, we compare the perplexity of correct and
incorrect constructions. We consider that LLMs
encode the scalar intensity for the corresponding
adjective pair if the correct one has lower perplexity.
We consider two adjectives to be equally intense
if switching their positions in a template produces
equally unlikely phrases.

3.3.4. Scalar Intensity Indirect Probing
Experiment and Results

For encoder models, we estimate pseudo-
perplexity by masking out tokens one by one and
multiplying the likelihood of the original token ap-
pearing in the mask position to compute the se-
quence’s pseudo-likelihood (Salazar et al., 2020).
For other models except GPT-4, we directly com-
pute perplexity for each sequence. For GPT-4, we
use the best-performing template for other models
and mimic the setting as in Appendix 11.7. As a
baseline, we use Google Ngram corpus slice in
2019 to retrieve the likelihood of constructions as
an analogy to perplexity. We then consider a case
to be classified correctly if the correct construc-
tion is more likely to appear than the incorrect one.
We use pair-wise accuracy as an evaluation metric
and report the best results among all templates in
the assessed dataset. Final results are averaged
over pairs and shown in Table 5 (we report results
based on selecting the best templates with held-out
datasets in Table 14).

terrific). See Appendix 11.4 for the full template list.
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Models DM CD WK

Google ngram | 0.312;, | 0.222, | 0.442,
BERT-b 0.5695; | 0.539y, | 0.770,
BERT-I 0.5693, | 0.5585; | 0.7383,
RoBERTa-b 0.544,, | 0.527,9 | 0.6894
RoBERTa-I 0.52459 | 0.585,; | 0.754,
Falcon 0.452,; | 0.567,5 | 0.623;
GPT-4 0.666 0.739 0.852
Flan-T5-xI 0.684,; | 0.621,; | 0.8694
Flan-T5-xxlI 0.6331¢ | 0.655:7 | 0.78716

Table 5: Indirect scalar intensity ranking table. Sub-
scripted numbers are the best-performing template
number. The best results across models are in
bold.

We found that models all encode rich informa-
tion about adjective intensity by significantly outper-
forming the baseline. For BERT and RoBERTa, we
again find that direct and indirect probing show sim-
ilar relative performance, with absolute results for
indirect probing lower than those for direct probing.

GPT-4 dominates again in this task as it largely
outperforms all models in one dataset and has com-
petitive performance with Flan-T5-x| in the other
two. The scaling law does not explain the pattern
of results; across different families, Falcon is much
larger than BERT and RoBERTa models but per-
forms much worse. Even within encoder models,
RoBERTa also fails to outperform BERT.

4. Probing Scalar Diversity
Pragmatics

Given that LLMs have different levels of lexical-
semantic knowledge about SAs, we can now ask
whether these different levels correlate with the
LLMs’ ability to draw pragmatic inferences. This
section assesses one particular aspect of this ques-
tion, namely whether models can reason about the
scalar diversity of SAs.

4.1.

In this section, we describe how we use naturalistic
settings to probe LLMs to answer questions about
scalar diversity. We only use instruction-tuned mod-
els in the previous sections, namely Falcon, GPT-4,
Flan-T5-xI/xxI so that they can properly follow in-
structions.

Scalar Diversity Probing Models

4.2. Scalar Diversity Probing Dataset

We use all Sl instances triggered by SAs from PVT
(Pankratz and van Tiel, 2021), GZ (Gotzner et al.,
2018), and RX (Ronai and Xiang, 2022), providing
a total of 152 instances. About 40 human partic-
ipants answer yes or no to each prompt such as

‘Mary: The problem is hard. Would you conclude
from this that Mary thinks the problem is not unsolv-
able?’ Since 40 annotators may not represent very
fine-grained human judgments, we convert these
datasets to binary classifications: we force models
to answer yes or no given a question similar to the
approach used in Ruis et al. (2024) (see the next
subsection for an illustration), and consider the an-
swers to be yes for instances to which at least half
of the participants infer Sls, otherwise no.

