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Abstract

Recent advancements in large language models (LLMs) have showcased their exceptional abilities across various

tasks, such as code generation, problem-solving and reasoning. Existing benchmarks evaluate tasks in isolation,

yet the extent to which LLMs can understand prose-style tasks, identify the underlying problems, and then generate

appropriate code solutions is still unexplored. Addressing this gap, we introduce PECC, a novel benchmark

derived from Advent Of Code (AoC) challenges and Project Euler, including 2396 problems. Unlike conventional

benchmarks, PECC requires LLMs to interpret narrative-embedded problems, extract requirements, and generate

executable code. A key feature of our dataset is the complexity added by natural language prompting in chat-based

evaluations, mirroring real-world instruction ambiguities. Results show varying model performance between

narrative and neutral problems, with specific challenges in the Euler math-based subset with GPT-3.5-Turbo

passing 50% of the AoC challenges and only 8% on the Euler problems. By probing the limits of LLMs’ capabilities,

our benchmark provides a framework to monitor and assess the subsequent progress of LLMs as a universal

problem solver.

Keywords:benchmark dataset, coding and math capabilities, problem extraction

1. Introduction

Large language models (LLMs) have demon-

strated remarkable abilities in diverse generation

tasks, spanning text and beyond. Consequently,

they have become reliable tools for code gener-

ation, reducing barriers for entry-level engineers

and supporting experienced programmers. Re-

searchers have devised instruction-based bench-

marks to assess the progress of code genera-

tion abilities in new language models (Hendrycks

et al., 2021a,b; Lai et al., 2022). These bench-

marks prompt a given LLM to generate executable

code for specified problems. Despite the isolation

of these benchmarks from other LLM advance-

ments, such as enhanced reading comprehension

or problem abstraction (Wang et al., 2019; Reddy

et al., 2019; Liu et al., 2020), integrating all these

skills could transform LLMs into universal problem-

solving tools. Thus, how well LLMs can com-

bine their abilities to (1) understand prose style

problems, (2) identify solution requirements, and

(3) translate them into executable code remains

mostly unexplored.

The illustration in Figure 1 delineates a system-

atic process of code generation and assertion that

tests named abilities in an automated manner.

The initial step (A) involves instructing the lan-

guage model, setting the contextual foundation,

and defining task requirements. Subsequently,

the model receives a problem statement (B) for

which it needs to generate a coding solution.

The next step involves the model generating ex-

ecutable Python code (D) based on the provided

task and input data (C). Execution of the gener-

Figure 1: A schematic representation of the code

generation and assertion process.
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APPS HumanEval DS-1000 PECC

Programming Language Python Python Python Universal

Avg. Program Length 18 6 3.6 26 (AoC) /19 (Euler)

Number of Problems 10,000 164 1000 2352

Domain Programming Programming Programming Math &Programming

Evaluation Test Cases Python Code
Test Cases +

Surface Form Constraints
Explicit Result

Table 1: Comparison of Datasets with Textual Descriptions as Input. Unlike many existing datasets,

PECC evaluates correctness through the explicit result assertion, making it universally applicable across

various programming languages and problem-solving methodologies.

ated code yields a result (E), which is then com-

pared with an expected result (F). Directional ar-

rows indicate the flow from instruction through to

result-assertion. Recognizing this systematic pro-

cess emphasizes the need for benchmarks that

can truly test these intricate steps, especially when

considering real-world applications where narra-

tive understanding is pivotal.

In this paper, we introduce PECC, an exten-

sive benchmark centered on code generation from

narrative-embedded problem descriptions. Unlike

prior benchmarks that evaluate code generation

using specific instructions, our dataset requires

models to comprehend, extract requirements, and

produce the essential code for problem-solving.

This approach necessitates syntactically accurate

programs and demands reading comprehension

skills to derive the desired solution.

Our dataset comprises 2,396 problems spanning

different levels of difficulty. We use the problems

from the annual Advent Of Code1 challenges and

the online platform Project Euler2 as our source

dataset. The challenges are presented in either

prose style or neutral formats. We transform each

dataset into the opposing writing style, enabling

us to evaluate problem abstraction across differ-

ent formulations, namely, neutral versus narrative

formulation.

