PRIMO: Progressive Induction for Multi-hop Open Rule Generation

Jianyu Liu, Sheng Bi*, Guilin Qi
Southeast University, Nanjing, 211189, Jiangsu, China
{liujianyu, bisheng, gqi}@seu.edu.cn

Abstract

Open rule refer to the implication from premise atoms to hypothesis atoms, which captures various relations between
instances in the real world. Injecting open rule knowledge into the machine helps to improve the performance of
downstream tasks such as dialogue and relation extraction. Existing approaches focus on single-hop open rule
generation, ignoring multi-hop scenarios, leading to logical inconsistencies between premise and hypothesis atoms,
as well as semantic duplication of generated rule atoms. To address these issues, we propose a progressive
multi-stage open rule generation method called PRIMO. We introduce ontology information during the rule generation
stage to reduce ambiguity and improve rule accuracy. PRIMO constructs a multi-stage structure consisting of
generation, extraction, and ranking modules to fully leverage the latent knowledge within the language model across
multiple dimensions. Furthermore, we employ reinforcement learning from human feedback to further optimize
model, enhancing the model’s understanding of commonsense knowledge. Experiments show that compared to
baseline models, PRIMO significantly improves rule quality and diversity while reducing the repetition rate of rule atoms.

Keywords: Open rule, Pre-trained language model, Reinforcement learning from human feedback

1. Introduction

Rules usually refer to objective regularities or log-
ical relationships of domain concepts, usually ex-
pressed in the form of “if-then” statement (Novak
and Lehmke, 2006). Rules can describe most
complex knowledge, while naturally incorporating
domain-specific knowledge (Chi, 2010). When rea-
soning based on rule, users can intuitively under-
stand the process logically (Wason, 1968). There-
fore, rules are widely used in downstream appli-
cations, such as intelligent data analysis (Becquet
et al., 2002) and knowledge discovery (Garcia-Vico
et al., 2018). For example, Lin et al. (2001) sug-
gested that rule-based reasoning can quickly nar-
row the search space in question answering.

Rule generation aims to discover rules that sat-
isfy logical constraints from large amounts of data.
Traditional research has been devoted to generat-
ing rules by observing data commonalities. For
example, one of the core tasks of Inductive Logic
Programming (ILP) (Muggleton, 1999) is to mine
rules in the form of Horn clauses from data (Raedt
and Kersting, 2004). Since the axioms of the rules
are restricted to the entities and relations already
present in the given context, this leads to a limited
and fragile expression of such rules (Wrobel, 2001).
Furthermore, these methods have weak generaliza-
tion capabilities due to the scale of the knowledge
source (Muggleton, 1999).

In recent years, some researchers proposed
open rule generation, aiming to generalize more di-
verse rules from large-scale open KBs. Hwang et al.
proposed COMET (2021), a pre-trained language
model that can learn commonsense from natural
language. Given any text, COMET can generate

* Corresponding author

new rules of the form of If-Then statement. How-
ever, COMET’s training dataset, ATOMIC2020 (Sap
et al., 2019), contains only 23 manually defined re-
lations, which limits the types of rules that can be
generated. Orion (Cui and Chen, 2021) adopts an
unsupervised approach to utilize the knowledge in
the Pre-trained Language Models (PLM) to auto-
matically mine open rules. However, since it does
not consider the ontological information of the en-
tities in the rules, Orion tends to generate rules
that are not logically self-consistent. Existing ap-
proaches focus on single-hop open rule generation,
i.e. the generation of multiple parallel hypothesis
atoms based on given premise atoms. However,
it is difficult to extend to some complex scenarios
due to the short chain of rule reasoning and weak
expression of complex logic capabilities, such as
multi-round dialogues. In multi-hop open rule gen-
eration, the currently generated hypothesis atom
must take into account all previously generated
rule atoms, which places higher demands on the
model’s reasoning ability. In addition, multi-hop
open rule generation requires the model to own
global information awareness. Existing methods
do not have long-term context awareness, which
leads to logical incoherence between atoms.

To address these issues, we propose PRIMO
— a ProgRessive multi-stage Induction method for
Multi-hop Open rule generation. By introducing
ontological information of entities into the hypo-
thetical atom generation procedure, the genera-
tion of incorrect rules can be effectively mitigated.
Considering the reasoning challenges of multi-hop
open rules, we introduce generation, extraction
and ranking modules in each sub-rule generation
phase. Multiple modules are connected through
the designed prompt, and the modules collaborate

12988

LREC-COLING 2024, pages 12988-12998
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

with each other to progressively generate multi-hop
open rules. To reduce the repeated generation
of rule atoms, we update the prompt after each
derivation to learn the prior information of the gen-
erated atoms. Finally, after fine-tuning the model,
we construct reward signals based on human feed-
back, which further enhance reasoning with com-
mon sense through reinforcement learning.

To evaluate the effectiveness of multi-hop open
rule generation, we constructed a benchmark
dataset and evaluated various systems using a
wide range of automated metrics and human judge-
ment.The results show that PRIMO effectively im-
proves performance by splitting rule generation into
multiple stages. Moreover, thanks to the stage-
wise updating strategy of prompts, our approach
significantly reduces the generation of repetitive
atoms. It outperforms a series of baseline models
and achieves performance close to LLM, confirm-
ing the effectiveness and superiority of PRIMO.