An overview of these datasets can be found in
Table 6.

Dataset | Total instance | Yes | No
PVT 50 13 | 37
GZ 70 19 | 51
RX 32 5 27

Table 6: Overview of total instances and answer
counts in scalar diversity datasets.

The above datasets are relatively small. How-
ever, there are no existing large-scale datasets for
scalar diversity triggered by SAs. By using three
such datasets, we hope to provide a reasonable
evaluation of the models’ capabilities.

4.3. Scalar Diversity Probing Method

We note that some models may have inherent pref-
erences for yes or no (e.g. more likely to answer
yes to neutral prompts or vice versa). To debias
them for such preferences, we adopt the following
strategies. First, we feed the full prompt to models
and record the probability for yes and no as the
immediate token following the prompt and denote
them as sy and sn, respectively. For models other
than GPT-4, we apply three strategies to retrieve
their best performance: (i) sy, (ii) weighted prob-
ability for sy (denoted as wy) and (iii) calibrated
probability of wy (denoted as cy). For each strat-
egy, we consider the models’ answer to be yes if
the probability is at least 0.5, no otherwise.
The value of wy is calculated as Equation 3:

Y
Sy + sn 3)

cy is the calibrated probability of wy, which we
calibrate with the probability distribution after soft-
max as Zhao et al. (2021) in practice. We use three
neutral fillers [N/A], empty string, and [MASK] in
positions of scalar claims, which give us six differ-
ent neutral contexts for each template. An example
is provided below, where the black part is prompt
and the blue part is the answer option.

Question:Imagine that your
friend Mary says, "[MASK]"
Would you conclude from this
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that Mary thinks [N/A]?
Only answer yes Or no.

Answer: vyes/no

Given these neutral prompts, we average the
probabilities of wy in each prompt and calculate a
calibration weight matrix W which calibrates the av-
eraged wy to be 0.5 (i.e., neutralize it). We then use
this matrix to calibrate wy in non-neutral prompts
to derive cy.

4.4. Scalar Diversity Experiment and
Results

Because the datasets are unbalanced, we use
macro F1 as the evaluation metric. We use a lo-
gistic regression (LR) model with string-based and
concept-based surprisal features (Hu et al., 2023)
as a baseline."” When making Sl predictions in one
dataset, we use either of the remaining datasets or
both of them to train an LR model. We report the
best performance and strategies for all models in
Table 7.2

Model RX GZ PVT Avg
LR 0.7265x | 0.713nx:pvr | 0.6880, | 0.709
Falcon | 0.458,, 0.534,, 0.578,, | 0.464,,
Flan-T5-xI | 0.835,, 0.757., 0.746,, | 0.779,,
Flan-T5-xxI | 0.897,, 0.867.., 0.726., | 0.816,,
GPT4 0.759 0.598 0729 | 0.695

Table 7: Macro-F1 scores for all models across
datasets. Subscripted letters for the baseline model
(LR) refer to its training dataset. The average result
for LR is taken over the best per-dataset results as a
universal training strategy for all datasets does not
exist. Subscripted letters for non-baseline models
refer to strategies used. The best results across
models are in bold.

Generally, we find that decoder models have un-
satisfying performance in this task. For instance,
Falcon performs below baseline, and GPT-4 only
performs on par with the baseline and underper-
forms Flan-T5 models. Flan-T5-xx| shows the best
results, despite having much space to reach ceiling
performance. This result is slightly different from
generalized implicature probing results from Ruis
et al. (2024), which reports that GPT-4 outperforms
Flan-T5 models.'®

""We drop 4 datapoints in GZ in the baseline as they
do not have the surprisal information.

12Gee full results for non-baseline models (except GPT-
4, which we do not have access to its probability distribu-
tion by the time we conduct this experiment) in Appendix
11.8.

BWe hypothesize this result could be for two reasons.
First, their dataset contains very few direct scalar adjec-
tive comparisons. Second, we report zero-shot results in-
stead of few-shot and chain-of-thought results, although

5. A Critical Appraisal of Results

5.1.

