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Abstract

We present PaReNT (Parent Retrieval Neural Tool), a deep-learning-based multilingual tool performing parent
retrieval and word-formation classification in English, German, Dutch, Spanish, French, Russian, and Czech.
Parent retrieval refers to determining the lexeme or lexemes the input lexeme was based on (e.g. ‘darkness’ is
traced back to ‘dark’; ‘waterfall’ decomposes into ‘water’ and ‘fall’). Additionally, PaReNT performs word-formation
classification, which determines the input lexeme as a compound (e.g. ‘proofread’), a derivative (e.g. ‘deescalate’)
or as an unmotivated word (e.g. ‘dog’). These seven languages are selected from three major branches of the
Indo-European language family (Germanic, Romance, Slavic). Data is aggregated from a range of word-formation
resources, as well as Wiktionary, to train and test the tool. The tool is based on a custom-architecture hybrid
transformer block-enriched sequence-to-sequence neural network utilizing both a character-based and semantic
representation of the input lexemes, with two output modules — one decoder-based dedicated to parent retrieval,
and one classifier-based for word-formation classification. PaReNT achieves a mean accuracy of 0.62 in parent
retrieval and a mean balanced accuracy of 0.74 in word-formation classification.

Keywords: word formation, deep learning, morphology

1. Introduction lexeme in its lemma form in the given language
as output. To the best of our knowledge, no other
specialized computational tool available today sat-
isfies all of the three conditions. PaReNT handles

English, German, Dutch, French, Spanish, Czech,

A significant portion of words in a language share
one or more roots with other existing lexemes as a
result of various word-formation processes. How-

ever, it is difficult to automatically determine what
the motivating lexeme(s) looked like. As an exam-
ple, consider the English word backache (exam-
ple 1). In a computational setting, it is not easy to
even determine that it is a compound, as opposed
to being a derivative of a single parent like exam-
ple 2 or an unmotivated word with no parents like
example 3.

(1) English
backache — back ache
N N N
(2) English
backness — back
N N
(3) English
baklava — )\
N None

To handle this problem, we present PaReNT,
a deep-learning tool that accepts words in their
dictionary forms (lemmas) from a given language
and returns the lemmas of their parent words. It
a) handles both attested and newly-coined lex-
emes, b) its inputs are not limited to any particular
word-formation category and c) it returns a valid

and Russian, and does not depend on a dictionary.
PaReNT performs two related tasks:

1. Parent retrieval. Predict which word or words
the input lemma is motivated by.

2. Word-formation classification. Predict
whether the input lemma is a compound, a
derivative, or unmotivated.

Even though tools performing partial or related
tasks exist, no currently available computational
tool specialized in end-to-end parent retrieval,
which we will expand upon in Section 2. In Sec-
tion 3, we will describe which data sources we
used to build our data set, how we built PaReNT,
what metrics we used to evaluate it and what base-
lines we used to compare it to in Section 4. Fi-
nally, we place our findings into of a wider context
in Section 5, and analyze the errors of the tool in
the same section. We conclude our paper in Sec-
tion 6.

2. Related work

Our work continues existing research in stemming,
morphological segmentation, derivational analy-
sis, compound splitting, and in linguistic data re-
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Authors Language(s) Approach POS scope Parent no.
Khaitan et al. (2009) en Split-point Any Any
Fritzinger and Fraser (2010) de Split-point Any 2
Henrich and Hinrichs (2011) de Valid-output  Nominal 2
Clouet and Daille (2014) en, ru Valid-output  Any 2
Riedl and Biemann (2016) de, nl, en Split-point Any Any
Krotova et al. (2020) de Split-point Nominal Any
Svoboda and Sevéikova (2021) cs Valid-output  Any Any
Vodolazsky and Petrov (2021) ru Valid-output  Any 2

Table 1: Comparison of various compound splitters described in the literature, sorted by year of publica-

tion.

source building. Parent retrieval can actually be
thought of as a generalization over both compound
splitting and derivational analysis.

2.1.