If a model were to perform well on PECC, it signi-

fies the models’ proficiency in accurately compre-

hending natural language specifications and gen-

erating correct code. This accomplishment relies

on the model’s ability to employ appropriate data

structures and algorithms to solve the encapsu-

lated problem. Additionally, the dataset allows us

to assess the models’ sequential problem-solving

skills in real-world coding scenarios. This evalu-

ation occurs when solutions to one problem are

prerequisites for solving a subsequent problem, as

with the Advent Of Code (AoC) split. In AoC, each

day consists of two challenges, of which the sec-

ond challenge can only be tackled using the solu-

1https://adventofcode.com/
2https://projecteuler.net/

tion derived from the first problem.

We summarize the contribution of this paper as fol-

lows:

1. We introduce the construction process of

PECC, a novel benchmark designed to eval-

uate LLMs in prose-style coding challenges.

2. We evaluate state-of-the-art language mod-

els and show that although they perform well

on simple tasks, their performance drops sig-

nificantly as the complexity of the task in-

creases.

3. We thoroughly analyze performances, pro-

gram errors, and different prompting schemes

across all problem types and difficulty levels

within PECC.

4. We will provide the dataset and evaluation

framework to the research community at

https://github.com/HallerPatrick/pecc.
The pipeline supports multiple prominent LLM

providers and local hosting for inference.

2. PECC Dataset

The PECC dataset leverages two prominent re-

sources: The Advent of Code (AoC) challenges

and Project Euler.

2.1. Dataset Construction

Advent of Code. AoC, an annual online event,

unfolds daily coding challenges throughout De-

cember, each embedded within a festive narrative.

It presents complex problems, enabling coders to

refine their problem-solving skills within a playful,

story-driven context.

Project Euler. On the other hand, Project Eu-

ler, an online platform, curates mathematical and

computational problems that necessitate a blend

of mathematical understanding and programming

skills for resolution. It fosters learning and

problem-solving within a community-driven envi-

ronment, featuring progressively escalating diffi-

culty levels. Difficulty levels are increasing in steps

of 5 from 0 to 100.

https://github.com/HallerPatrick/pecc
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Problem presentation and verbosity in AoC and

Project Euler stand in striking contrast to each

other. While AoC problems are narrative-based,

often enveloped in a story with elongated problem

descriptions, Project Euler offers precise, succinct

ones. This distinction reflects the divergent ap-

proaches of the two platforms in engaging their au-

dience and elucidating problems. These problem

verbosities provide a rich foundation for formulat-

ing the PECC dataset.

2.2. Augmenting AoC and Euler Problem
Styles

We augment complementary datasets to explore

how different problem formulations - narrative-

style or neutral-style - affect problem-solving capa-

bilities. From the concise descriptions of Project

Euler, we generate problems with a narrative

twist, adding a story-driven context. Conversely,

we transform detailed AoC problems into neutral-

toned challenges to resemble the directness of

Project Euler. These augmentations yield diverse

problem presentations to test a language model’s

adaptability to varying problem contexts. The

original datasets encompass 392 problems from

AoC and 806 problems from Project Euler, total-

ing 1,198 problems. After creating complementary

data points, the dataset comprises 2,352 prob-

lems, each with its corresponding solution, typi-

cally an integer, and, in the case of AoC, the actual

input required to solve the challenges. Figure 2 il-

lustrates complementary problems and their gen-

erated solutions. We denote the original sources

as aoc and euler for the Advent of Code chal-

lenges and the Euler Project, respectively. The

generated complements as aoc-neutral and euler-

stories.

A common assumption might be that for a lan-

guage model to generate a complementary de-

scription of a given problem, it must be able to

solve the problem itself. However, our quality

checks showed that the capacity to describe or

rephrase a problem does not necessarily imply a

profound understanding or the ability to solve it.

