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Abstract
We introduce ParaNames, a massively multilingual parallel name resource consisting of 140 million names spanning
over 400 languages. Names are provided for 16.8 million entities, and each entity is mapped from a complex type
hierarchy to a standard type (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this
type to date. We describe our approach to filtering and standardizing the data to provide the best quality possible.
ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration
and as supplementary data for tasks such as named entity recognition and linking. We demonstrate the usefulness
of ParaNames on two tasks. First, we perform canonical name translation between English and 17 other languages.
Second, we use it as a gazetteer for multilingual named entity recognition, obtaining performance improvements on
all 10 languages evaluated.

Keywords: Parallel Name Corpora, Name Translation, Transliteration, Named Entity Recognition, Gazetteers,
Multilingual NLP, Under-resourced Languages

1. Introduction

Our goal in creating ParaNames is to introduce a
massively multilingual entity name resource that
provides names for diverse types of entities in the
largest possible set of languages and can be kept
up to date through a nearly automated preprocess-
ing procedure. A large resource of names of this
type can support development and improvement of
multilingual language technology applications, as
it is often important to know how real-world entities
are represented across various languages.

The correspondences of names across lan-
guages are not always easy to model; they can
involve a mix of transliteration and translation and
often involve inconsistencies across languages or
even among names in a given language. As a
concrete example, some country names are trans-
lated in Finnish, so United Kingdom is written as
Yhdistynyt kuningaskunta, a literal, word-by-word,
translation. In contrast, smaller territories may or
may not be translated: the U.S. states of North Car-
olina and New York are written as Pohjois-Carolina
(with North translated) and New York, respectively.
Moreover, Finnish versions of the U.S. states are
often idiosyncratically translated, e.g. California
is represented as Kalifornia, whereas Colorado is
represented as Colorado. The examples above
demonstrate the complex choices that language
speakers make in representing named entities—
even when only dealing with Latin script—and un-
derscore the need for a large-scale, multilingual
resources of entity name correspondences to ef-
fectively model these phenomena.

Most research groups (ours included) lack the

means to assemble annotators in hundreds of lan-
guages to produce a carefully, manually curated
resource with the coverage we desire. Even with
sufficient means, such a resource would quickly fall
out of date and would be difficult to grow over time.

Instead, our approach is to try to adapt an exist-
ing, continuously maintained data source to serve
this purpose. This presents several requirements:
first, the data source itself needs to cover as broad
a set of languages as possible, especially under-
resourced ones. Second, the process of construct-
ing the resource needs to be near-automatic to
allow updates as the upstream data source is modi-
fied. Finally, to have the most useful set of names in
each language possible, we need to try to exercise
proper quality control, for example ensuring that the
entities in each language are in the desired script
even when there are errors in the source data.

We selected Wikidata as our data source due to
its nature as a perpetually updating collection that
enables continuous improvement and expansion,
as well as its extensive coverage of languages and
entities. In this paper, we present our approach to
transforming the Wikidata knowledge graph into a
dataset of person, location, and organization enti-
ties with parallel names. We identify potential prob-
lems in the source data—such as the lack of stan-
dardization of the script(s) used in each language—
and provide a processing pipeline that addresses
them. In addition to ensuring consistency in the
scripts used for each language, we focus on mak-
ing the names as parallel as possible by removing
extraneous information that can accompany them,
such as parenthetical explanations. We hope to

https://www.wikidata.org


12600

provide regular updates to this resource to include
corrections and improvements to both Wikidata and
our extraction process. ParaNames is licensed us-
ing the Creative Commons Attribution 4.0 Interna-
tional (CC BY 4.0) license and was first publicly
released in March 2021.1

2. Related Work

While there is previous work in the construction
of multilingual name resources, we are not aware
of an openly-accessible resource containing the
names of millions of modern entities.

Wu et al. (2018) create a translation matrix of
1,129 biblical names, with each English name con-
taining translations into up to 591 languages. Mer-
hav and Ash (2018) release bilingual name dictio-
naries for English and each of Russian, Hebrew,
Arabic, and Japanese Katakana. However, their
resource is limited to a few languages and only
covers single token person names.

The Named Entity Workshop (NEWS) shared
task has created parallel name resources across
a series of shared tasks. In the 2018 version of
the shared task (Chen et al., 2018a,b), participants
were asked to transliterate between language pairs
involving English, Thai, Persian, Chinese, Viet-
namese, Hindi, Tamil, Kannada, Bangla, Hebrew,
Japanese (Katakana / Kanji), and Korean (Hangul),
although the task did not include transliteration be-
tween all pairs. The NEWS 2018 datasets are hand-
crafted and much smaller than ours, at most 30k
names per language pair. The datasets for these
shared tasks are not fully publicly available; the test
set is held back, and each of the five training sets
is subject to different licensing restrictions.

There is scattered prior work on extracting par-
allel names from Wikipedia and Wikidata. One
of the earliest explorations of extracting parallel
names from Wikidata at scale was performed by
Irvine et al. (2010). Steinberger et al. (2011) also
collected names for roughly 200,000 entities in 20
scripts and several languages, using Wikipedia and
news articles as their data sources. Building on
their work, Benites et al. (2020) also used Wikipedia
as a data source and automatically extracted po-
tential transliteration pairs, combining their outputs
with several previously published corpora into an
aggregate corpus of 1.6 million names. While all
these works produced collections of entities that
are more modern than those produced by e.g. Wu
et al. (2018), the total number of names is still far
smaller than ParaNames.