The most straightforward way of addressing the is-
sue of parent retrieval is to hand-build a dictionary-
like data resource and simply find the given word
there. The number and quality of such word-
formation resources is considerable. Derinet,
for example, contains 1,034,354 Czech lemmas
(Vidra et al., 2021), and MorphoLex-FR covers
38,840 French lemmas (Mailhot et al., 2020). A
lookup into such a data source however carries
a fundamental limitation — speakers occasionally
coin new words, meaning that there will always be
words not contained in any such resource. As are-
sult, morphological and lexical databases cannot
in principle have enough coverage to be consid-
ered a solution for this problem.

Static data resources

2.2. Stemming and morphological
segmentation

Stemmers like the Porter stemmer (1980) and
morphological segmentators like Morfessor (Smit
et al., 2014) can both in principle handle any in-
put lemma, but neither are designed to return valid
lemmas in the language in question.” Stemmers
are typically rule-based or statistical tools that only
strip affixes, and do not handle orthographical and
morphophonological changes. This often results
in non-lemma outputs, such as returning *happi
when presented with happiness. In parent re-
trieval, however, we would only consider happy to
be a correct output. Early stemmers, such as the
aforementioned Porter stemmer, only stripped suf-
fixes, with some later implementations being able
to strip prefixes as well, e.g. the Arabic stemmer

'In Morfessor’s documentation, the term “compound”
is used for any morphologically complex word — includ-
ing derivatives. In contrast, this paper uses terminology
congruent with generally accepted linguistic categories,
and the term compound is used solely for words contain-
ing two or more roots.

by Alshalabi et al. (2022) based on a program-
ming language designed specifically for stemming
called Snowball (Porter, 2001).

Morphological segmentation tools typically re-
turn a list of morphs or morphemes (e.g. [happ,
i, ness] or [happ, y, ness]). For some lan-
guages, such morphs or morphemes may not be
valid words. A well-known segmenter is Mor-
fessor, introduced as unsupervised in 2002 by
Creutz and Lagus, extended into semi-supervision
in 2010 by Kohonen et al., and generalized be-
yond morphological segmentation in 2013 by Vir-
pioja et al. It has been shown that its appli-
cation on two languages can improve machine
translation (Grénroos et al., 2018). Other mor-
phological segmenters, however, are tailored to
a particular language. For example, Cotterell
et al. (2016) built one for English using weighted
context-free grammars, and the SIGMORPHON
2022 Shared Task on Morpheme Segmentation
(Batsuren et al., 2022) challenged researchers to
segment words in eight different languages using
training data from the Unimorph database (Bat-
suren et al., 2022). While this resource does cover
segmentation, extracting the information is rather
difficult. To address this problem, a multilingual an-
notation scheme for morphological segmentation
has been proposed by Zabokrtsky et al. (2022),
potentially streamlining the development of multi-
lingual segmenters in the future.

2.3. Compound splitters

A compound splitter (a.k.a decompounder) is any
tool that takes a compound word as input and
decomposes it into two or more linguistic sub-
elements in some way. In contrast with static data
resources, compound splitters are procedural, and
as a result should not output an out-of-vocabulary
error when presented with a novel coinage. We
present a short non-exhaustive overview and clas-
sification of compound splitters that have been pre-
sented in the literature for the languages in scope;
see Table 1.

Split-point compound splitters simply return the
index of the place wherein the given word should
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Dataset Language Compounds Derivatives Unmotivated Authors

Derinet 2.1 Czech 2,240 264,748 13,748  Vidra et al. (2021)

CELEX Dutch 66,428 19,703 7,569 Baayen et al. (2014)
CELEX English 6,267 15,435 14,661 Baayen et al. (2014)
Wiktionary English 20,253 0 0o —

Unimorph French 161 72,789 2 Batsuren et al. (2022)
MorpholLex French 313 0 6,655 Mailhot et al. (2020)
Wiktionary French 173 0 0o —

CELEX German 19,304 18,372 9,140 Baayen et al. (2014)
GermaNet German 99,080 0 0 Henrich and Hinrichs (2010)
Golden Compounds  Russian 1,699 0 0 Vodolazsky and Petrov (2021)
DerivBase.ru Russian 0 133,645 20,612 Zeller et al. (2014)
Unimorph Spanish 130 30,646 1 Batsuren et al. (2022)
DeriNet.ES Spanish 0 42,825 16,141  Kyjanek et al. (2021)
Wiktionary Spanish 329 15 0 —

All sources All 216,377 598,178 88,529 —

Table 2: The data sources used in the training of PaReNT, grouped by language.

be split, which is what Khaitan et al. (2009) ap-
plied to English using normalized frequency and
character n-grams. While the split-point approach
allows the task to be handled as a regression or
classification problem (as opposed to a sequence-
to-sequence approach), the drawback is that in
many languages a point-split systematically fails to
yield valid lemmas. This is of little concern in En-
glish, where examples of this situation are rare, but
such an approach started being a problem once
the attention in NLP shifted to more morphologi-
cally complex languages.