2.3. Single- and Multi-Turn Prompting

Our dataset employs two distinct prompt formula-

tions. We use a (1) instruction-based format for

the Euler subset to direct models to create exe-

cutable Python programs and return answers via

standard output. Conversely, we employ a (2)

chat-based format for the AoC subset due to its

two-part problem structure. We instruct models to

generate directly executable Python code, with the

addition of loading input from an ”input.txt” file, for

which models also need to generate the relevant

code, ensuring a comprehensive engagement with

the problem-solving scenario. We repeat this pro-

cedure for the second part of the AoC challenge,

including the previous conversation history. Every

AoC challenge begins with a self-contained first

part and can use an instruction-based format by

including the ”input.txt” file. In alignment with ex-

isting benchmarks, we employ a zero-shot format

for PECC, but all problems come without few-shot

examples.

3. Experiments

3.1. Experimental Setup

We evaluate various language models on PECC

to investigate the extent to which these mod-

els can harness their inherent capabilities to

solve complex coding tasks considering different

problem formulations. We select GPT-3.5-turbo-

16k (gpt-3.5-turbo) (OpenAI, 2023) from Ope-

nAI and VertexAI’s PALM 2 (chat-bison) (Anil

et al., 2023), Codey (codechat-bison) and Claude

3 Haiku (claude-haiku) (Anthropic, 2024), as

these models are among the most capable

in terms of natural language processing and

code-generation tasks. Additionally, we incor-

porated WizardCoder-Python-34B-V1.0 (wizard-

coder) (Luo et al., 2023), a specialized open-

source model fine-tuned for code completion and

Mistral-7B-Instruct-v0.1 (mistral-instruct) (Jiang

et al., 2023), an instruction-optimized LLM known

for its efficiency despite its smaller size. The latter

part of our study focused on comparing the perfor-

mance of these models, which is essential for dis-

cerning their relative strengths and weaknesses in

code generation contexts.

Our evaluation pipeline builds upon the

Langchain (Chase, 2022) library, which facil-

itates chat and instruction-based formats for

interacting with the models. The generated

source code is executed in an isolated Python

environment, ensuring a secure and controlled

execution process.

3.2. Qualitative Error Mode Analysis

During code execution, we extract and categorize

errors encountered into five distinct types:

1. Syntax Error: Arises when LLM generates

no or only partial Python source code, or the

Python interpreter returns a SyntaxError.

2. Runtime Error: Occurs when a program, de-

spite being syntactically correct, aborts due to

an error during execution, such as IndexEr-

rors, KeyError, and NameError.

3. Timeout Error: Triggered when a program’s

runtime exceeds a set threshold of 60 sec-

onds.
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Figure 2: Contrasting Problem Descriptions from AoC. The left illustrates a narrative-style problem, rich

in story and context, while the right presents a neutral-style, succinctly distilled version with their respec-

tive generated solutions with GPT-3.5-Turbo. We observe that the generated code is more concise for

neutrally formulated problems, while the solutions for narrative problems tend to model the story more.

Model AoC AoC-Leet Euler Euler-Stories

k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3

gpt-3.5-turboa 38.52 50.00 28.32 29.85 7.20 8.19 5.33 6.95

claude-haikua 37.76 51.28 41.33 46.26 5.58 7.07 4.59 6.08

chat-bisona 16.07 17.09 14.03 13.78 2.36 2.36 0.62 0.62

codechat-bisona 12.76 21.17 15.05 17.60 3.47 4.59 2.11 2.61

mixtral-instruct 8.93 15.31 5.36 13.01 1.86 2.86 0.75 2.23

wizard-coder 11.00b 24.00b 9.50b 22.50b 1.49 2.61 1.36 2.48

mistral-instruct 3.00 b 3.00 b 3.00 b 3.00b 0.3 0.3 0.12 0.12

a We note that we could confirm that the models have seen the original AoC Challenges

during pre-training, as it is able to generate a challenge for a given year and day.
b Evaluated only on Part 1 of the respective AoC subsets.

Table 2: Pass@k evaluation of different proprietary and open-source models.

4. Wrong Output: Specified for when a pro-

gram exits successfully but yields an output

differing from the expected result.