1ParaNames is released at https://github.com/
bltlab/paranames. Earlier versions of this work were
presented in non-archival forms at AfricaNLP 2021 and
SIGTYP 2022.

One line of research has focused on evaluating
the quality of Wikidata-derived labels. For instance,
Amaral et al. (2022) showed that the “also-known-
as” metadata may contain more useful labels than
the main labels that Wikidata provides, and that
sentence embeddings can be used to pick the best
label for each pair in a way that improves the degree
to which the names are parallel. However, their
experimental results focus on a manually annotated
dataset of 10 languages, which allowed them to do
much more manual annotation and quality control
than in our work.

Specifically for lower-resourced languages, many
approaches to named entity recognition and link-
ing for the LORELEI program (Strassel and Tracey,
2016) used Wikidata, Wikipedia, DBpedia, GeoN-
ames, and other resources to provide name lists
and other information relevant to the languages and
regions for which systems were developed. How-
ever, while ad-hoc extractions of these resources
were integrated into systems, we are unable to iden-
tify prior attempts to create a transparent, replicable
extraction pipeline and to distribute the extracted
resources with wide language coverage.

3. Dataset Construction

Each entity in Wikidata is associated with several
types of metadata, including a set of one or more
names that different languages use to refer to it.
To construct ParaNames, we began by extracting
all entity records from Wikidata and ingesting them
into a MongoDB instance for fast processing. Given
that we are working with such a large-scale dataset,
there are quality control decisions that arise when
working with the data, which we describe in this
section.

3.1. Harvesting Entity Names
The most important type of metadata for us are
the various names for each entity. In Wiki-
data, each entity includes one main label (de-
noted by rdfs:label in RDF dumps) and zero
or more secondary labels/aliases (denoted by
skos:altLabel in RDF dumps and by “also-
known-as” on Wikidata). Even though these aliases
contain useful examples of real-world names for
many entities, after manual inspection we opted to
only use the main labels in ParaNames.

This decision was based on the observation that
the aliases often include names that only loosely
correspond to the canonical name of the entity. For
example, AKAs for the late U.S. Supreme Court
justice Ruth Bader Ginsburg (Q11116) contain not
only her full name, Ruth Joan Bader Ginsburg, but
also common aliases from popular culture, such
as Notorious RBG. In the case of Donald Trump

https://github.com/bltlab/paranames
https://github.com/bltlab/paranames
https://arxiv.org/abs/2104.00558
https://aclanthology.org/2022.sigtyp-1.15/
https://www.wikidata.org/wiki/Q11116
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(Q22686) the AKAs contain other variations of his
name (Donald John Trump, Donald J. Trump, etc.),
but also pseudonyms that he has used that do not
correspond to his actual name (John Barron, John
Miller, David Dennison, etc.). While this information
could be argued to be useful for downstream tasks
such as entity linking, we felt that these alternative
names introduced potentially unwanted variation
in the names across languages. For this reason,
we chose not to include the also-known-as fields in
our dataset at this time.

3.2. Language Representation
The number of entities for each language varies
wildly across Wikidata. In ParaNames, we exclude
languages with only a single name as having a sin-
gle name would not constitute meaningful represen-
tation of the language. The number of languages
that entities have labels in varies as well. For ex-
ample, the entry for Alan Turing (Q7251) shows
his name written in over a hundred languages, in-
cluding many that use non-Latin scripts. Internally,
each language is referred to using a Wikimedia
language code, which may or may not correspond
one-to-one with natural languages. Often there
are several Wikimedia codes for a given spoken
language, varying in script or geography.2

For example, the Kazakh language is associated
with the Wikimedia language codes kk (Kazakh),
kk-arab (Kazakh in Arabic script), and kk-latn
(Kazakh in Latin script). At other times, the lan-
guage codes are specific to geography rather than
writing system. In the case of Kazakh, there are
three main geography-specific language codes:
kk-cn (Kazakh in China), kk-kz (Kazakh in Kaza-
khstan) and kk-tr (Kazakh in Turkey). In our
analysis and the resource we distribute, we do
not combine these, as the more detailed lan-
guage codes may be helpful in learning to translit-
erate between different scripts of the same lan-
guage. Our code for reproducing ParaNames
includes an option to toggle this behavior by
setting should_collapse_languages={yes,
no} as desired.3

2The relationship between Wikimedia language codes
and other language codes is rather complex. Originally,
the Wikimedia language codes were designed to comply
with RFC3066, but there are inconsistencies and stan-
dardization is unlikely to occur soon. Some, but not all,
of the language codes are identical to modern BCP 47
codes (RFC5646). In this paper, we try to distinguish
between the Wikimedia language codes—which may
identify a language along with a script, geographical re-
gion, or dialect—and higher-level language identifiers
which use only the first two letters of the language code.

3We do normalize language codes to match ISO-639-
3 language codes in select special cases: for Bhojpuri
(bho/bh), we normalize all the names to the language

3.3. Script Usage and Standardization
While language codes can identify a specific script
for a language, many Wikidata labels do not con-
form to the scripts expected for each language.
While this may be a data quality issue in some
languages, the presence of several scripts can
also reflect real world-usage depending on the lan-
guage. For example, Kazakh uses both the Cyril-
lic and Arabic alphabets, thus multiple scripts are
to be expected across a collection of names and
ParaNames reflects this diversity.