2. Related Work

Text generation based on PLM Early research
on text generation primarily relied on manual rules
and predefined templates (Kale and Rastogi, 2020).
These methods involved creating templates for text
generation by manually extracting features and
applying some simple syntactic and grammatical
rules to organize the generated text. Rule-based
and template-based approaches required a signif-
icant amount of manual effort and were limited in
their application due to fixed generation patterns
and narrow use cases. With the development of
deep learning, models such as Recurrent Neural
Networks (RNN) (Cho et al., 2014), Long Short-
Term Memory Neural Networks (LSTM) (Greff et al.,
2017), and Transformer (Vaswani et al., 2017) have
brought significant performance improvements in
text generation. Recently, text generation meth-
ods based on pre-trained language models have
demonstrated unparalleled performance, capable
of generating fluent text in few-shot and zero-shot
scenarios (lgbal and Qureshi, 2022).

Open rule generation Open rule generation in-
volves summarizing and inducing rules from an
open knowledge base (KB), which means deriving
new information from known information. Previ-
ous work has focused on discovering rules within
systems, and traditional rule generation meth-
ods typically rely on closed datasets, such as
Inductive Logic Programming (ILP) (Raedt and
Kersting, 2004), AMIE(Galarraga et al., 2013),
AMIE+(Galarraga et al., 2015), and other meth-
ods. These methods have limited expressive power
since they lack common sense, and their rules are
restricted to existing entities and relations. John Mc-
Carthy (1984) suggested that these rules lack com-

monsense and are “difficult to extend beyond the
scope originally contemplated by their designers”.
In recent years, researchers have discovered that
PLM can serve as high-quality open KBs (Petroni
et al., 2019; Wang et al., 2020)and commonsense
KBs(Sap et al., 2019; Trinh and Le, 2018). COMET
(Hwang et al., 2021) was trained on annotated If-
Then rule sets, extending the knowledge represen-
tation from structured KBs to open natural language
knowledge. However, COMET is limited by the type
of rules for a given KB, which deviates from the prin-
ciple of summarizing data commonalities to gener-
ate rules, resulting in a weaker expression. Cui et
al. (2021) proposed an unsupervised rule genera-
tion method called Orion, indicating that PLM can
be leveraged as a KB to discover commonalities
in data. However, Orion ignores the ontological
information associated with the rules. As a result, it
may generate rules that are logically inconsistent.

3. Problem Definition

Rules employ logical symbols to describe implicit
concepts or patterns in data. This paper refer-
ences the definition of an open rule based on Horn
clauses (Schoenmackers et al., 2010). In Horn
clauses, atoms are facts that may contain variables
in the subject and/or object (Schoenmackers et al.,
2010). Cui et al. (2021) define an open rule as an
implication from a premise atom to a hypothesis
atom. We will follow the same definition in this pa-
per. The formal definition of an open rule is given
in the following form:

Definition 1 (Open rule). The open rule is a logical
deduction from the premise atom (x, r,, y) to the
hypothesis atom (x,r;, y):

(x’rp’y)_>()@rhay) (1)

where r, and r, represent relations described in
natural language. This rule suggests that if en-
tity x and y have r,, they are also likely to have
rn,. In contrast to rules with strict formal defini-
tions, open rules have a more expressive form,
which makes them better suited to capture the
complexities of the real world. For example, the
open rule (x,was born in,y) — (x,is citizen of,y)
means that a person being born in a particular
country (usually) is a citizen of that country. And
(Kobe,was born in,USA) — (Kobe,is citizen of ,USA)
is an instance of the rule mentioned above.

Given a premise atom (x,r,,y), we aim to induce
one most relevant hypothesis atom from LM. Specif-
ically, we define the problem as follows:
Definition 2 (Open rule generation). For a given
premise atom (x,r,,y), find the r, with the highest
probability P(r, | r,) ;and then obtain the hypothesis
atom (x,ry,y). In an open rule, the number of logi-
cal deductions from the premise atom is called its

12989

hop number. Single-hop open rules have a weaker
logical reasoning capability due to shorter reason-
ing chains. In practical application scenarios, there
is a greater need for multi-hop open rules.
Definition 3 (Multi-hop open rule generation).
Starting from the premise atom, deduce forward in
sequence to generate a series of hypothesis atoms
that form a chain of rules:

(xX,7p,¥) = (X, 101,Y) = (6 702,5) = oo (2)

The challenges of multi-hop open rule generation
are mainly in two aspects:

(1) Logical Inconsistency: Unlike single-hop rule
generation, where only one logical deduction is per-
formed, in multi-hop rule generation, each hop gen-
eration must consider all previously generated rule
atoms. The complexity of inference will increase
due to the above requirement. Ensuring logical
coherence is critical to the task, and contradictions
among rule atoms should be avoided.

(2) Semantic Repetition: During multi-hop gen-
eration, generating atoms with semantic repetition
compared to previously generated atoms is unde-
sirable, as such they do not provide any valuable
information. Therefore, the semantics of each atom
should be diversified to reduce semantic repetition.

4. PRIMO

As shown in Figure 1, PRIMO consists of three
stages, i.e., Generation, Extraction, and Rank-
ing, connected sequentially. The Generation mod-
ule creates descriptions of hypothesis atoms based
on the premise atoms. The Extraction module re-
trieves hypothesis atoms implied in the text output
of the generation stage, and the Ranking module
evaluates the plausibility of candidate hypothesis
atoms. The design reasons for the progressive
framework can be summarized as follows:

(1) We observed that adopting an end-to-end
approach, where the model directly generates hy-
pothesis atoms, makes it challenging to explore
a logically coherent rule chain and tends to gen-
erate repetitive rule atoms. By combining three
small-scale language models, each model serv-
ing a different purpose, and refining the reasoning
process, we can achieve better generation perfor-
mance. By dividing the process into distinct stages
— Generation, Extraction, and Ranking — we believe
that a multi-stage approach is more controllable
and transparency in rule generation compared to
a single-stage method, as we can directly observe
the output of each stage and adjust the model for
a particular stage individually.