5. Part1 Failed: Occurs when Part 1 of the AoC

challenges did not pass.

This structured error categorization aids in a gran-

ular analysis of the models’ performance, pinpoint-

ing the areas of strength and the potential avenues

for improvement.

3.3. Metrics

Pass@k. The Pass@k metric evaluates model

code synthesis by checking if at least one of the

top ’k’ generated code snippets passes predefined
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unit tests. Utilized in frameworks like CodeEval, it

assesses how well models translate natural lan-

guage prompts into accurate, executable code.

It quantitatively measures a model’s capability to

generate functionally valid code. In our evaluation,

functionally valid code is defined as code able to

execute and return the expected result via stan-

dard out. Adopting of Pass@k allows for a nu-

anced understanding of model performance, es-

pecially in scenarios where multiple code solutions

might be plausible.

Pass@k + Difficulty. Introducing an addi-

tional difficulty term to Pass@k, termed Pass@k-

Difficulty, enables a discriminative evaluation of a

model’s ability to tackle problems of varying dif-

ficulty, furnishing a detailed understanding of the

model’s strengths and weaknesses. The difficulty

weight is determined based on the percentage of

participants successfully solving a given problem,

providing a real-world reflection of the problem’s

complexity. Pass@k-Difficulty is realized by intro-

ducing a weighting factor based on problem dif-

ficulty to the existing Pass@k metric formula ac-

counting for problem difficulty, with higher weights

accorded to more complex problems, thus pre-

senting a more accurate reflection of a model’s

performance in challenging scenarios. We col-

lected user statistics about the ground population

and the number of participants who solved each

problem from their respective website 3

3.4. Prompt Formulation

Further, we compare models’ performance by em-

ploying varied prompt formulations. While gen-

erating and executing Python code for problem-

solving presents a formidable challenge, this ex-

periment centers on determining whether LLMs

can effectively tackle these challenges by lever-

aging their inherent world knowledge, defined as

their intrinsic aptitude to solve logical or mathemat-

ical problems.

Furthermore, we introduce an additional layer of

complexity by compelling the models to employ a

systematic chain-of-thought procedure, requiring

them to justify and elucidate their answers com-

prehensively.

Summarized, we have delineated this experiment

into two distinct contexts: the first, where LLMs re-

spond to challenges relying solely on their innate

world knowledge, termed answering; and the sec-

ond, where LLMs are tasked with justifying their

solutions through a chain-of-thought procedure,

denoted as answering + chain-of-thought.

3Statistics for AoC accessible at https:
//adventofcode.com/2022/stats and Euler Project at

https://projecteuler.net/problem_analysis

4. Results

4.1. Output Evaluation

We show the main results of our evaluation in Ta-

ble 2. The presented table delineates a compara-

tive evaluation of several language models across

distinct subsets of the PECC dataset, observing

the performance at k = 1 and k = 3 for the re-

spective problem subsets. The models evaluated

include proprietary models from OpenAI and Ver-

texAI, along with an open-source model, Wizard-

Coder.

Multi-sampling increases the likelihood of cor-

rect solutions. It is discernible that employing

a multi-sampling approach with k = 3 generally

improves the Pass@k scores compared to when

k = 1, which is single sampling. This improvement

is particularly noticeable in the Advent of Code

(AoC) subset for the gpt-3.5-turbo and claude-

haiku models. The increment in scores from k = 1
to k = 3 suggests that providing models with mul-

tiple attempts to solve a problem enhances the

likelihood of generating a correct solution. How-

ever, multi-sampling does not always guarantee

better results. If a model cannot inherently solve

a given problem, as observed with the mistral-

instruct model, thenmultiple passes will not neces-

sarily lead to a better score. The efficacy of multi-

sampling is contingent on the model’s base profi-

ciency in addressing the task at hand.

Narratives can aid or obstruct models. The dif-

fering performances on AoC and Euler datasets

reveal that narratives can be a double-edged

sword. In the evaluation, the story-driven subset

AoC proved better suited for models than its neu-

trally formulated counterpart. These narratives in

AoC provide vital context, enhancing the model’s

capability to decode and solve problems. Con-

versely, introducing narratives led to a drop in

performance for the Project Euler (Euler) subset,

which consists of precise mathematical problems.