Recall the following surprising result from §3.3: us-
ing simply concatenated adjective strings as inputs
— which are unnatural — yields better direct scalar
intensity ranking results than natural contexts with
single adjectives (G&A).

From the perspective of human language pro-
cessing, recent experimental linguistic works show
that humans derive more robust scalar contrasts
when both strong and weak terms appear salient
in the same context (Ronai and Xiang, 2023a). It
seems reasonable to assume that on different days,
a speaker may describe a movie as good or awe-
some, but actually have the same degree estimate
mentally (e.g. the movie is a 7/10) despite these
terms having different semantic intensities in gen-
eral. However, when using these contrastive adjec-
tives in the same context, it is less likely that they
have the same mental degree estimates. LLMs
may work similarly when computing adjective inten-
sities.

However, we also note that previous works sug-
gest that LLMs tend to memorize information from
training (Zhong et al., 2021) while our prompts are
not natural at all (e.g. good awesome wonderful
great does not exist in Google Ngram corpus). It is
unclear why the ‘bad’ prompting method performs
better than natural G&A templates. We hypothe-
size that attention only picks up salient discourse
elements (i.e. the comparative adjectives), which is
visualized in Figure 3. Natural contexts containing
these adjectives, which might appear in training,
may not differ as much from our prompt when com-
puting SA representations.

‘Bad’ Prompts, Good Results

5.2. Indirect Probing: Lower-bounded

Absolutely, Faithful Relatively

Indirect probing shows unsatisfying absolute results
compared to direct probing in §3. This finding aligns
with Petroni et al. (2019), albeit the relative results
remain unchanged. There are several possible ex-
planations. First, although LLMs encode SA lexical
semantics in word embeddings, they cannot rea-
son about them in complex linguistic constructions.
Second, direct probing in our study utilizes the best
layer-wise information. The indirect method may
not be as good for comprehensively selecting use-
ful information across model layers. Third, although
we have many prompts to get the best performance
out of models, they could nevertheless be biased
by the training corpus distribution if these prompts
are not frequent enough (Zhong et al., 2021).

Ruis et al. (2024) notes that these techniques do not help
GPT-4 performance.
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<s> <S>
A A
is is
good good
B B
is is
awesome awesome
Cc C
is is
wonderful wonderful
D D
is is
great great
</s> </s>

Figure 3: Attention visualization by Bertviz (Vig,
2019). Attention head 10 in the last layer of
RoBERTa-b picks up good, great, wonderful, awe-
some when computing good in the context of ‘A is
good. B is awesome. C is wonderful. D is great.’

5.3. Scaling Does Not Explain
Performance

In the lexical-semantic task (§3), the scaling law
tends to hold. However, it does not explain all the
patterns in the results: RoBERTa underperforms
smaller BERT, Falcon underperforms smaller en-
coder models, and Flan-T5-xI. Lorge and Pierre-
humbert (2023) also reports similar observations
that BERT has better representations of scalar ad-
verbs than RoBERTa. We hypothesize that this can
be explained by training objectives. First, models
that model sentence relations in pre-training tend
to learn fine-grained lexical semantics easier than
those without: BERT features next-sentence pre-
diction, and Flan-T5 models sentence relations in
the encoders and decoders, which forces them to
learn semantics contrastively, which aligns with the
findings in Merrill et al. (2024). Moreover, the fact
that Falcon underperforms RoBERTa, which also
lacks sentence relation training, can be explained
by that the decoders only model left-hand context,
which constrains them from reasoning about useful
right-hand contexts. However, it is nevertheless sur-
prising that Flan-T5-xxI underperforms the smaller
Flan-T5-xI. We leave this question for future inves-
tigations.

5.4. Good Lexical Semantics Does Not
Entail Good Pragmatics

In scalar diversity reasoning (section 4), GPT-4 per-
forms worse than the much smaller Flan-T5 models,
even though it is the best-performing model in the
lexical-semantic task. We find that GPT-4 predicts
no for at least 90% of the instances. Instead of
forcing a yes or no answer in section 4, we try free
generation here to gain further insights. Figure 4

displays one instance where humans are confident
in saying yes, but GPT4 says no. We see that the
model is quite conservative in making statements
about implicit status.'