(2) Each module is independent and exhibits
good transferability. PRIMO utilizes different base
models in each stage, enabling these models

to complement each other’s strengths and weak-
nesses. Atthe same time, the flexibility of the frame-
work allows the underlying model to be changed
at any stage as needed to improve overall perfor-
mance, rather than relying entirely on the perfor-
mance of any singlone model. By fine-tuning the
models separately for different domains of data, we
enhance the overall network’s transferability. We
will discuss thprovide details of the architecture
from Sec. 4.1 to Sec. 4.4.

4.1. Generation

Due to the substantial implicit common sense con-
tained within PLM, this work aims to establish a
high-performance open rule generation method
that can be achieved without manual annotation.

Cui et al (2021) suggests that the lack of on-
tology information about entities may lead to se-
mantic conflicts between premise and hypothesis
atoms. For instance, given [X] is a provin-
cial capital of [Y],Orion may output some
atomslike [X] is a river of [Y].Therefore,
we attempt to introduce entity type information into
the open rule generation process to improve the
correctness and diversity of rule. Because adding
type information can provide ontology-level con-
straints, we provide it to the Generation module for
a given atomic entity pair.

Initially, we input a prompt into the PLM. As
shown in Figure 1, the prompt for the Generation
module is constructed as follows: “If A is
typeA, B is typeB, premise atoms, then
what other relationships can we de-
rive between A and B?” It contains three
slots, typeA and typeB, which are filled with the
type information of entity A and entity B. And
premise atoms, which consists of the given premise
atom. Importantly, during the subsequent multi-hop
generation, in addition to the provided premise
atom, premise atoms need to be updated to include
the atoms generated in the previous generations.

The goal of the Generation module is to induce
the model to “speak out” its internal implicit knowl-
edge commonalities based on the initial informa-
tion provided by the prompt, thereby generating
rule atoms. Therefore, through a “dialogue” with
the prompt, the Generation module is tasked with
describing other potential relations that may exist
between entity pairs. Taking into account the na-
ture of the task, we choose GPT-2, which is well
suited forexcels at generative tasks, as the base
model for the Generation module.

4.2. Extraction

As previously stated, the Generation module per-
forms reasoning on potential relations between
pairs of entities based on the provided premise

12990

: (A, is the nationality of, B) |A’s type|: country,|B’s type|: physician

1
Prompt If Ais[country) B is(physician), [Ais the nationality of B |
P then what other relationships can we derive between A and B?

i

e

) Generation

<=
Prompt

Based on the information given, we can
derive the following relationships [Please extract relationships]

betweenA and B: from the given passage

1. Bis a citizen of countryA. “ ” <|endoftext>

2. B may be familiar with the culture of

CN— Text

©) Ranking
Open rule chain

(If Ais country, B is physician, A\

is the nationality of B, then we
L can get|B is a citizen of A)

countryA.

A, is the nationality of, B! :

| =)=

(IfAis country, B is physician, A)

is the nationality of B, then we
can getB be familiar with A
|

[B, is a citizen of ,A]

=D

[8 be famiiarwith A |

J

2
B, is a citizen of , A @ (ﬂ %

Update

(IfAis country, B is physician, A is)
the nationality of B, then we can

[B, has medical licensed in, A]

@ Extraction

get(B has medical licensed in A
|

Figure 1: PRIMO consists of three modules. Generation module creates descriptions of hypothesis atoms
based on the premise atoms. Extraction module extract atoms implied in text output of the generation
stage. Rank module evaluates the plausibility of candidate hypothesis atoms.

atoms. The output text from the Generation mod-
ule contains a wealth of reasoning knowledge, in-
cluding an analysis of entity pair type information,
descriptions of the establishment of premise atoms,
and scenarios of other possible relations that may
exist between entity pairs. We need to summarize
and extract the key information from the output of
the Generation module. Therefore, we design the
Extraction module to accomplish this task.

As shown in Figure 1, the Extraction module first
fills the Text generated by the Generation module
into predefined slots in a prompt and then feeds
this prompt to the model. After fine-tuning, the
model learns to extract hypothesis atoms from the
given text. Therefore, the model outputs a set of
candidate hypothesis atoms.

Similar to the Generation module, we choose
GPT-2 as the base model for the Extraction module.
Although the prompt aims to instruct GPT-2 to ex-
tract only hypothesis atoms from the given text, we
found that the model may still output some atoms
that do not exist in the given text. We attribute this
to GPT-2’s limitation in ensuring factual accuracy.
To achieve better extraction performance, we fur-
ther optimize GPT-2 using reinforcement learning
from human feedback, as described in Sec. 4.5.

4.3. Ranking

As described above, we have obtained a set of
candidate hypothesis atoms in the first two stages.
However, these atoms may have problems such
as logical inconsistency and semantic repetition
with existing atoms. In the next stage, we need to

evaluate the plausibility of these generated atoms.