This reduction suggests that adding stories to Eu-

ler introduces ambiguity, complicating the prob-

lems and reducing model effectiveness. This stark

difference in performance across the two datasets

underscores a potential training bias in models:

they may excel in narrative-rich environments like

AoC but struggle with the precision-driven chal-

lenges inherent to Euler.

LLMs generally fall short on complicated chal-

lenges. The evaluations underscore the chal-

lenges inherent in complex coding problems, par-

ticularly evident in the Euler subset. gpt-3.5-turbo

and claude-haiku emerge as relatively strong per-

formers among the lot, yet the results also highlight

a significant room for improvement across all mod-

els. The assessment subtly hints at the prospec-

tive merits of fine-tuning or employing models spe-

cialized in code synthesis for enhanced perfor-

https://adventofcode.com/2022/stats
https://adventofcode.com/2022/stats
https://projecteuler.net/problem_analysis


12695

mance in such tasks.

Potential Influence of Pre-training Contamina-

tion. Given the popularity and prominence of the

AoC problems, there is a conceivable risk of pre-

training contamination for language models. It is

plausible that many of these models, during their

training phase, have been exposed to myriad so-

lutions to the AoC problems publicly available in

Python. This exposure raises the question of au-

thenticity in the model’s response: Is the model

genuinely attempting to solve the problem on its

merit, or is it merely regurgitating a previously en-

countered solution? Determining the extent of this

influence is challenging. We cannot unequivo-

cally discern whether a model produces a solution

based on its problem-solving capability or relies on

a recollection of previously seen solutions. This

potential for contamination underscores the com-

plexity of evaluating language models on tasks

where the training data might overlap with evalua-

tion benchmarks.

4.2. Error Analysis

Table 3 presents meticulous error analysis across

all evaluated models and dataset subsets, cate-

gorizing errors into Runtime Error, Wrong Output,

Timeout, and Syntax Error. It is evident across all

models that Syntax Errors occur less frequently,

indicating a reasonable adherence to Python’s

syntactic rules. However, models like gpt-3.5-

turbo exhibit significant Runtime and Wrong Out-

put errors, especially in mathematically intensive

datasets like Euler and Euler Stories, suggest-

ing challenges in logically or mathematically solv-

ing the problems despite syntactical correctness.

A consistent pattern of errors is observed across

models like Chat-Bison, CodeChat-Bison, and

Wizard, where Runtime Errors are predominant,

indicating struggles with the logical or algorith-

mic aspects of the problems. Notably, the Wiz-

ard model shows a relatively higher occurrence of

Syntax Errors in Euler and Euler Stories datasets,

hinting at challenges in translating mathematical

or narrative elements into correct code.

4.3. Coding vs. World Knowledge

In this ablation experiment, we compare the per-

formance of solving Euler problems by code and

compare it to answers directly obtained through

prompts. The results are shown in Figure 3.

Coding is more difficult than answering. We

initially noticed that the coding scores were lower

than when the LLM generated the answers. In

the most straightforward scenarios, coding perfor-

mance dropped by 20pp. compared to answering

settings. This finding suggests that GPT can effec-

tively depend on its reasoning ability. Additionally,

we observed that coding tasks were rarely solved

when the difficulty level reached 30.

Chain-of-Thought improves performance. We

discovered that prompting GPT to provide reasons

for its solutions enhances performance across all

difficulty levels. In the most straightforward prob-

lem setting, gpt-3.5-turbo solves > 80% problems,

and this technique also enables it to solve some of

the more challenging problems. Compared to an-

swering without chain-of-thought, using chain-of-

thought results in a notable improvement of +13.8

pp. on difficulty level 10, for instance.

4.4. Problem Difficulty

Figure 4 shows the accuracy development over-

all problems for the AoC and Euler subsets. The

Euler problems are sorted by difficulty, while the

AoC problems are sorted by year and day. The

gray line plot describes the difficulty weight over

each problem. The plot contains the progressive

accuracy over Pass@3 and Pass@3-Difficulty. In

the comparative evaluation of gpt-3.5-turbo and

codechat-bison, clear distinctions were observed

across the Euler and AoC subsets of the dataset.