We chose to standardize the names within for
each language by filtering out names that are not in
the desired script(s) for the language. An example
of this would be a Russian entity label like Canada
which is not written in Cyrillic. While we explored
automated methods of doing this, ultimately we de-
cided that manually constructing a list of allowed
scripts for each language would yield the best re-
sults. For each language, we used Wikipedia as
an authoritative source to look up which scripts
are used to write the language and filtered out all
names that were not primarily written in one of the
allowed scripts for that language. For each name,
we used the PyICU library4 to identify the Unicode
script property of each character in the name and
chose the most frequent script as the primary script
for the entire name.

To quantify how much this filtering changed the
entity names associated with each language, we
attempted to measure script uniformity for each lan-
guage. For each language, we aggregated the Uni-
code script tags produced by PyICU across names
for each language and computed the entropy of
this distribution, calling this quantity script entropy
and used it as a proxy for script consistency within
a language’s names. Languages whose names
are consistently written in a single script will have
near-zero entropy. The filtering process decreased
the average script entropy from 0.16 to 0.03. After
filtering, 487 language codes remained with a total
of 140,178,539 names across 16,834,537 entities.

3.4. Providing Entity Types
Even though entities often have detailed informa-
tion about what they represent, Wikidata does not
directly categorize entities as instances of higher-
level types such as location (LOC), organization
(ORG), and person (PER). To obtain this informa-
tion, we extracted entity types based on the Wiki-
data inheritance hierarchy. Specifically, we identi-
fied suitable high-level Wikidata IDs—Q5 (human)

code bho. We also normalize Cantonese (zh-yue/yue-
hant/yue) to yue, Hokkien/Southern Min (zh-min-
nan/nan) to nan and Samogitian (sgs/bat-smg) to
sgs.

4https://gitlab.pyicu.org/main/pyicu

https://www.wikidata.org/wiki/Q22686
https://www.wikidata.org/wiki/Q7251
https://datatracker.ietf.org/doc/html/rfc3066
https://meta.wikimedia.org/wiki/Wiki_language_ISO_639-1_%E2%86%92_BCP_47_proposal
https://meta.wikimedia.org/wiki/Wiki_language_ISO_639-1_%E2%86%92_BCP_47_proposal
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc5646
https://gitlab.pyicu.org/main/pyicu
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Entity type Count Percentage
PER 10,002,138 59.41%
LOC 3,880,088 23.05%
ORG 2,631,350 15.63%
Mixed 320,961 <2%
Total 16,834,537 100.0%

Table 1: Number of entities and percentage of all
entities assigned to each combination of LOC, ORG
and PER in ParaNames.

for PER, Q82794 (geographic region) for LOC, and
Q43229 (organization) for ORG—and classified
each Wikidata entity that is an instance of these
IDs as the corresponding named entity type.

While the instance-of relation is transitive—
all instances of a subtype are instances of the
higher-level type—we noticed that taking all sub-
types of these high-level types led to many entities
that were not individual persons to be classified as
PER, such as Government secretaries of Policies
for Women of the State of Bahia (Q98414232). To
exclude such entities, we required that PER entities
must also explicitly be an instance of Q5 (person)
in addition to any subclass types. As we did not ob-
serve similar problems for LOC and ORG entities,
we kept the typing rules unchanged for them. If
we had imposed a more stringent type requirement
as we did for PER, it would have dramatically de-
creased the number of entities for LOC and ORG.

As shown in Table 1, a relatively small number of
entities get assigned to multiple types. While this
is a result of multiple-inheritance in the entity type
hierarchy of Wikidata, having multiple types is not
incorrect as an entity can represent several differ-
ent types. In ParaNames, we opted to preserve
this information, as assigning only a single type to
complex entities could make our dataset less useful
by ignoring inherent entity typing uncertainty.

3.5. Matching Information Across
Languages

Ideally, the names in ParaNames would be maxi-
mally parallel so that both names in a name pair
contain the same information. However, some Wiki-
data names contain additional information in paren-
theses, intended to help disambiguate between
similar-looking entities. For instance, the entity with
the English label Wang Lina (boxer) (Q60834172)
has a Russian label which contains the translation
of the word boxer in parentheses. However, this
is not the case for all languages: for example, the
Spanish name for the entity is simply Wang Lina.
To standardize the amount of information per name
across languages, we remove all parentheses and
tokens inside them using a regular expression.

Language Script Names % Train
Arabic Arabic 500,000 11.1%
Japanese Kanji, Kana∗ 500,000 11.1%
Swedish Latin 500,000 11.1%
Russian Cyrillic 500,000 11.1%
Persian Arabic 457,200 10.2%
Vietnamese Latin 429,185 9.6%
Lithuanian Latin 282,074 6.3%
Hebrew Hebrew 205,704 4.6%
Korean Hangul 203,042 4.5%
Latvian Latin 177,577 4.0%
Armenian Armenian 161,957 3.6%
Greek Greek 149,515 3.3%
Kazakh Cyrillic 124,574 2.8%
Urdu Arabic 103,803 2.3%
Thai Thai 72,112 1.6%
Georgian Georgian 70,965 1.6%
Tajik Cyrillic, Latin 52,574 1.2%
Total 100.0%

Table 2: Parallel training data statistics and the
script(s) used to write the names in our dataset.
The development and test sets were each balanced
to 5,000 names per language. ∗Kana jointly refers
to the two Japanese syllabaries, Hiragana and
Katakana.