For example, in the Dutch example 4, we see
the -e- interfix. Inserting a split-point at bruide.gom
would result in *bruide, which is not a Dutch word;
conversely, a split-point at bruid.egom results in
the similarly nonsensical *egom. This problem can
be solved by building split-point splitters so that
they drop interfixes, for instance by using a list of
them like Henrich and Hinrichs (2011) did. How-
ever, in some languages, even interfix dropping
falls short, and the split-point approach starts be-
ing impractical. For example, splitting the Czech
noun pfimotop (example 5) as pfimo.top results in
*top, which is not a valid lemma. Instead, the ap-
propriate output would be the verb fopit ‘to heat'.
Similarly, Russian 6o00.0.nposoo (cf. example 6)
cannot be point-split correctly, as it would yield the
non-existent *so0. Sporadically, the problem ap-
pears even in English, where women.folk (exam-
ple 7) would yield women, which is a plural, and
therefore not a lemma.

6000npP0600
water_piping.N

(7) English

womenfolk — woman folk
N N N

— 600a  npoeoo
water.N conduit.N

Valid-output compound splitters attempt to deal
with the previously described problems. This may
be achieved by equipping a split-point splitter with
a table of rules and/or a vocabulary or corpus,
like Clouet and Daille (2014), or Vodolazsky and
Petrov (2021) did, or by treating the task as a
sequence-to-sequence procedure outright, which
is an approach that Svoboda and Sevéikova (2021)
took.

Some compound splitters restrict themselves to
nominal compounds, such as the splitters by Hen-
rich and Hinrichs (2011) of Krotova et al. (2020)
for German; general compound splitters handle
any compound regardless of the POS of either the
parents or the compound. Finally, splitters differ
in how many parents they return. Some splitters
either return exactly two parents, like the splitter
of Fritzinger and Fraser (2010); others return any
number of parents, like Svoboda and Sevéikové's
2021 splitter.

Out of the languages in scope, compound split-
ters have been built for five of the seven languages.
To the best of our knowledge, no splitters have
been built for French or Spanish at the time of sub-
mission of this paper, with the exception of DériF
(Namer, 2003), which only handles neoclassical
compounds like those in example 8.

(4) Dutch
bruidegom — bruid gom (8) French
bridegroom.N  bride.N groom.N psychologie — -psych- -log-

(5) Czech psychology.N  soul.NEOC. word.NEOC.
primotop — pfimo topit To conclude, all computational tools applicable
heaterN  directly.Aov heat.V to parent retrieval known to us carry some fun-

(6) Russian damental limitation. Static data resources do not
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cover newly-coined lexemes; morphological seg-
mentators and stemmers do not return valid lex-
emes in their lemma form; and compound splitters
do not handle derivatives and unmotivated words.
We built PaReNT to be a computational model that
ties into the development of all of these tools, con-
tinuing the tradition of stemming and running par-
allel to the active field of morphological segmenta-
tion.

3. Method

The high-level overview of PaReNT’s functioning
is simple — all available data sources are utilized
to compile a flat list of lexemes in their lemma form
and a corresponding list of parent sequences:

sea [sea]
seasick [sea sick]
seasickness [seasick]

The list is then split into training, development, and
validation sets. A deep neural model is trained on
the training dataset to take a triple consisting of a
special language token, the input lexeme as a se-
quence of character sequences, and the input lex-
eme as a semantic embedding, and to retrieve the
sequence of its parents separated by spaces and
classify the lexeme into one of: compound, deriva-
tive, unmotivated. lts hyperparameters are tuned
using the development set, and its performance is
calculated on the validation set. This process can
be viewed in the third part of Figure 1.