The Euler subset displayed a more predictable

progression, with the problem difficulty increasing

from left to right. This systematic rise in difficulty

aligns with the decreasing accuracy trends of both

models.

The AoC challenges show a reoccurring pattern

of difficulty levels for each year. Historically,

AoC problems tend to begin easier at the start of

the year and become more challenging towards

the year-end. This periodic nature of difficulty is

captured in the multiple spikes observed in the

gray plot. These spikes represent challenges that

are notably harder than their preceding problems.

Such a non-linear distribution can lead to varied

performance from the models, where they might

excel in some segments and face challenges in

others, even within a short span of problems.

Considering these nuances, it becomes apparent

that a one-size-fits-all evaluation metric, like raw

accuracy, might not capture the intricacies of a

model’s performance, especially in datasets like

AoC with non-uniform difficulty. By incorporating

problem difficulty as a weighting factor in the eval-

uation, we can account for these variances and

obtain a more balanced view of a model’s capa-

bilities. This approach provides a representative

assessment that mirrors real-world scenarios and

emphasizes the importance of a model’s adapt-

ability and resilience in tackling challenges of vary-

ing complexity.

5. Related Work

Several benchmarks evaluating the coding capa-

bilities of large language models exist. Lu et al.

(2021) categorize these evaluations into four main
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Error Types (in %)

Model Subset Syntax Runtime Timeout Wrong Total Errors

gpt-3.5-turbo

AoC 20.2 45.4 6.7 27.7 119

AoC-Leet 5.9 36.6 9.2 48.4 153

Euler 0.8 12.3 30.1 56.8 740

Euler-Stories 1.9 11.2 26.5 60.4 750

claude-haiku

AoC 7.2 38.7 11.7 42.3 111

AoC-Leet 3.8 44.9 14.6 36.7 158

Euler 1.3 16.0 51.0 31.6 749

Euler-Stories 1.1 12.5 37.3 49.1 757

chat-bison

AoC 3.4 72.7 6.2 17.6 176

AoC-Leet 0.5 73.4 6.0 20.1 184

Euler 0.4 40.4 20.6 34.9 787

Euler-Stories 0.6 42.3 14.1 42.9 801

codechat-bison

AoC 0.6 75.4 5.7 18.3 175

AoC-Leet 0.6 74.2 6.2 19.1 178

Euler 0.1 39.8 26.4 33.7 769

Euler-Stories 0.1 39.5 20.1 40.3 785

wizard-coder

AoC 27.6 30.3 9.9 32.2 152

AoC-Leet 26.5 32.3 12.9 28.4 155

Euler 13.0 27.0 29.9 30.1 785

Euler-Stories 15.1 25.4 28.4 31.0 786

mistral-instruct

AoC 5.2 62.4 8.8 23.7 194

AoC-Leet 5.2 58.2 10.8 25.8 194

Euler 6.1 43.8 13.0 37.1 803

Euler-Stories 5.3 45.6 8.1 41.0 805

Table 3: Overview over different error types that led to failing a problem in Pass@3 evaluation.

Figure 3: We present the percentage of Euler problems solved using gpt-3.5-turbo, categorized by their

difficulty levels. For the easiest category, correct solutions were obtained in the range of ~ 60% to ~ 80%

for coding and answering using chain-of-thought, respectively. However, as the difficulty level increases,

the success rate drops rapidly. We do not report scores for difficulty levels higher than 55, as gpt-3.5-

turbo did not provide any correct answers in those cases.

groups: code-to-code tasks (such as translation

between programming languages or command

line completion), text-to-text tasks (including docu-

mentation translation), code-to-text tasks (such as

generating documentation for a function), and text-

to-code tasks (involving instructions to generate a

function for problem-solving).

The majority of well-known benchmarks primar-

ily focus on code-to-code or text-to-code tasks.