‘2 Prompt: Mary says: It is likely. Would you
conclude from this that, according to Mary, it is not
certain?

& GPT-4: Not necessarily. The term "likely" suggests
a high probability, but it does not explicitly rule out
certainty. Mary could believe it is certain but is using
the term "likely" to express this belief.

Figure 4: Free generation results for GPT-4 using a
prompt from GZ without forcing yes or no answers.

Considering linguistic capabilities, we may not
always expect models that are good at one task to
be good at another. Weissweiler et al. (2022) also
note that better syntax does not always mean better
semantics. Specifically, the gap between semantic
and pragmatic capabilities in our work can be ex-
plained by the fact that a weaker scalar alternative
does not always give rise to the negation of the
stronger one. Humans consider various factors in
addition to lexical semantics such as the discourse
context, the frequency of the implicature (Pankratz
and van Tiel, 2021), politeness (Gotzner and Maz-
zarella, 2021), and other social factors. Even more
confoundingly, humans also need to consider the
possibility that conversational implicatures might
be canceled in the subsequent discourse (Potts,
2015). Due to these complicated concerns, mod-
els need to both understand SA lexical semantics
and reason pragmatically about various contextual
factors to derive implicatures. Thus, good seman-
tic models may not be good pragmatic models in
reasoning about communicative intentions.

6. Conclusion

This paper has shown that LLMs of different sizes
and architectures encode rich information about SA
lexical semantics. Moreover, we have shown that
good lexical-semantic knowledge of SAs does not
always give rise to good performance in the prag-
matic reasoning task about their scalar diversity.
Finally, we leveraged both linguistic intuitions and
model training objectives to provide an analysis for
our probing results.

Although conversational implicatures can be can-
celed (Grice, 1975) for discussion), we wish to empha-
size that the paper investigates the degree to which LLM
behavior matches that of an independently collected,
normed, dataset. The possibility of cancellation is less
evident to the experimental participants in the dataset
collection.
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7. Limitations

One limitation of our research is that we only use
a binary classification for labels. We recognize
that scalar diversity can be more fine-grained than
simple yes or no. Moreover, we also note that
the datasets that we use for scalar diversity task
are relatively small and only constrained to SAs,
which is due to the sparsity of large-scale scalar
reasoning datasets'® We encourage future works
to undertake larger-scale collections of fine-grained
datasets to evaluate models and train them to suit
relevant needs.

Finally, some of our test datasets (e.g. ukWac)
are published before the release of our models.
LLMs may have already seen the test materials. As
discussed in (La Malfa et al., 2024; Drinkall et al.,
2024), evaluations of LLMs may be artifactually
high because of the difficulties in ensuring that the
test data are truly invisible during training. Future
works can investigate this problem further.
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11. Appendix

11.1. Alternative Methods for Scale Membership Probing

Instead of summing up the weakest and strongest adjectives on each half-scale as the scale vector,
and ranking the cosine similarity between each adjective and scale vectors for their scale memberships,
we also experimented with computing the cosine similarity between each adjective and all adjectives
on different scales, and averaging the similarity (we skip the assessed adjective itself when computing
similarity with the scale it belongs to). We report results for the best-performing layers below. We observe
that using the end adjectives provides better results than all adjectives (i.e. the method in the main
content).

Models DM CD WK
fast-text 0.748 0.445 0.958
BERT-b 0.660+0.009 | 0.46110.020 | 0.941 0012
BERT-I 0.707+0.013 | 0.48110014 | 0.9381¢.013
RoBERTa-b | 0.342_ (21 | 0.203419.015 | 0.61240.043
RoBERTa-I 0-53510‘016 0.326:&0,016 0.856:‘:0.019

Table 8: Direct scale membership probing results by comparing averaged cosine similarities between
the target adjective to all adjective members on different scales (in comparison to calculating the cosine
similarity between the target adjective and the scale vector in the main content). Subscripted numbers
are standard deviation in ten runs. The best results per dataset are in bold.