For the purposes of this paper, we adjust two
established linguistic concepts to suit our needs.
First, we understand compounds as lexical units
that regularly appear as graphical words, as op-
posed to compounds written with a space, which
we consider syntactic constructs and therefore out-
of-scope. This criterion (as Haspelmath 2017 ar-
gues) is an artifact of a combination of the Western
linguistic tradition and often arbitrary orthographi-
cal conventions, but since the parent retrieval of
such compounds is identical to tokenization, it was
deemed uninteresting.

Second, the lexemes we deal with are catego-
rized into one and only one of the three categories,
despite the facts that a) more types of word forma-
tion exist (univerbization, blending, abbreviation,
conversion, borrowing, clipping, etc...) and b) their
boundaries are fuzzy, especially between deriva-
tion and compounding (e.g. is underscore a deriva-
tive of score with the prefix under-, or a compound
of the preposition under and the verb score?). We
understand that these adjustments are a simplifica-
tion of actual natural language reality, but consider
them a compromise.

3.1. Data

The theoretical basis of PaReNT’s functioning is
inspired by the structure of Universal Derivations
(Kyjanek et al., 2021). This is a collection of word-
formation resources representing word families as
directed acyclic graphs (DAGs) over a given lan-
guage’s lexicon, with words as nodes and relations
between the words as directed labeled edges. Par-
enthood is indicated by the direction of the edges,
meaning that the entire resource can be converted
into a set of pairs, with the first element being the
lexeme in question (child) and the second element
its motivating lexeme(s) (parent(s); which is the
given word itself for unmotivated words). Even
though the labels may describe more relations be-
tween words (e.g. conversion and orthographical
variation), we consider each node with a single par-
ent to be a derivative, each node with two or more
parents to be a compound, and each node with no
parents to be unmotivated. This decision allowed
us to utilize resources not included in Universal
Derivations. Not all resources we use are struc-
tured as DAGs, but all that we use are reducible to
a list of (lexeme, [parent sequence]) pairs.

The data sources used in this study were se-
lected so that in summary, they contained at the
very least several hundred examples of each of
the given categories for each of the languages
in scope. A concise description of the sizes
of the data sources used in this study can be
viewed in Table 2, alongisde their respective cita-
tions. Additionally, we crawled Wiktionary to en-
rich our dataset with French and Spanish com-
pounds, because MorphoLex (2020) offered only
several hundred compounds for each language.
The data is split into three subsets — training, de-
velopment, and validation, ata 60/20,/20 ratio. The
split was done according to what we call /exico-
graphical blocks. This means that lexemes be-
longing to the same DAG had to end up in the
same subset. As a specific example, each of the
German words Arbeit, arbeitslos and Fabrikarbeit
were placed in the development subset. In total,
the training set contained 543,066 words, the de-
velopment set 180,293 words and the validation
set 179,725 words. Splitting along lexicographical
blocks ensures that the model’s ability to retrieve
and classify lexemes bearing unseen roots is eval-
uated. Ifinformation about DAGs is missing from a
particular dataset, as is the case with Wiktionary or
GermaNet, we consider lexemes sharing the right-
most parent to belong to the same lexicographi-
cal block. Lastly, on input, every Russian word
is losslessly transcribed into the Latin script, and
transcribed back again on output. Evaluation is
calculated in the original Cyrilic.
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Pre-processed training data

Lexeme Language Parent(s) Category
sea en sea Unmaotivated
sick en sick Unmotivated
segsmk en [sea, sick] Compound
seasickness en seasick Derivative
| |
Masked seaq. Categorical
crossentropy crossentropy
PaReNT AN
“seasickness” [“en”] ///\ \\
T S R S R
BPE
. One-
[‘seas”, “ick’, “ness’] Ilot
[C
Linear
Cross
/ attention

I [Language
Embedder

Retriever

Derivative

)
|
Transformer-like Self Global FC Soft
hlock stack attention Avg RelU Max
Pool
Encoder Classifier

Figure 1: Visual schema of the process of fitting PaReNT onto DAG-structured data, along with its archi-

tecture and training loop.