First, as shown in Figure 1, each candidate
hypothesis atom is filled into a statement that is to
be evaluated. This statement follows the format:
“If A is typeA, B is typeB, premise atoms,
we can get hypothesis atom.” A total of n state-
ments are generated, where n is the number of
hypothesis atoms output by the Extraction module.
Next, these statements are fed into a well-trained
Bert. Bert encodes and scores these n statements,
and the hypothesis atom with the highest score
is considered the most reliable and is added to
the open rule chain. The goal of Bert is to map
an input text sequence to a reward value, which
numerically corresponds to human preferences.

For Bert’s training, we use ranked sequences of
open-rule statements, rather than artificially scor-
ing the statements directly, in order to mitigate
the potential noise caused by variations in anno-
tators’ perspectives and to reduce the bias intro-
duced by subjective human scoring. For exam-
ple, if there are four hypothesis atoms and their
order is A > B> C > D, and we need to train a
scoring model so that it can assign appropriate
scores to the four atoms based on the order, i.e.,
r(A) > r(B) > r(C) > r(D). Here r() represents the
score of the atom. Therefore, the loss function is
designed as follows:

loss(0) = — Z [log (o (re (yw) — 16 (y¢)))]

w<l

(3)

where y,, represents all the atoms ranked above
ye. To better normalize the differences, we applied
a sigmoid function to each pairwise difference to

12991

bring the values into the range of 0-1. After training,
the model’'s scoring of hypothesis atoms reflects
human value judgements, allowing the plausibility
of atoms to be assessed.

4.4. Multi-hop Open Rule Generation

The multiple-hop generation of the open rule can
be viewed as consisting of n successive single-hop
generations. Through the Generation-Extraction-
Ranking process, we can obtain the hypothesis
atom that the model deems most reasonable given
the current information. Then, as shown in Fig-
ure 1, we record the top-ranked generated atom
and add it to the end of the open rule chain. For the
next hop of rule generation, the hypothesis atom
generated in the previous hop should serve as the
premise atom for the current hop’s rule generation.
So the Generation module needs to consider all the
premise atoms in the chain. We update the Genera-
tion module’s prompt with the premise atoms along
the chain, starting with the initial atom and concate-
nating all the atoms in the order they were gener-
ated. The prompt of the Extraction module remains
unchanged and continues to output the candidate
hypothesis atoms extracted from the text gener-
ated by the Generation module. The statements
inputted into Ranking must also update the con-
tents of the premise atoms. Hence, the open rule
chain is continuously updated, repeating the single-
hop generation incrementally to generate multi-hop
open rules until the chain reaches the predefined
length. Since both the Generation and Ranking
modules have global information updates, PRIMO
combines the information from all known atoms
when completing the next hop generation. This
helps ensure logical consistency between atoms
and reduces semantic repetition.

4.5. RLHF

ChatGPT proposed by OpenAl (OpenAl, 2022)
breaks the boundaries between machines and hu-
mans. This innovative model excels in various
domains of tasks. The underlying work is based
on a novel training paradigm in the field of Large
Language Models (LLMs), namely Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022). Over the past few years, the ability
of various LLMs to generate diverse text based on
prompts has been quite impressive. However, the
evaluation of the generated results is subjective
and context dependent, making it challenging to
measure these results using existing text genera-
tion metrics such as BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004).

For instance, the goal of open rule generation is
to produce genuine information. Existing methods
typically rely on next-word prediction and simple

loss functions, such as cross-entropy. However,
these methods lack the explicit incorporation of
human preferences and subjective opinions. RLHF,
on the other hand, employs reinforcement learning
to optimize the model directly based on human
feedback, encouraging the model’s output to align
with complex human values. To further enhance
the rationality of the rule generated by PRIMO and
to improve the performance of each stage in the
model, we use RLHF for additional optimization.

For the Generation module, our objective is to
ensure that the generated text adheres to factual
correctness as much as possible while avoiding
redundancy with known information. For the Ex-
traction module, our goal is to ensure that the ex-
tracted results are faithful to the original text, match-
ing with the descriptions in the text generated by
the Generation module, without introducing unre-
lated information. Since the Ranking module is
pre-trained with annotated data, its scoring results
are to some extent a reflection of human value pref-
erences. Therefore, it serves as the reward model
for the Generation module in RLHF. Considering
different optimization objectives, for the Exiraction
module, we employ human judgment to directly
score the results in RLHF.

We utilize Proximal Policy Optimization (PPO)
(Schulman et al., 2017) to optimize the initial PLM
parameters. During the training of the Generation
module, the input and output are aligned with the
configuration in Figure 1. Subsequently, the Ex-
traction module performs extraction and the reward
value of the Generation module is the maximum
score among all the hypothesis atoms evaluated
by the Ranking module. In the training of the Ex-
traction module, we fill the text generated by the
Generation module into the prompt, and then judge
the output result by human scoring. Based on the
score, we use PPO to optimize the model and com-
plete the training for one data point. The updated
the Extraction module then proceeds to the training
of the next data point, continuously optimizing the
model. To prevent the optimization from getting
out of control, we introduce KL divergence (van
Erven and Harremoés, 2014) as a constraint on
the objective function for the optimization:

I‘:rg—/’Lr](L (4)

where rg is the reward, and rg; calculates the KL
divergence between the model’s outputs before
and after the update, which serves as a penalty
term. In this way, we enable PRIMO to better adapt
to human preferences, resulting in rules that more
closely resemble common-sense cognition.