Next, we show some alternatives to mean pooling, the pooling method used in the main content. In
contextualized representation computation, we used mean pooling when words are segmented. Instead
of mean pooling, we also tried max/min pooling. We report the results below (we use end adjectives in
this experiment). Generally, mean pooling performs better.

Models DM CD WK

BERT-b 0.81540.009/0.807 +9.006 | 0.783+0.011/0.775+0.010 | 0.997+0.004/0.996-0.004

BERT-I 0.835.10.011/0.83210.011 | 0.78710.010/0.78910.000 | 0.998.10.003/0.998 0 003
RoBERTa-b 0642:‘:0009/0641 40.008 0.682:‘:0.007/0.684i0'006 0.881 10.023/0.881 40.016
RoBERTa-I 0.727 +0.010/0.728+9.006 | 0.72140.007/0.7209.008 | 0.95440.011/0.95040.014

Table 9: Direct scale membership probing results using min/max pooling (left/right). Subscripted numbers

are standard deviation in ten runs.
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11.2. Full Table of Scalar Intensity Ranking Results

Model DM cD WK
Dvec | Method | P-ACC T ) P-ACC T P P-ACC T )
v | GaA - - 0.735 | 0.668 | 0.745 | 0.902 | 0.803 | 0.820
BERT.base Ours ; - ; 0.706 | 0.604 | 0.681 | 0.967 | 0.934 | 0.951
cp | G8A | 0646 | 0431 | 0.509 - - - 0.852 | 0.705 | 0.756
Ours | 0.639 | 0.417 | 0.522 ; - ; 0.902 | 0.803 | 0.883
Wk | G&A | 0584 | 0303 | 0.317 | 0.704 | 0.602 | 0.685 - - :
Ours | 0.584 | 0.295 | 0.360 | 0.694 | 0.581 | 0.659 - ; -
G&A - - - 0.731 | 0.663 | 0.717 | 0.918 | 0.836 | 0.815
BERT-large DM 1 ours . - - 0.727 | 0.650 | 0.703 | 0.902 | 0.803 | 0.873
cp | G8A | 0695 | 0531 | 0.623 - - - 0.918 | 0.836 | 0.868
Ours | 0.673 | 0.488 | 0.606 - - - 0.918 | 0.836 | 0.900
Wk | G&A | 0613 | 0362 | 0372 | 0.707 | 0.605 | 0.649 - - -
Ours | 0.628 | 0.391 | 0.445 | 0.706 | 0.605 | 0.685 | - ; -
GaA - 0.645 | 0.485 | 0.536 | 0.820 | 0.539 | 0.727
RoBERTa-base | DM | o o ; - ; 0.748 | 0.698 | 0.759 | 0.934 | 0.869 | 0.929
cp | G&A | 0540 | 0207 | 0222 : ; - 0.820 | 0.640 | 0.710
Ours | 0.648 | 0.431 | 0.558 ; - ; 0.918 | 0.836 | 0.893
Wk | G&A | 0557 [0233 0253 | 0599 | 0377 | 0.450 - - :
Ours | 0.597 | 0.326 | 0.469 | 0.661 | 0.500 | 0.601 - - -
GBA n 0.682 | 0.561 | 0.620 | 0.836 | 0.672 | 0.807
RoBERTa-large | DM | ¢ . - ; 0.752 | 0.702 | 0.783 | 0.934 | 0.869 | 0.912
op | G&A | 0595 | 0323 [ 0378 : ; - 0.820 | 0.639 | 0.690
Ours | 0.664 | 0.465 | 0.612 ; - ; 0.902 | 0.803 | 0.880
Wk | G&A | 0558 0241 | 0261 | 0.645 | 0478 | 0.571 ; - ;
Ours | 0.642 | 0.417 | 0.544 | 0.685 | 0.558 | 0.673 ; ; -

Table 10: Full evaluation results of applying our methods to different models with additional metrics
Kendall's 7 and Spearman’s p. The best results across models and methods are marked in bold. Best

results using the same model and Dvec resource are underlined.