3.2. Model architecture

We use TensorFlow to build a custom architec-
ture encoder-decoder recurrent neural model. Itis
equipped with a sequential decoder module (that
we call the Retriever module) with cross-attention
for parent retrieval, and a classification head with
self-attention for word-formation classification. We
use a multi-lingual subword embedding model pro-
vided by BPEmb (Heinzerling and Strube, 2017)
to feed semantic information about the input lex-
emes into the model. The model architecture can
be viewed in Figure 1.

The input lexeme is byte-pair-encoded into a se-
quence of subwords, and its respective language
token is embedded into a two-dimensional space.
Then, the subword sequence is fed into the En-
coder module, where each subword is in parallel:

1. embedded into a 300-dimensional semantic
space provided by BPEmb;

2. split into individual characters and fed into a
time-distributed bi-directional LSTM layer with
a dimensionality of 300.

Thus, a 300-dimensional dual representation,
one semantic and one character-based, is ob-
tained for each word. These representations are
then concatenated and fed into a bi-directional

LSTM layer, the result of which is the output of the
Encoder module. A stack of so-called Transformer-
like blocks follows. This construct is similar to the
familiar Transformer Multi-Head Attention Block,
except it runs in a time-distributed manner, as
opposed to its parallel-running Transformer coun-
terpart. The number of stacked Transformer-like
blocks was one of the hyperparameters that was
tuned during the training process. The model then
branches off into the Classifier module and the Re-
triever module.

In the Classifier module, self-attention is calcu-
lated on the Encoder output, and the sequence di-
mension is globally averaged over. Then, the re-
sult is passed through a fully-connected layer and
passed through a three-unit Softmax layer.

In the Retriever module, the Encoder output
is used to recursively generate the parent of the
given lexeme grapheme by grapheme in the way
that is described by Vaswani et al. (2017). First,
the input is fed into a self-attention block, which cal-
culates attention between each pair of items from
the input sequence. The attention is then added to
the original input sequence. Next, alongside a skip
connection, it is passed through a time-distributed
fully-connected layer and added back. Finally, it is
passed through a layer normalization.
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PaReNT Most-Frequent ChatGPT
Lang Retracc Classacc Clbalacc Retracc Classacc Clbalacc Retracc Classacc Clbalacc
Czech 0.64 (0.75) 0.96 0.66 0.05 (N/A) 0.94 0.33 0.39 (0.66) 0.87 0.36
German 0.60 0.95 0.86 0.06 0.81 0.33 0.28 0.57 0.71
English 0.69 0.86 0.84 0.25 0.49 0.33 0.33 0.39 0.38
Spanish 0.75 0.98 0.74 0.18 0.82 0.33 0.3 0.64 0.64
French 0.50 0.94 0.54 0.08 0.91 0.33 0.4 0.53 0.31
Dutch 0.55 0.89 0.80 0.09 0.70 0.33 0.11 0.60 0.69
Russian 0.64 0.97 0.72 0.13 0.86 0.33 0.25 0.74 0.63
Mean 0.62 0.94 0.74 0.12 0.79 0.33 0.29 0.62 0.53

Table 3: The performance of PaReNT and baselines for each language. The dummy balanced accuracy
in classification is 0.33 for each language, because there are three word-formation categories. Most-
Frequent accuracy for retrieval is the same as the proportion of unmotivated words in the given language’s
test set. The figure in (parentheses) on the second line indicates Family accuracy, which describes how
many times the system correctly identified the Czech word-formation family of the correct parent(s). It
is not listed for the Most-Frequent model, because it always returns the word unchanged, and a word is

trivially part of its own word family in 100% of cases.

4. Results

For the evaluation of PaReNT’s performance in
parent retrieval, we use Accuracy, which we define
as the number of times PaReNT returned parents
exactly string-equivalent (including capitalization)
to the label parents in the correct ordering divided
by the number of items in the test set. To evaluate
word-formation classification, we used Accuracy,
defined as the percentage of class hits divided
by the number of items in the test set. Because
the datasets we used are generally imbalanced
in terms of word-formation class, we additionally
used Balanced Accuracy from scikit-learn, which
is defined as (Speci ficity + Sensitivity)/2. As an
auxiliary metric, we use Family accuracy, which de-
scribes the proportion of cases where PaReNT’s
retrieval output shares its word-formation family
with the label. We used this metric only on Czech,
since DeriNet 2.1 is the only resource at our dis-
posal with the required structure and complete-
ness.