12992

5. Experiment

5.1. Dataset

In order to evaluate the effectiveness of multi-hop
open rule generation, we construct our benchmark
dataset which contains 495 premise atoms. To
build premise atoms that describe x and y, we
collect relations for pairs of entities from Free-
base (Bollacker et al., 2008). First, we need to
use SPARQL queries (Harris and Shadbolt, 2005)
on Freebase (Bollacker et al., 2008) to find entities
with the properties name (type.object.name) and
type (common.topic.notable.types). However, we
found that the entities retrieved in this way may still
contain some conceptual entities rather than physi-
cal entities. To address this, we add the constraint
properties (common.topic.description) to the query
statement. Then, starting from the retrieved entities,
we query entities that also have the three proper-
ties, and are connected to the first entity by the
relation entityl — entity2. The former is denoted as
entityl, the latter as enrity2. We record their respec-
tive name, type, and the relation entityl — entity2.

ChatGPT has sparked extensive discussions
in the NLP community and society at large. It
can engage in natural and fluent conversations
with users, providing intelligent question-answering
and text generation capabilities for various scenar-
ios. Therefore, in this work, we want to leverage
ChatGPT’s powerful text generation capabilities to
achieve an Al self-sufficiency training mode. As
shown in Figure 2, we start by querying ChatGPT
through prompt to obtain Text. Each of the three
placeholders is filled with the above mentioned in-
formation extracted from Freebase (Bollacker et al.,
2008). Note that the premise atoms placeholder
can hold multiple atoms for multi-hop open rule
generation. In the second round of questioning,
we fill the prompt with the text generated by Chat-
GPT in the first round. Then, in the third round of
questioning, we ask ChatGPT to rank the candi-
date entity relations mentioned in the answer of the
second round, based on the probability of their of
their actual occurrence. The prompt for the three
rounds of questioning is as shown in Figure 2.

The text generated from these three rounds of
questioning serves as the training corpus for the
three modules of PRIMO. After the three rounds
of questioning, the highest ranked atom in the
last round is taken as a hypothesis atom. Then,
we repeat the above process until the number of
collected hypothesis atoms reaches the predeter-
mined hop. Ultimately, to create an open rule chain
for that data point, these atoms are sorted in the
order in which they were generated.

In the end, we obtain an open rule multi-hop gen-
eration dataset consisting of 495 premise atoms,
totaling 2851 samples. Each sample consists of

IfAis [typel], B is[type2], [\7\\;‘”\::‘3 atoms],
then what other relationships can we derive
between A an B?

Text l
/IfA is [typel],B is [t, pe2], [premise atoms],\

then which relationships between A and B
can we extract from the passage Text? You
only need to output relations without other
information, where the relation must be
enclosed in brackets, such as (A is lover of

QB). E _prompzy
|

Please arrange the above relations according
to the probability of the event, that is, the
most likely ones are the first and the least

G_prompt

\likely ones are the last. R_prompt)
\

Training Xrm Y

Corpus) X2 ¥

| I

Figure 2: We construct dataset and collect training
corpus by ChatGPT with three step. Step1: use
G_prompt to instruct ChatGPT to generate text that
describes the relation between two entities. Step2:
text from Step 1 is filled into E_prompt to extract
hypothesis atoms. Step3: Ranking these hypothe-
sis atoms through R_prompt.

three parts: premise atoms, entity types, and the
open rule chain. The number of hops of the open
rule chain ranges from 1 to 5.

5.2. Baselines

We use the following LM-based baseline models
to evaluate the performance on the multi-hop open
rule generation:

(1) Prompt We use a prompt “if r,, then [MASK]”
and make predictions using fine-tuned T5 (Raffel
et al., 2020). The generated results serve as the
rule hypothesis atom and are added to the premise
atom information. Repeat the above process until
the desired rule’s hop is reached.

(2) COMET (Hwang et al., 2021) takes a premise
atom as input and produces a collection of single-
hop hypothesis atoms with different relations.

(3) Orion (Cui and Chen, 2021) summarizes the
commonalities of a set of instances based on a
given premise atom, and these commonalities are
used to induce new open rules.

(4) Vicuna(13B) (Chiang et al.,, 2023) is a
large language model that is fine-tuned based on
LLaMA (Touvron et al., 2023).

12993

Our Dataset B1 B2 B4 RL Self-B2
Prompt 33.0 13.2 0.1 39.2 89.2
COMET 35.1 13.6 1.1 429 92.6
Orion 39.9 19.5 0.1 525 86.4

Vicuna-13B 448 17.4 29 679 755
PRIMO 443 16.5 2.1 66.3 80.5

PRIMO-without RLHF 42.5 15.0 2.0 64.5 77.7
PRIMO-train G_Net 43.4 141 1.3 66.3 77.8
PRIMO-train E_Net 40.7 15.1 2.4 62.1 70.7

Table 1: Experimental results on multi-hop open

rule generation.

Scale B1 B2 B4 RL Self-B2
774M+355M 42.5 15.0 2.0 64.5 77.7
774M+124M 41.3 146 1.7 62.8 741
355M+355M 40.4 12.6 1.1 62.8 74.6
355M+124M 38.0 11.7 1.0 60.5 69.3

Table 2: Comparative experiments on parameter
size combinations for PRIMO subnetworks. The
first scale number is the parameter size of Genera-
tion module, and the second scale number is the
parameter size of Extraction module.

5.3. Main Results

We report PRIMO’s performance on the multi-hop
open rule generation dataset in Table 1. We use
BLEU-1/2/4 (B1, B2, B4) (Papineni et al., 2002) and
ROUGE-L (RL) (Lin, 2004) to evaluate whether he
open rule chain generated by PRIMO is similar to
the ground truth. We also report Self-BLEU-2 (Self-
B2) (Zhu et al., 2018), which is used to measure
diversity (smaller values indicate more diversity).