11.3. Construction templates and examples for scale membership indirect probing

Index

Template

Example for adjs
on the same scale

Example for adjs
on different scales

ADJ yeqr, O €ven ADJgirong

warm or even hot

#warm or even tasty

ADJweak if not ADJStT'Ong

warm, if not hot

#warm if not tasty

ADJweaka or even ADJstrong

warm, or even hot

#warm or even tasty

BN —

ADJweaks if not ADJst’r‘ong

warm, if not hot

#warm, if not tasty

Table 11: Construction templates with which adjectives on the same scale are more likely to appear than
those on different scales. # means pragmatically bad expressions.
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11.4. All Templates Used for Indirect Scalar Adjective Intensity Ranking Probing

Index weak-strong Index strong-weak
ADJ.year but not ADJirong 22 not ADJ¢rong just ADJyeak
ADJeqr @and almost ADJtrong 23 not ADJgtrong, just ADJyeak
ADJycar @and even ADJgirong 24 not ADJ¢rong bUt just ADJycak
ADJyeqr OF even ADJgtrong 25 not ADJ¢rong, Ut just ADJyeak
ADJ,,cqr although not ADJrong 26 not ADJ¢rong bUt Still ADJyeak
ADJ yeqr if Not ADJsirong 27 not ADJ¢rong, bUt just ADJyeak
ADJycqr though not ADJ,trong 28 not ADJ¢rong Still ADJyeqk
ADJcqr O @lmost ADdgirong 29 not ADJ¢rong, Still ADJyyeqk
ADJycar, and even ADJirong 30 not ADJ¢rong although still ADJycqk
ADJcak, Or even ADJgirong 31 not ADJrong, although still ADJ eqr
ADJ cqk, Or almost ADJirong 32 not ADJ¢rong, though still ADJ,cqr
ADJcar, @and almost ADJsirong 33 not ADJ¢rong though still ADJ e

ADJeqr though not ADJrong

ADJyeqk, although not ADJsrong

ADJeak, but not ADJ oy

ADJyear, if not ADJgirong

not Only ADJweak but ADJstTong

not just ADJcqr bUt ADJgtrong

ADJweak even ADJstrvng

ADJycar @lmost ADJirong

ADJweaky even ADJstrong

N8 333 3 o = @ | =| 3 ©| 0| N o ol ol o] = ©

ADJycak, almost ADJsrong

Table 12: All templates used in computing scalar adjective intensity ranking.

11.5. Held-out Prompt Engineering Results

In the main content of the paper, we report indirect probing results using the best-performing template for
each model. This may incur some concerns about generalizability. Here, we choose the best-performing
prompt in the other two datasets when evaluating one dataset. For GPT-4, we simply use the best template
found in other models. Our general conclusion remains unchanged.

Models DM CD WK
Google Ngram | 0.287; | 0.075; | 0.368;
BERT-b 0.425; | 0.066, | 0.167;
BERT-I 0.482; | 0.102; | 0.250,
RoBERTa-b 0.266; | 0.050, | 0.114,
RoBERTa-I 0.463; | 0.100, | 0.286;
Falcon 0.265; | 0.045; | 0.167;
GPT-4 0.540 | 0.273 | 0.500
Flan-T5-xI 0.544; | 0.1775 | 0.500;
Flan-T5-xxI 0.5155 | 0.1565 | 0.3643

Table 13: Indirect probing results for scale membership with the best prompt found in held-out datasets.
The best results per dataset are in bold. Subscripted digits are the best template indexes.
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Models DM CD WK
Google ngram | 0.312;, | 0.222, | 0.442,
BERT-b 0.546, | 0.509; | 0.623;
BERT-I 0.529,; | 0.5185, | 0.7383,
RoBERTa-b 0.544,, | 0.52719 | 0.68914
RoBERTa-I 0.513; | 0.555, | 0.7214
Falcon 0.451 18 0.56718 0.60718
GPT-4 0.666 0.739 0.852
Flan-T5-xI 0.648.5 | 0.612,5 | 0.754,~
Flan-T5-xxI 0.564,; | 0.582:5 | 0.770¢~

Table 14: Indirect scalar intensity ranking table. Subscripted numbers are the best-performing template

number. The best results across models are in bold.