Benchmarks like HumanEval (Chen et al., 2021),

CoNaLa (Yin et al., 2018), MMLU (Hendrycks

et al., 2021b), APPS (Hendrycks et al., 2021a),
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Figure 4: Comparing the accuracy with Pass@3 and Pass@3 + Difficulty for gpt-3.5-turbo and codechat-

bison over the Euler and AoC subsets.

MBPP, MathQA (Austin et al., 2021), or Hu-

manEvalPack (Muennighoff et al., 2023) achieve

this by presenting a diverse set of fundamen-

tal programming challenges. For instance, Hu-

manEval evaluates the functional correctness of

programs generated from docstrings and com-

prises 164 instances, while APPS encompasses

both simple one-line problems and complex algo-

rithmic challenges. Notably, these benchmarks

lack realistic multi-turn settings where an agent en-

gages with the generation system.

On the other hand, various mathematical bench-

marks like GSM8K (Cobbe et al., 2021), and Rain-

bow (Lourie et al., 2021) do exist. However, its

comprehensive coverage of difficulties, from ba-

sic to highly professional skill levels, sets Euler

Project apart. This breadth enables a nuanced

understanding of the specific tasks and their cor-

responding difficulty levels that current Large Lan-

guage Models (LLMs) can handle effectively.

A multitude of benchmarks exist for measuring the

reading comprehension of language models, in-

cluding SQuAD (Rajpurkar et al., 2016), CoQA

(Reddy et al., 2019), LogiQA (Liu et al., 2020)

or GLUE (Wang et al., 2019). However, these

benchmarks are different from the scope of our

dataset. Our focus centers on solving complex

tasks involving code generation, a skill achievable

only with a specific reading comprehension level.

Through our dataset, we contribute valuable in-

sights into optimizing language model prompts.

Specifically, we compare model performance be-

tween narrative-based and plain-math problems,

enhancing our understanding of effectively engag-

ing language models in challenging contexts.

6. Conclusion

We introduced the PECC dataset as a tool to as-

sess the code generation capabilities of large lan-

guage models across a spectrum of problem com-

plexities, spanning both narrative and neutral con-

texts. Evaluations, which included a diverse set

of models from proprietary to open-source and in-

house, consistently highlighted the inherent chal-

lenges models face when navigating the intrica-

cies of coding tasks, especially those embedded

within narratives.

A significant observation from our study pertains

to the evaluation formulation. The act of prompt-

ing in natural language, combined with the chat-

based evaluation approach, introduces complex-

ities. These complexities are both technical and

conceptual, as they mirror real-world challenges

where instructions and queries can be ambiguous

or multifaceted. This underscores the need for

models that can adeptly navigate the nuances of

human language while maintaining computational

accuracy.

Our comparative analysis between different prob-

lem subsets emphasized the differential impact of

narrative versus neutral problem formulation on

model performance spotlighted the potential for

further exploration in this domain. Particularly, the

Euler subset stood out, revealing substantial areas

where models could improve code generation ca-

pabilities when faced with challenging math-based

problem formulations.

Importantly, our methodology was rooted in a

zero-shot prompting approach devoid of feed-

back loops. Transitioning to more sophisti-

cated methodologies, such as chain-of-thought

approaches (Wei et al., 2023; Le et al., 2023)

or tool-integrated reasoning-agents (Gou et al.,

2023), hold promise for significantly enhancing

model performance.

Our analysis uncovers a notable performance gap

between commercial and open-source models.

The introduced dataset proves valuable for evalu-

ating models on coding and reasoning tasks, aim-

ing to advance the assessment of LLMs in com-

plex math and coding challenges. This work aims

to enhance future research, expanding LLM capa-

bilities in challenging fields.

Publishing Dataset. PECC will be pub-
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lished over Github at https://github.
com/HallerPatrick/pecc and HuggingFace

at https://huggingface.co/datasets/
PatrickHaller/pecc. The dataset will con-

tain each problem, the respective input files,

and expected solutions. The publication will not

include the original AoC datasets due to licensing

restrictions. Instead, we provide a loading script

to download the relevant datapoints.
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