From the experimental results, it is evident that,
apart from Vicuna-13B, PRIMO shows a significant
performance improvement over other baseline mod-
els in the task of multi-hop open rule generation,
especially when compared to Prompt and COMET.
Comparison with PLM-based approaches Firstly,
in terms of rule quality and fluency, PRIMO
achieves the best results in the BLEU-1, BLEU-4,
and ROUGE-L metrics. Compared to the second-
best model, Orion, PRIMO improves BLEU-1 by
4.4%, BLEU-4 by 2.0% and a significant 12% im-
provement in ROUGE-L.

Secondly, in terms of rule diversity, we use the
Self-BLEU-2 for evaluation. Looking at the results,
PRIMO outperforms each of the baseline models
on the Self-BLEU-2. Compared to Orion, PRIMO
shows at least a 5.9% improvement in the Self-
BLEU-2. Hence, PRIMO generates significantly
more diverse rules, suggesting that the use of a
multi-stage network framework to extract implicit
common sense knowledge from PLM is effective
in enhancing the diversity of rules.

Comparison with LLM-based approach As

1000
893 913

900 = 834
Y 799
w00 99.6% 759 783

700 97.8%

600

Number

300 239 240

93.9%

200

100

|
|
|

400 } 95.0%
|
|
|

<2 3 4 5

Preset length

® Number of reached the preset length ® Total number

Figure 3: Statistics of length of rule chains.

Threshold Prompt COMET Orion PRIMO

80% 37.8 56.7 43.1 21.6
90% 29.9 55.0 406 12.7
95% 28.3 545 401 10.9

Table 3: Comparison of rule atomic repetition rates.

shown in Table 1, it's evident that PRIMO achieves
nearly the same experimental performance as Vi-
cuna with a much smaller parameter size, indicating
the effectiveness of our training strategy. The com-
bination of domain fine-tuning and RLHF, together
with the stacked architecture of small-scale models,
can achieve the performance of LLM.
Ablation Analysis To determine how RLHF affects
PRIMO performance, we conduct ablation experi-
ments. We tested PRIMO without RLHF, denoted
as PRIMO-without RLHF, which only underwent
fine-tuning without RLHF. Additionally, we com-
pared PRIMO with RLHF applied only to the Gen-
eration module (PRIMO-train G_Net) and only to
the Extraction module (PRIMO-train E_Net) to ex-
plore the performance impact of RLHF on different
stages of PRIMO. The results are shown in Table 1.
Firstly, we observe that applying reinforcement
learning only to the Generation module leads to
an improvement in performance compared to the
model without RLHF. This validates the effective-
ness of the Generation module in the whole rule
generation process. It also confirms that using the
Ranking module as the reward model is effective
for improving performance and underscores that
the Ranking module’s scoring reflects human pref-
erences. Additionally, applying reinforcement learn-
ing solely to the Extraction module leads to a de-
crease in performance, while RLHF applied to both
the Generation and Extraction module improves
performance. It suggests a strong correlation be-
tween the Extraction and Generation modules, with
the extraction results relying on the text generated
by the Generation module.
Comparison of parameter scale impacts We
compare the performance of PRIMO with differ-
ent parameter sizes, and the results are shown in

12994

<A> is stop of

Premise atom [<A>? Transit Stop ’, :" Transit Line’]

<A> is political party of
[<A:> "Organization’,:’Form of Government’]

<MASK> is a subway station on<MASK>
<MASK> is a major part of<MASK>

<MASK> is the legislative body of <MASK>
<MASK> is the upper house of<MASK>

Orion <MASK> is served by <MASK> <MASK> is the upper house of <MASK>
<MASK> is the upper house of <MASK>
<MASK> serve as a stop for <(MASK>’s transit line <MASK> directs <MASK>’s political development
PRIMO <MASK?> provides transit connections to <MASK> <MASK> is the center of power of <MASK>

<MASK> serves as a primary stop for <MASK>

<MASK> may support <MASK>’s goals, objectives, and
policies through its external influence operations

<MASK> is the governing party of <MASK>

<MASK> and <MASK>are interdependent
< MASK > is a source point on < MASK >

Open rule chain)
< MASK > serves < MASK > as one of its stops

<MASK?> is affiliated with or has a connection to <MASK>
<MASK> and <MASK> share common goals
<MASK> and<MASK> have a symbiotic relationship

<MASK> represents and advocates for the values and
principles of <MASK>

Table 4: Case study. In Case 1, Orion generates rules with factual errors while PRIMO does not, which
demonstrates the performance improvement brought by the introduction of ontology information in PRIMO.
In Case 2, Orion generates rules with semantic repetition while PRIMO does not, which demonstrates the
effectiveness of PRIMO in reducing the semantic repetition of rule atoms.