4. Canonical Name Translation

We demonstrate the applicability of ParaNames by
using it to train models on two downstream tasks:
canonical name translation and named entity recog-
nition. As our first task, we use the parallel names
in ParaNames to translate entity names from many
languages to English and from English to many
languages. We call this task canonical name trans-
lation, as the task is to translate the Wikidata label
(canonical name) for an entity into the label in an-
other language.

It is important to clarify what this task is and
what it is not. We do not refer to this task as
name transliteration because not every name pair
is strictly transliterated; often the mapping includes
elements of transliteration, translation (especially
for organization names), and sometimes morpho-
logical inflection/deinflection as well. The task is
also not the translation of a name within a sen-
tence, which often requires correct morphological
inflection of the name in its sentential context.

4.1. Data Selection and Splitting
For our experiments, we translate named entities
from 17 languages—Arabic, Armenian, Georgian,
Greek, Hebrew, Japanese, Kazakh, Korean, Lat-
vian, Lithuanian, Persian (Farsi), Russian, Swedish,
Tajik, Thai, Vietnamese, and Urdu—into English
and vice versa, using a single multilingual model
for each translation direction. We chose these lan-

https://www.wikidata.org/wiki/Q98414232
https://www.wikidata.org/wiki/Q60834172
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guages as they cover a wide geographic distribu-
tion, as well as several different language families,
typological features, and orthographic systems.

When evaluating our model’s performance on
Latin-script languages, it is important to avoid in-
flating performance numbers by having a large
part of the evaluation set consist of names writ-
ten identically to English. To accomplish this, we
include a small number of such languages in our
experiments—Swedish, Vietnamese, Lithuanian,
Latvian, and Tajik. The languages we selected
also have varying amounts of data available in our
corpus. All the languages we selected had suffi-
cient names to allow for the development and test
sets to be equally balanced across languages (5k
names per language), but there was an order of
magnitude difference between the language with
the fewest names available for the training data
(Tajik, 50k). We limited those languages (Arabic,
Japanese, Russian, Swedish) to 500k names in
training to avoid oversampling.

To create the parallel data for this task, we ex-
tracted all Wikidata IDs that had names in English
and at least one of the other languages in our se-
lected set. We divided the IDs into either the train,
development, or test set using an 80/10/10 split.
The overall statistics of the parallel data can be
seen in Table 2. While per-ID splitting does not
guarantee identical language stratification across
train, development, and test sets, we employ it to
avoid a data leakage scenario where the English
side of a given entity name might appear in more
than one of our train, development, or test sets.
Notably, this leakage does occur in the data split
created by Wu et al. (2018) because they split the
data by source-target name pairs, not entities.

To further balance our datasets and avoid overly
biasing our models towards the higher-resourced
languages, we also capped the maximum number
of examples per language at 500,000 for the train-
ing data and 5,000 for the development and test
data.

Special tokens After creating the data splits, we
augment the source side of each name pair with
one or more “special tokens” that provide informa-
tion about the non-English language5 and the un-
derlying entity. The purpose of the special token(s)
is to help our model better separate languages, es-
pecially ones with potentially overlapping scripts
such as Tajik, Russian and Kazakh or Swedish,
Latvian, and Lithuanian.

Specifically, we map each source-side string S
into an augmented version based on the regular

5In the case of X → En models, this corresponds to
the source language and in En → X models the target
language.

expression6

S 7→ (<L>)?(<S>)?(<T>)? S

where <L> refers to the non-English language of the
name pair, <S> refers to the script the non-English
name is written in, and <T> refers to its assigned
entity type. As a concrete example, when perform-
ing name translation from Swedish to English, the
Swedish entity name Hyde Park (Q123738) would
first be tokenized at the character level into H y d e
P a r k and could then be augmented as e.g.<sv>
<Latin> <LOC> H y d e P a r k depending on the
experiment. We outline the special token combina-
tions we experiment with in Section 4.5.

4.2. Model Details
The model we use is a simple character-level
Transformer-based translation model trained from
scratch on the ParaNames data. We use the model
structure and hyperparameters from past translit-
eration experiments by Moran and Lignos (2020)
with minor changes. We use a 4-layer Transformer
with a hidden layer size of 1024, embedding dimen-
sion of 200, 8 attention heads, and a learning rate
of 0.0003, with a dropout probability of 0.2. The
label smoothing parameter is set to 0.1, and batch
size is set to 128. We use the Adam optimizer for
a maximum of 75,000 updates. Each experiment
is repeated 5 times using random seeds ranging
from 1917 to 1921. A single NVIDIA RTX 3090
GPU was used for both training and decoding. For
each experimental condition (i.e. direction, source-
side special token setting, and language), train-
ing the model took roughly 9 hours and evaluation
took roughly 15–30 minutes. We implemented our
model using fairseq (Ott et al., 2019).