The best model uses two bidirectional layers
of 2,048 units in the encoder, and a single
Transformer-like block with two attention heads of
dimensionality 512. In the retriever, Luong atten-
tion is used for Cross-Attention and one unidirec-
tional layer of 2,048 units to decode the output.
In the classification head, Luong self-attention is
used, with 512 units and a dropout of 0.3 in the final
fully-connected layer. It was trained for 13 epochs,
with a recurrent dropout of 0.2 in all recurrent layers
and a regular dropout 0.5 of in all fully connected
layers. The optimizer we used was ADAM, and
we used a cyclical learning rate schedule (Smith,
2017) with a starting value of 10~* and a final value
of 10~°. Its performance, broken down by lan-
guage, can be found in Table 3.

PaReNT is directly compared against two base-
lines. The Most-Frequent baseline performs par-
ent retrieval by returning the input unchanged, and

always guesses Unmotivated as the category. The
other baseline is ChatGPT (OpenAl, 2021), which
is given the following prompt:

Perform parent retrieval (predict which word
or words the input lemma is motivated
by.) and word-formation classification (predict
whether the input lemma is a compound, a
derivative, or unmotivated) on the given words.
For each word, you will also be given its lan-
guage of origin as a language token {cs :
Czech, ru : Russian, de : German, es : Span-
ish, fr : French, nl : Dutch, en : English}. For-
mat the output as tsv.

The words:

<list of words>

ChatGPT formats the output differently on each
query, or sometimes even misunderstands the
task or outright refuses to perform it, so its out-
put has to be manually checked, regenerated if
needed, and then reformatted. As a result, evalua-
tion of ChatGPT is performed on a small sample of
n = 300 words. These were fed into ChatGPT inin-
crements of 100 words, prepended by the prompt
each time.

5. Discussion

Comparing Table 2 and Table 3, it seems that the
performance of the model for a given language
not only depends on the amount of data available,
but also on the morphological complexity of the
language. For instance, despite the sparsity of
the data available for Spanish, the model achieves
high Accuracy classifying its lexemes. In Czech,
the situation is the opposite — the amount of data
available is large, but the performance is lower.

5.1.

In this section, we present a linguist-performed
analysis and interpretation of the errors made by

Error analysis
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PaReNT, in the hopes of not only shedding light
on the tool’'s functioning, but also on the word-
formation systems of the languages in question.
The errors have been analyzed by a human expert
on a 1% random sample of the 179, 720 item vali-
dation dataset.

5.1.1. Type 1: Data conflict

The output of the model is correct, but conflicts
with the label in the data.

In the data, each lexeme is assigned a single
set of parents. Language reality is however of-
ten ambiguous, and the parents of a lexeme can
be assigned in different ways. As a result, the
model sometimes returns a lexeme that is correct,
but disagrees with the label in the data, like in
the Spanish example 9, where the expected out-
put is alcoholizacion “alcoholization”. Additionally,
the datasets we used sometimes contain typos or
other errors. This was in fact the case in the En-
glish example 10, where the listed output is in fact
correct — and the item is wrongly listed as Unmoti-
vated.

(9) Spanish

desalcoholizacion — desalcoholizar
dealcoholization.N to dealcoholize.V

(10) English

north-northeast — north north east
N N N N

5.1.2. Type 2: Inflectional confusion

The model mishandles the behavior of inflectional
morphemes in word formation.

The role of inflection in word formation, typi-
cally compounding, has been touched upon in Sec-
tion 2. The example womenfolk was used to illus-
trate that sometimes inflected words enter a word-
formation process. When womenfolk specifically
is fed into the model, it fails to return woman and
instead returns women. It also occasionally gen-
erates an inflectional ending in a context where it
looks like it could have been dropped (Spanish ex-
ample 11, where PaReNT attaches a verbal end-
ing to the expected poem "poem”).

(11) Spanish

poema — *poemar
poem.N  NONSENSE

5.1.3. Type 3: Morphophonemic ambiguity

The model fails to compensate for a difficult-to-
account-for morphophonemic process.