Table 2. When keeping the Extraction module fixed
and changing the parameter size of the Genera-
tion module, using a model with a larger parameter
size leads to a better result, which indicates that as
the parameter size of PLM increases, it possesses
richer implicit knowledge and stronger text repre-
sentation capabilities, which contribute to higher
quality rule generation. When keeping the Gen-
eration module fixed and changing the parameter
size of the Extraction module, similarly, models
with larger parameter sizes also produce better
rules, but the performance improvement is less pro-
nounced compared to the former. This suggests
that the Generation module has a greater impact
on the final results in the process of open rule gen-
eration than the Extraction module, highlighting the
critical role of the internal implicit knowledge pro-
vided by PLM in rule generation. Additionally, the
experimental results indicate that the rule diversity
continuously increases as the network parameter
size decreases. We attribute this phenomenon
to the fact that smaller model parameters result
in lower overfitting levels, which can reduce the
model’s excessive adaptation to specific patterns
and structures in the training data, thus generating
more diverse rule atoms. Comparing all baseline
models, even with the smallest parameter size in
PRIMO, it achieves performance comparable to
the state-of-the-art baseline model Orion based on
PLMs, demonstrating the effectiveness and superi-
ority of our approach.

5.4. Semantics Repetition

In order to investigate the effect of PRIMO on the
generation of repeated rule atoms, we conduct an

experiment on rule repetition rates. We compute
the Jaccard similarity (Hamers et al., 1989) be-
tween the strings of each hypothesis atom in the
open rule chain. If the similarity exceeds a certain
threshold, the two atoms are considered duplicates,
and the count of duplicate atoms is increased by
one. The final repetition rate is calculated by di-
viding the number of duplicate atoms by the total
number of rule atoms generated.

The experimental results are shown in Table 3.
We find that PRIMO outperforms the baselines
overall, leading baselines by at least 16.2% for
different threshold settings, which demonstrates
that updating information about generated atoms
in the prompt when generating the rule atom for
the next hop can significantly reduce the semantic
repetition of atoms. Moreover, when the similarity
threshold is increased from 80% to 90%, there is
a significant improvement in the performance of
PRIMO (8.9% improvement) compared to COMET
and Orion, where there is no significant difference
in performance (change of less than 2.5%). The
Prompt-based method shows a smaller improve-
ment (an improvement of less than 8%). We argue
that PRIMO’s atom repetition rate decreases dra-
matically as the similarity threshold is increased,
suggesting that atoms generated by PRIMO are
rarely nearly identical to previously generated atom
representations, and that the semantic richness is
significantly higher than the baselines.

5.5. The Length of Rule Chain

In our experiment, PRIMO has 65 data points result-
ing in no hypothesis atoms generated (rule chain
length of 0). And there are 112 data points catego-

12995

rized as partial failure, meaning that PRIMO could
generate hypothesis atoms but didn’t reach the pre-
set rule chain length. Except for the chains with a
length of 0, we analyze the length of the other gen-
erated rule chains, as shown in the Figure 3. We
observe that PRIMO performs well in generating
shorter rule chains (hop < 3), but experiences a
slight performance drop when trying to generate
longer rule chains. We analyze that one reason
is that it’s genuinely impossible to infer more un-
known relations between entity pairs. However, it
also suggests that there is room for improvement
in PRIMO’s ability to generate longer rule chains,
which we will investigate further in the future.

5.6. Case Study

To visualize the generation quality of PRIMO,
we provide some examples in Table 4. When
given the atom <A> is stop of , although
Orion generates some reasonable rule atoms, such
as <MASK> is a major part of <MASK>,
<MASK> is served by <MASK>, there are
also some incorrect atoms. For instance, the first
generated atom classified the entity as a subway
station, but in reality, the correct answer should be
abus station. Itis evident that Orion lacks modeling
of entity ontology information related to rules, which
leads to generation of wrong atoms. In comparison,
PRIMO accurately describes the rule atom to the
Transit Stop class, by introducing entity type
information, such as <MASK> provides tran-
sit connections to <MASK->. Note that the
rules generated by PRIMO excel in semantic ex-
pression, with each atom having corresponding
synonymous expressions to the ground truth atoms,
which indicates that PRIMO effectively improves
the correctness of the final results by using the Gen-
eration module to generate descriptive text related
to the premise atoms. When the given atom is <aA>
is political party of , the generated
atoms of Orion are restricted to those related to
“is the legislature of”, resultingin seman-
tic repetition. On the other hand, PRIMO generates
rule atoms that are both non-repetitive and reason-
able. These cases show that PRIMO reduces the
repetition rate of rule atoms by updating the infor-
mation of previously generated atoms. Additionally,
the preset rule chain length is 4, but Orion gener-
ates three identical atoms, indicating that Orion can-
not generate rule atom after two hops. In contrast,
PRIMO successfully reaches the preset length.

6. Conclusion

We propose a progressive multi-stage open rule
generation method called PRIMO, i.e., generation-
extraction-ranking. The latter module further re-

fines and validates the results of the former module,
which significantly enhances the semantic consis-
tency of rule generation and mitigates duplicate
generation. We optimize PRIMO with human feed-
back to further improve multihop open rule gen-
eration accuracy. Experiments show that PRIMO
outperforms the PLM-based baseline model, and
achieves nearly the same performance of LLMs
using less than a tenth of parameters of a LLM.

7. Acknowledgements

This work is supported by the Natural Science Foun-
dation of China (Grant No. U21A20488, 62206053).
We thank the Big Data Computing Center of South-
east University for providing the facility support on
the numerical calculations in this paper.

12996

References

Celine Becquet, Sylvain Blachon, Baptiste Jeudy,
Jean-Francois Boulicaut, and Olivier Gandrillon.
2002. Strong-association-rule mining for large-
scale gene-expression data analysis: a case
study on human sage data. Genome Biol.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for struc-
turing human knowledge. In SIGMOD.