4.3. Evaluation Metrics
We evaluated using three metrics: 1-best accuracy
(where each a name translation must match the
reference exactly), character error rate (CER), com-
puted analogously to word error rate but at the char-
acter level, and mean F1-score based on longest
common subsequence (Chen et al., 2018b), similar
to ROUGE-L (Lin, 2004). For brevity, we limit the
discussion here to accuracy, as the other metrics
are largely correlated with it and the conclusions
remain the same. Full results with all metrics are
reported in Table 6 in the Appendix.

We first performed a baseline experiment using
a source-side special prefix token that only con-
veys the language being translated into. As our
second set of experiments, we then modified the in-
formation contained in special tokens to assess the

6The notation p? refers to zero or one occurrences
of a pattern p.

https://www.wikidata.org/wiki/Q123738


12604

X → English English → X
Language Language only Language + type ∆ Language only Language + type ∆

Georgian 31.56 ± 0.12 32.67 ± 0.12 1.11 48.94 ± 0.16 51.00 ± 0.23 2.06
Arabic 30.77 ± 0.13 31.88 ± 0.12 1.11 46.54 ± 0.09 46.77 ± 0.13 0.23
Korean 31.21 ± 0.10 32.28 ± 0.19 1.07 42.32 ± 0.10 42.57 ± 0.09 0.25
Thai 38.55 ± 0.11 39.59 ± 0.22 1.04 14.59 ± 0.13 15.02 ± 0.04 0.43
Persian 25.90 ± 0.12 26.92 ± 0.12 1.02 41.90 ± 0.13 42.10 ± 0.21 0.20
Urdu 26.18 ± 0.12 27.02 ± 0.19 0.84 18.03 ± 0.20 17.96 ± 0.16 -0.07
Hebrew 17.66 ± 0.12 18.46 ± 0.15 0.80 37.32 ± 0.07 37.83 ± 0.06 0.51
Kazakh 48.36 ± 0.17 49.14 ± 0.11 0.78 58.00 ± 0.11 58.30 ± 0.10 0.30
Armenian 38.05 ± 0.09 38.76 ± 0.16 0.71 47.42 ± 0.05 47.95 ± 0.08 0.53
Greek 31.04 ± 0.07 31.67 ± 0.11 0.63 30.77 ± 0.07 31.22 ± 0.15 0.45
Lithuanian 80.01 ± 0.07 80.56 ± 0.08 0.55 78.73 ± 0.44 79.30 ± 0.31 0.57
Russian 45.18 ± 0.04 45.65 ± 0.06 0.47 42.42 ± 0.12 43.26 ± 0.14 0.84
Japanese 29.51 ± 0.09 29.97 ± 0.13 0.46 26.95 ± 0.08 27.30 ± 0.09 0.35
Latvian 74.86 ± 0.16 75.26 ± 0.03 0.40 73.05 ± 0.25 73.81 ± 0.19 0.76
Tajik 51.25 ± 0.15 51.56 ± 0.21 0.31 56.30 ± 0.10 56.82 ± 0.11 0.52
Vietnamese 86.78 ± 0.07 87.02 ± 0.07 0.24 77.71 ± 0.28 78.17 ± 0.16 0.46
Swedish 90.26 ± 0.12 90.34 ± 0.08 0.08 87.96 ± 0.20 88.31 ± 0.06 0.35
Micro-avg. 45.71 ± 0.06 46.40 ± 0.05 0.69 48.76 ± 0.05 49.27 ± 0.04 0.51

Table 3: Canonical name translation accuracy when translating to and from English, sorted by descending
performance difference (∆) on the X → En side. Statistically significant differences from the language-only
baseline are bolded.

effects on performance. The overall test set results
for both translation directions are given in Table 3.
The table reports the mean value and the standard
deviation of the mean (standard error) computed
across training five models with different random
seeds. We round all values to 2 decimal places.

4.4. Baseline: Language Special Token

As our first experiment, we evaluated canonical
name translation performance in both X → En and
En → X directions using language special tokens
on the source side. In terms of 1-best accuracy, our
model exhibits an overall trend regardless of the
translation direction: it performs best on Latin script-
languages (Swedish, Vietnamese, Lithuanian, Lat-
vian), followed by others roughly in proportion to
how ambiguous the mapping from each language’s
script to the Latin alphabet is. For instance, in the
X → English direction, the Latin-script languages
are followed by those written in Cyrillic script (Tajik,
Kazakh, Russian) which also makes sense as Cyril-
lic names can be transliterated into Latin script rela-
tively unambiguously. For the rest of the languages,
the pattern is less clear and accuracy is roughly in
the 25-50% range.

Even though translation into English is gener-
ally easier for the model, switching the translation
direction does not seem to substantially change
the performance rankings for most languages. A
notable exception in the X → English direction is He-
brew which consistently worst ranks worst among
all languages. This is most likely caused by the lack

of vowels in the Hebrew names which the model
must infer on the English side. When translating
from English to Hebrew the accuracy improves sub-
stantially (37.32 vs 17.66), as the model does not
have to infer the vowels, only delete them. A simi-
lar but reversed pattern can be observed for Thai
where accuracy is much higher when translating
into English than when translating into Thai (14.59
vs 38.55). Since the Thai script indicates vowels us-
ing combining diacritics, we hypothesize this might
be more difficult for the model to get exactly correct
than English where vowels are written out explicitly.