The bulk of the model’s predictions are based
on the reverse application of word-formation rules.
For instance, the model notices that there exists

a pattern in English <root>+ment, so upon see-
ing development, it returns develop. The problem
is that it may be unclear how the rule should be
retroactively applied. As an example, in Czech,
the addition of a a suffix can induce stem allomor-
phy, resulting in /s/ — /§/. The application of the
same suffix on another word, however, can yield
/8/ — /8/, so when analyzing a word of the pattern
*s + <suffix>, the model has to guess whether to
generate /s/ or /8/. In the Czech example 12, the
expected result is rychlokvasit "to ferment quickly”.

(12) Czech

rychlokvaseny
quickly fermented.A

— rychlokvasit
NONSENSE

5.1.4. Type 4: Neural hallucination

The model baselessly hallucinates non-existent
structures.

Sometimes, the model for unclear reasons sim-
ply switches, skips, replaces, overgenerates a
character or split, or does something else that is
difficult to interpret. Occasionally, it even halluci-
nates an entire morpheme, like in the Czech ex-
ample 13, where an adjectival suffix and ending
is added to the first nonsensical parent, or in the
Dutch example 14, where an infinitive ending is
added to both parents.

(13) Czech

prezivka — *pfazovy  *lazba

slipper.N NONSENSE NONSENSE
(14) Dutch

hoegrootheid — *hoegen roten

amount.N NONSENSE to rot.V

5.1.5. Type 5: Overretrieval

The model does not return the parent of the input,
but the parent of the parent.

In example 15, we would expect PaReNT to
output muoxwurens “factor” — the parent of which
is the actually received output muoscums “to mul-
tiply”. Similarly, we would expect the verb mouler
“to mold” as an intermediate step in example 16.
This error often overlaps with Type 1: Data con-
flict, typically in cases where the model interprets
a compound as parasynthetic when such an inter-
pretation is unnecessary. This is the case in exam-
ple 17, where Wechsel “change” would be a sim-
pler interpretation. The consistency of this error’s
appearance is reflected by the fact that Family ac-
curacy is considerably higher than raw Accuracy,
as shown in Table 3.

(15) Russian

MHONCUMETbHBLIL — MHOMICUNLD
multiplicable.A multiply.V
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(16) French

moulerie — moule

molding.N  mold.N
(17) German
Tempowechsel — Tempo wechseln

change of tempo.N  tempo.N to change.V

5.1.6. Type 6: False morphemehood

The model misjudges the presence of a mor-
pheme, typically an interfix. In example 18, PaR-
eNT mistakes part of the stem of the verb wandern
“to hike; to wander” for an interface, drops it, an-
dends up with the completely unrelated word Wand
“wall”.

(18) German

Wanderméglichkeit — Wand Méglichkeit
hiking opportunity.N wall.N opportunity

5.1.7. Type 7: Semantic irrelevance

The model retrieves a word in a formally correct
manner, but in a way that no human would find in-
tuitive or meaningful.

The problem in example 19 is that while the com-
pound is split on a morphological boundary, the
given compound is not a compound of three words,
but rather a recursive compound. A human knows
that, because the first real parent Wochenende is a
common word meaning “weekend”, but the model
has no way of inferring this from its training data.

(19) German

Oktoberwochenende — Oktoberwochen ende
October weekend.N October weeks.N end.N

5.1.8. Type 8: Missplitting

A non-compound is split (example 20), a com-
pound is left unsplit (example 21), or a compound
is split outside of a morphological boundary (exam-
ple 22).

(20) English
compartmental — *compart mental
N NONSENSE A
(21) English
bullring — bullring
N N
(22) English
raceabout — “racea bout

N NONSENSE N

As a final note, it needs to be stressed that
certain word-formation phenomena are easier for
tools like HextitPaReNT to model than others. For

instance, the highly productive and common En-
glish derivational pattern development — develop-
ment, enjoy — enjoyment is generally easily recon-
structed by simply dropping the -ment suffix, while
the unproductive and much rarer broad — breadith,
deep — depth pattern is much harder, since there
exist fewer examples and the sound changes are
much less predictable. In other words, In the fu-
ture, we would therefore like to develop an evalua-
tion methodology that takes the complexity and fre-
quency of certain word-formation processes into
account.