11.6. Model Implementation Details

Flan-T5 and Falcon models are run with float16 precision. All open-source models are run on V100, A100,
and M1 chip. GPT-4 is queried via OpenAl APl in 2023. Temperature is set to 0 and top_p is 1 where

applicable.

11.7. Prompts Used for GPT-4

In this section, we provide two prompt examples for GPT-4.

Adjective scale alignment Do not provide explanations. Give five most likely words following the
phrase: ADJ .1, Or even

Adjective intensity ranking Prompt: Do not provide explanations. Which of the following phrases is
more natural? Answer none if they are equally unnatural. A. not just ADJ ,cqr, but ADJsirong B. NOt just
ADJstTong but ADJweak,,-

In adjective intensity ranking, we randomly shuffle the correct answer index to avoid heuristics. The
model is expected to return the first phrase as the answer for adjective pairs with unequal intensities, and
none for those with equal intensities.

11.8. Scalar Diversity Results for All Non-baseline Models (except GPT-4) and

Strategies

Strategy | Datasets | Falcon | Flan-T5-xl | Flan-T5-xxI

RX 0.458 0.714 0.897

sy GZ 0.421 0.683 0.850

PVT 0.425 0.688 0.689

Average | 0.435 0.695 0.812

RX 0.135 0.714 0.855

W Gz 0.323 0.683 0.850

y PVT | 0206 | 0.688 0.726

Average 0.221 0.695 0.811

RX 0.281 0.835 0.855

cy GZ 0.534 0.757 0.867

PVT 0.578 0.746 0.726

Average | 0.464 0.779 0.816

Table 15: Full table of scalar diversity results. The best results per model per dataset are marked in bold.

13049




	Introduction
	Related works
	Scalar Adjective Lexical Semantics
	Scalar Implicature and Scalar Diversity Pragmatics
	Direct and Indirect Probing

	Probing Lexical Semantics
	Datasets for Lexical-Semantic Probing
	Scalar Adjective Datasets
	Context Sentence Datasets

	Probing Scale Membership
	Scale Membership Direct Probing Method
	Scale Membership Direct Probing Experiment and Results
	Scale Membership Indirect Probing Method
	Scale Membership Indirect Probing Experiment and Results

	Probing Scalar Intensity
	Scalar Intensity Direct Probing Method
	Scalar Intensity Direct Probing Experiment and Results
	Scalar Intensity Indirect Probing Method
	Scalar Intensity Indirect Probing Experiment and Results


	Probing Scalar Diversity Pragmatics
	Scalar Diversity Probing Models
	Scalar Diversity Probing Dataset
	Scalar Diversity Probing Method
	Scalar Diversity Experiment and Results

	A Critical Appraisal of Results
	`Bad' Prompts, Good Results
	Indirect Probing: Lower-bounded Absolutely, Faithful Relatively
	Scaling Does Not Explain Performance
	Good Lexical Semantics Does Not Entail Good Pragmatics

	Conclusion
	Limitations
	Acknowledgements
	Bibliographical References
	Language Resource References
	Appendix
	Alternative Methods for Scale Membership Probing
	Full Table of Scalar Intensity Ranking Results
	Construction templates and examples for scale membership indirect probing
	All Templates Used for Indirect Scalar Adjective Intensity Ranking Probing
	Held-out Prompt Engineering Results
	Model Implementation Details
	Prompts Used for GPT-4
	Scalar Diversity Results for All Non-baseline Models (except GPT-4) and Strategies