Qualitatively, when inspecting model outputs, we
noticed that often our model relies too heavily on
transliteration when some words must be translated
or vice versa. Many outputs were also incorrect
because they lacked extra information that was
only present on the target side and omitted on the
source side. For example, tokens like Stream in
Cuiva Stream (Q21412684) are only present in the
English name and cannot be learned by seeing the
non-English source label.

4.5. Finding the Optimal Special Tokens

In addition to adding source-side language tokens
to our parallel data, we also hypothesized that other
information may also be relevant can be helpful in
guiding the decoder. For example, most person
names are transliterated while organization names
tend to include more translation, and many loca-
tion name pairs contain tokens on one side that
are absent from the other. Script information can

https://www.wikidata.org/wiki/Q21412684
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also be useful when dealing with languages that
are written in several scripts or to help encourage
transfer across languages that share a script.

To investigate these hypotheses, we repeated
the first experiment using various different kinds
of special tokens: a language token (<Russian>)
in conjunction with either a type token (<PER>), a
script token (<Cyrillic>), or both. We also per-
formed an ablation experiment by removing special
tokens when possible. Entity type tokens were gen-
erated from the PER/LOC/ORG type information
in ParaNames inferred from Wikidata types. For
the small number of entities that mapped to mul-
tiple types, an arbitrary one was chosen. Script
tokens were generated using the PyICU library as
with script filtering using the most frequent Unicode
script in a particular name.

For the X → English direction, we experimented
with the following special token configurations: no
special token; script only; language only; language
and script; language and entity type; language, en-
tity type, and script. For English → X we only evalu-
ated having a language token and language and en-
tity type tokens, as fewer configurations were pos-
sible. The language token must always be present
for the model to know what language to translate
into, so we did not experiment with removing it. We
could not use the script token for English → X as it
is computed from the non-English (target) side of
the translation; using it would effectively leak spe-
cific information about the test data as part of the
model’s job is to predict which script to use in the
case of a language that uses multiple scripts.

The full results of our experiments across all lan-
guages, metrics and special token settings can be
seen in Table 6. For the X → English direction,
using no special token or a script-only special to-
ken performs similarly to the baseline (not shown
due to space limitations), but as shown in Table 3
there are clear improvements from adding an entity
type special token—roughly 0.7 accuracy points
micro-averaged over languages. Adding a script
token to the language-only baseline or language +
entity type setting seems to provide a marginal per-
formance improvement, but the effect size seems
ultimately consistent with random noise. For the
English → X direction, we can see that adding an
entity type special token provides roughly a 0.5
point improvement. In both directions, the setting
with a language and entity type special token ap-
pears to perform best.

We also performed statistical significance testing
to assess whether there are differences between
the various special token settings. For each lan-
guage, metric, and translation direction, we per-
formed a two-tailed Mann-Whitney U test, which
is a non-parametric alternative to the two-sample
t-test and requires no assumptions about the distri-

bution of the data. For each test, we compared the
baseline to our best special token setting with lan-
guage and entity type tokens. Our null hypothesis
was that there is no difference between the medi-
ans of the two groups. In Table 3, we use boldface
to indicate where significant deviations from the
language-only token baseline were observed and
where a statistically significant result was obtained
at the p < 0.05 level. The micro-averaged accu-
racy is significantly different from the baseline from
in both translation directions. When translating to
English, the null hypothesis is rejected for all lan-
guages with a raw difference from baseline above
0.4—this coincides exactly with the 13 languages
with the largest difference from baseline. When
translating from English, the pattern is the same,
except for Lithuanian and Vietnamese for which we
fail to reject the null hypothesis.

5. Named Entity Recognition

As a second task, we focus on multilingual named
entity recognition on a geographically diverse set of
10 languages. We use ParaNames as a gazetteer,
seeking to improve entity typing performance with
the extra information it contains. We experiment
with 10 geographically diverse languages: Hindi,
Finnish, Amharic, Hausa, Igbo, Kinyarwanda, Lu-
ganda, Swahili, Yoruba, and Wolof. For each lan-
guage, we rely on recently published NER cor-
pora to ensure we have quality training and evalu-
ation data comparable to past work. Specifically,
for Hindi and Finnish, we use the HiNER (Murthy
et al., 2022) and TurkuNLP (Luoma et al., 2020)
corpora; for all the African languages, we use the
MasakhaNER corpus (Adelani et al., 2021).

5.1. Gazetteers
To construct the gazetteers for a given language,
we first extract all entity names in that languages
from ParaNames. As noted in Section 3.4, some
entities contain multiple types. Whether to dedu-
plicate them is not obvious without context, so we
leave this open as a hyperparameter and train mod-
els using both a full and a deduplicated version of
the gazetteer. When deduplicating, we use the
following disambiguation rules to ensure each Wiki-
data ID in our gazetteer is mapped to a single type:
(ORG, PER) → ORG, (ORG, LOC) → LOC, (LOC,
PER) → PER, and (LOC, ORG, PER) → ORG.