5.2. Comparison with other tools

Not only does PaReNT outperform ChatGPT by
a considerable margin in both tasks for every
language (cf. Table 3), but also performs the
tasks much more consistently. ChatGPT formats
the output slightly differently each time, and also
sometimes refuses to perform the task in the first
place. This makes PaReNT much more suitable
for pipelining in downstream applications.

We also compare PaReNT to Word-Formation
Analyzer for Czech (WFA.ces; Svoboda and
Sevéikova 2021). PaReNT’s performance in par-
ent retrieval of Czech words at 0.64 is slightly lower
than that of WFA.ces at 0.67. We attribute this to
our splitting the data set by lexicographical block
(Section 3), which was not used in the case of
WFA.ces.

We additionally attempt to compare PaReNT’s
performance in splitting German compounds with
Krotova et al.’s deep splitter, which was trained
and evaluated solely on GermaNet. At face value,
it achieves an Accuracy of 0.95. We subset our val-
idation dataset so that only compounds from Ger-
maNet are left, and we measure Accuracy on the
subset and arrive at a markedly worse 0.69. How-
ever, we note that Krotova et al.’s tool is a split-
point splitter, and is evaluated as such?; and also,
PaReNT was trained not only on GermaNet, but
also on CELEX, which has somewhat different an-
notation conventions. We use two different adjust-
ments to try and take these differences into ac-
count. First, we adjust the performance of PaR-
eNT to closer match the evaluation conventions
of Krotova et al., as outlined in the Error Analy-
sis section of their paper. We hand-annotate a
10% sample of the errors in the validation set in
accordance with the classification set forth in Sec-
tion 5.1, and only consider errors of type 3, 4, 6, 7,
and 8, which amount to 51% of all the errors. Af-
ter this adjustment, PaReNT’s Accuracy climbs to
0.84 compared to the 0.95 of Krotova et al.. Sec-
ond, we adjust the Accuracy of Krotova et al. to
closer match our evaluation conventions, one of

%|Interfixes are left attached to the left-hand parent.
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which is that all predicted parents must be valid
words in their lemma form. However, only 60% of
compounds in GermaNet are formed by a simple
concatenation of their parent lemmas. As a result,
the rest cannot be handled by a split-point splitter
according to the aforementionded criterion®. We
therefore consider the 60% to be the oracle score
(maximum attainable value) for the split-point split-
ter, and arrive at 0.57 Accuracy for Krotova et al.’s
splitter compared to PaReNT’s 0.69.

The deep-learning nature of PaReNT makes
its usage somewhat computationally intensive. It
does not however require a GPU to be practical,
since the model processes about 20 lexemes per
second on a CPU with batch inference, and takes
up about 400 MB of disk space. While this does
make it more cumbersome than e.g. a Snowball-
based stemmer or a similar rule-based tool, it can
still be comfortably used on a consumer-grade
computer.

6. Conclusion

In this paper, we presented PaReNT (Parent Re-
trieval Neural Tool), a deep learning-based tool for
the parent retrieval and word-formation classifica-
tion of isolated lexemes in their conventional dictio-
nary form for eight different languages. It is based
on the Tensorflow framework and runs on a dual-
representation input, encoder/decoder with a clas-
sification module RNN neural network. PaReNT
has achieved a total Accuracy of 0.62 in parent re-
trieval and a Balanced Accuracy of 0.74 in word-
formation classification on an independent valida-
tion data set. In the future, we would like to ex-
tend PaReNT’s language set into other languages.
Additionally, we observe that the standard dictio-
nary form (lemma) of a given lexeme in a language
is not necessarily the most relevant or informative
from a word-formation perspective (as evidenced
by e.g. the inclusion of an inflected word form in
the word womenfolk), we would also like to include
inflected word forms in the training data.

We also consider the ternary classification fram-
ing of the word-formation classification problem
to be untenable in the long-term, simply because
it is obvious that the reality of word formation is
much more complex than the three categories of
compound, derivative, unmotivated. In the future,
we would therefore like to include more categories
such as clipping or univerbization.

3Unless it has explicit interfix handling, which the au-
thors do not mention and their Error analysis section
seems to indicate otherwise. The reason is explained
and exemplified in Section 2.3.

Download and use PaReNT

A public version of PaReNT, alongside the part
of the training data crawled from Wiktionary, can
be found on GitHub: https://github.com/
iml-r/PaReNT.
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