Yu-Liang Chi. 2010. Rule-based ontological knowl-
edge base for monitoring partners across supply
networks. ESWA.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E
Gonzalez, et al. 2023. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt qual-
ity. https://vicuna.lmsys.org

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gllgehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using RNN
encoder-decoder for statistical machine trans-
lation. In EMNLP, pages 1724—1734.

Wanyun Cui and Xingran Chen. 2021. Open rule
induction. In NeurlPS, pages 28536—28547.

Luis Galarraga, Christina Teflioudi, Katja Hose, and
Fabian M. Suchanek. 2015. Fast rule mining in
ontological knowledge bases with AMIE+. VLDB,
pages 707-730.

Luis Antonio Galarraga, Christina Teflioudi, Katja
Hose, and Fabian M. Suchanek. 2013. AMIE: as-
sociation rule mining under incomplete evidence
in ontological knowledge bases. In WWW, pages
413-422.

Angel Miguel Garcia-Vico, Cristébal J. Car-
mona, Diana Martin, Milton Garcia-Borroto, and
Maria José del Jesus. 2018. An overview of
emerging pattern mining in supervised descrip-
tive rule discovery: taxonomy, empirical study,
trends, and prospects. Data Min Knowl! Discov.

Klaus Greff, Rupesh Kumar Srivastava, Jan Kout-
nik, Bas R. Steunebrink, and Jirgen Schmid-
huber. 2017. LSTM: A search space odyssey.
IEEE Trans. Neural Networks Learn. Syst., pages
2222-2232.

Lieve Hamers, Yves Hemeryck, Guido Herweyers,
Marc Janssen, Hans Keters, Ronald Rousseau,

and André Vanhoutte. 1989. Similarity measures
in scientometric research: The jaccard index ver-
sus salton’s cosine formula. Inf. Process. Manag.

Stephen Harris and Nigel Shadbolt. 2005. SPARQL
query processing with conventional relational
database systems. In WISE.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le
Bras, Jeff Da, Keisuke Sakaguchi, Antoine
Bosselut, and Yejin Choi. 2021. (comet-) atomic
2020: On symbolic and neural commonsense
knowledge graphs. In AAAI, pages 6384—6392.

Touseef Igbal and Shaima Qureshi. 2022. The
survey: Text generation models in deep learning.
J KING SAUD UNIV-COM, pages 2515-2528.

Mihir Kale and Abhinav Rastogi. 2020. Template
guided text generation for task-oriented dialogue.
In EMNLP, pages 6505-6520.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Annual Meet-
ing of the Association for Computational Linguis-
tics.

Dekang Lin and Patrick Pantel. 2001. Discovery
of inference rules for question-answering. Nat.
Lang. Eng., pages 343-360.

John McCarthy. 1984. Some expert systems need
common sense. Ann. N. Y. Acad. Sci. ANN.

Stephen H. Muggleton. 1999. Inductive logic pro-
gramming: Issues, results and the challenge of
learning language in logic. Artif. Intell., pages
283—-296.

Vilém Novak and Stephan Lehmke. 2006. Logical
structure of fuzzy IF-THEN rules. Fuzzy Sets
Syst., pages 2003—-2029.

OpenAl. 2022. Introducing chatgpt. https://
openai.com/blog/chatgpt.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul F. Christiano, Jan Leike,
and Ryan Lowe. 2022. Training language mod-
els to follow instructions with human feedback.
In NeurlPS.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In ACL.

Fabio Petroni, Tim Rocktaschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language models

12997

https://vicuna. lmsys. org
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

as knowledge bases? In EMNLP, pages 2463—
2473.

Luc De Raedt and Kristian Kersting. 2004. Proba-
bilistic inductive logic programming. In ALT.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res.,
pages 140:1-140:67.

Maarten Sap, Ronan Le Bras, Emily Allaway,
Chandra Bhagavatula, Nicholas Lourie, Hannah
Rashkin, Brendan Roof, Noah A. Smith, and
Yejin Choi. 2019. ATOMIC: an atlas of machine
commonsense for if-then reasoning. In AAAI,
pages 3027-3035.

Stefan Schoenmackers, Jesse Davis, Oren Etzioni,
and Daniel S. Weld. 2010. Learning first-order
horn clauses from web text. In EMNLP, pages
1088-1098.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proximal
policy optimization algorithms. CoRR.

Hugo Touvron, Thibaut Lavril, Gautier lzacard,
Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume
Lample. 2023. Llama: Open and efficient foun-
dation language models. CoRR.

Trieu H. Trinh and Quoc V. Le. 2018. A simple
method for commonsense reasoning. CoRR.

Tim van Erven and Peter Harremoés. 2014. Rényi
divergence and kullback-leibler divergence. IEEE
Trans. Inf. Theory.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and lllia Polosukhin. 2017. Atten-
tion is all you need. In NeurlPS.

Chenguang Wang, Xiao Liu, and Dawn Song. 2020.
Language models are open knowledge graphs.
CoRR.

Peter C Wason. 1968. Reasoning about a rule.
QJEP, pages 273-281.

Stefan Wrobel. 2001. Inductive logic programming
for knowledge discovery in databases. In Rela-
tional data mining, pages 74—101.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018.
Texygen: A benchmarking platform for text gen-
eration models. In SIGIR.

12998

	Introduction
	Related Work
	Problem Definition
	PRIMO
	Generation
	Extraction
	Ranking
	Multi-hop Open Rule Generation
	RLHF

	Experiment
	Dataset
	Baselines
	Main Results
	Semantics Repetition
	The Length of Rule Chain
	Case Study

	Conclusion
	Acknowledgements