To link entity mentions in the NER data to en-
tries in the gazetteer, we link each mention that
exactly matches an entry in ParaNames. Following
Rijhwani et al. (2020), we reduce lookup times at
train time by extracting all n-grams up to length
3 from our training data and linking those that ex-
actly match an entity name in our gazetteer. This
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Language Tokens Entities Links Coverage (%) No gaz. Gazetteer ∆ (diff.) σ (SD) ∆/σ

Swahili 79.2k 2,074 533 25.70% 77.83 80.06 2.25 1.15 1.93*
Finnish 162.7k 7,156 1,948 27.22% 63.04 65.18 2.14 1.57 1.37*
Hausa 80.2k 2,124 296 13.94% 83.60 84.40 0.80 0.67 1.19*
Yoruba 83.2k 2,073 219 10.56% 66.31 67.74 1.44 1.30 1.11*
Igbo 61.7k 2,022 175 8.65% 79.22 79.75 0.54 1.03 0.52
Luganda 46.6k 2,721 145 5.33% 74.11 74.76 0.64 1.39 0.46*
Wolof 52.9k 836 99 11.84% 59.12 59.58 0.45 1.99 0.23
Amharic 37.0k 2,037 125 6.14% 52.38 52.73 0.36 1.67 0.21
Hindi 2.2M 57,087 7,891 13.82% 92.07 92.09 0.02 0.14 0.11
Kinyarwanda 68.8k 1,870 91 4.87% 63.02 63.14 0.12 1.32 0.09
Median 74k 2,074 197 11.20% 70.21 71.25 1.04 1.31 0.80
Mean 287.2k 8,000 1,152 12.81% 70.18 71.05 0.87 1.22 0.71

Table 4: Micro-averaged F1 score on the MasakhaNER, HiNER and TurkuNLP test sets. No gaz.
refers to our baseline model with no gazetteer features. Gazetteer refers to the best soft gazetteer
feature combination across configurations. σ. For individual languages, all positive ∆ values are bolded;
statistically significant ∆/σ values are marked with an asterisk.

process is done entirely offline and does not add
computational overhead at train time.

5.2. Model Details
All our NER models use the CNN-BiLSTM-CRF
architecture originally proposed by Ma and Hovy
(2016). We use the DyNet-based implementation
by Rijhwani et al. (2020) and train our models for
50 epochs on a 64-core AMD Ryzen Threadripper
CPU. As a baseline, we turn all gazetteer features
off and use a plain CNN-BiLSTM-CRF model. As
an alternative, we consider the model proposed
by Rijhwani et al. (2020) which incorporates soft
gazetteer features into the network at the LSTM
and/or the CRF layer. We consider the location of
these gazetteer features—as well as the autoen-
coder loss used in the original paper—a hyperpa-
rameter and conduct a search over all 16 configu-
rations. Other hyperparameters are kept the same
as in Rijhwani et al. (2020), except for the word em-
bedding and LSTM hidden state dimensions, which
we also vary between the values 128, 200, and
256. The random seed is determined by a random
integer. The full set of hyperparameters can be
seen in the Appendix in Table 5.

5.3. Evaluation Metrics
We evaluate our models using standard exact-
match entity F1 score, micro-averaged across
types. Preliminary experiments showed that vary-
ing the dimensionality of the model resulted in about
as much variance as changing the random seed for
a given configuration. Thus, out of concern for “fish-
ing for noise,” we did not pick the best-performing
LSTM/word embedding dimension for each of the
16 configurations. Instead, we ranked the configu-
rations based on their median performance across

the dimensionality grid and random seeds.
Our main results on the named entity recogni-

tion task are presented in Table 4. The No gaz.
and Gazetteer columns show the micro-averaged
F1 across all possible hyperparameter configura-
tions and seeds. Based on the last two rows, it
is evident that using a gazetteer improves perfor-
mance, with an absolute median improvement of
1.04 F1 points over the no-gazetteer baseline. The
mean F1 improvement is 0.87 which is similar to
the median, although slightly smaller due to the
presence of “outlier” languages, e.g. Hindi, that
have particularly low F1 differences.

Looking across languages, it appears that there
is that there is a lot of variation in the magnitude of
the absolute improvement over baseline (∆), rang-
ing from 2.25 for Swahili to 0.02 for Hindi. However,
the within-language standard deviations (σ) also
seem to vary substantially across languages: Wolof
has the largest variation with a standard deviation
of 1.99, whereas the standard deviation for Hindi
is only 0.14. This suggests that it is not meaningful
to compare absolute F1 differences from language
to language as doing so would neglect relevant in-
formation about how much they vary simply due to
random seeds or hyperparameters.

Instead, we divide the raw differences by the
within-language standard deviation and obtain a
normalized effect size, ∆/σ. Placing the values on
a common scale (measured in units of standard
deviations) also allows for better cross-linguistic
comparisons. For example, for Igbo and Wolof, the
raw F1 differences are fairly similar (0.54 vs. 0.45),
but the standard deviations are quite different (1.03
vs. 1.99). If we normalize the effect sizes, we obtain
0.54/1.03 = 0.52 for Igbo and 0.45/1.99 = 0.23 for
Wolof. These new numbers give a much clearer
picture of where the model does well and properly
reflect the difference in standard deviations. The
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normalization also shrinks the mean and median
effect sizes closer together: using ∆/σ, the median
and mean improvements over baseline are 0.80
and 0.71, respectively.

In terms of normalized effect sizes, our model
produces effects above 1.0 on four out of our ten
languages: Swahili, Finnish, Hausa and Yoruba.
This can be interpreted as ParaNames giving a
performance boost that is larger than random vari-
ation. On other languages, the effect sizes are
significantly smaller, ranging from 0.52 on Yoruba
to 0.09 on Kinyarwanda. While thresholds are ulti-
mately arbitrary, values of 0.5 and 0.8 have been
suggested as thresholds for classifying effect sizes
as “medium” and “large” (Sawilowsky, 2009). Using
this interpretation, ParaNames produces “medium-
to-large” performance improvements on 5 out of
10 languages (Swahili, Finnish, Hausa, Yoruba
and Igbo). Another way to assess whether using
ParaNames as a gazetteer is helpful for a given lan-
guage is to use statistical significance testing. We
perform another analysis in this vein and conduct
a two-tailed Mann-Whitney U-test (Mann and Whit-
ney, 1947) for each language. In each case our null
hypothesis is that both the baseline and gazetteer
F1 scores come from the same distribution. At the
α < 0.05 significance level our test rejects the null
hypothesis for Swahili, Finnish, Hausa, Yoruba and
Luganda which is in near-perfect agreement with
the effect size-based interpretation.

Without multiple data sets per language, it is dif-
ficult to make predictions about what languages
ParaNames would be most useful for across any
possible dataset. Looking at Table 4, however, we
can say that gazetteer coverage clearly seems to
matter. For the best-performing languages, several
hundreds of mentions are linked to our gazetteer
which represent over 10% of all unique entities
in the data. Swahili, for example has over 25%
coverage. Conversely, for the languages whose ef-
fect sizes are small, the data only contain very few
linked mentions which also lowers any potential ef-
fect a gazetteer can have. For example, the model
performs worst on Kinyarwanda, whose coverage
is only 4.87% with only 91 links in total.

Wolof is a slight exception to this pattern, as its
effect size is only 0.23 even though it has a slightly
higher coverage ratio at 11.84%. This can be ex-
plained by the low absolute number of linked men-
tions, 99. Hindi, on the other hand, is a more no-
table exception: 7,892 out of 57,087 entities in the
data (or 13.82%) are linked to ParaNames, yet the
effect size is minuscule at 0.11. A potential expla-
nation for this is the fact that the Hindi NER data
is several orders of magnitude larger than most of
the languages, causing the model to have to rely
less on outside information such as a gazetteer.

6. Limitations

One label per entity per language ParaNames
only uses the “main label” property in Wikidata to
identify names for entities. One of the limitations of
this approach is that a given entity can only have
a single label within a single Wikimedia language
code, even though there may be multiple possible
transliterations of an entity name. This can be espe-
cially problematic for languages that use more than
one script but for which a finer-grained language
code the specifies the script, such as sr-cyrl,
is not available. For example, Bosnian only has
the language code bs but is commonly written in
Cyrillic and Latin scripts. Wikidata does provide
an “also-known-as” (AKA) property that may get
around this limitation, but unfortunately, it often in-
cludes names that only loosely correspond to the
canonical name of the entity such as the nickname
Notorious RBG for the late U.S. Supreme Court
justice Ruth Bader Ginsburg (Q11116).

ParaNames was extracted from Wikidata, and
while we have undertaken significant efforts to
clean and standardize the data, there will always
be errors with a community-edited resource of this
size. Of particular concern is that some names may
be blindly copied across languages, especially from
English. As we have filtered the name in each lan-
guage by script, those languages that do not use
Latin script may have higher-quality data, as it is
not possible for names to have been copied into
those languages from English without review.

7. Conclusion

ParaNames enables the cross-lingual modeling
of names for millions of entities in over 400 lan-
guages. To the best of our knowledge, ParaNames
provides the broadest coverage of entities and lan-
guages available of any parallel name resource to
date. The release of this resource enables multi-
faceted research in names, including name trans-
lation, named entity recognition and entity linking,
especially in less-resourced languages. In addition
to describing our process for creating this resource,
we have demonstrated its usefulness two down-
stream tasks: canonical name translation and mul-
tilingual named entity recognition. ParaNames can
also be used as a building block for other bench-
mark datasets, such as named entity-centered eval-
uations of large language models.

8. Ethics and Broader Impact

We believe that the creation of this resource will ben-
efit the speakers of the included languages by en-
abling improvements to language technology and

https://www.wikidata.org/wiki/Q11116
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access to information in more languages. This re-
source consists only of information voluntarily pro-
vided to a user-edited database regarding notable
entities, and does not include data collected from
sources like social media that users did not know
would become part of a public dataset.

However, like any language technology resource,
this work could have unanticipated negative impact,
and this impact could be magnified because some
of this resource contains data in the languages of
marginalized and minoritized populations.

A potential risk in using this resource is that
quality issues in Wikidata can be passed to down-
stream systems, resulting in unexpectedly poor per-
formance. As an extreme example of this, much of
the content of Scots Wikipedia and associated con-
tent in Wikidata was found to have been created or
edited by someone with minimal proficiency in the
language,7 and this data was used in the training
of Multilingual BERT (Devlin et al., 2019). We en-
courage users of this resource who build systems
to collaborate with native speakers to verify data
quality in the specific languages used.
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A. Appendix

A.1. Canonical Name Translation
For the full results table, see Table 6.

A.2. Hyperparameters for NER

Hyperparameter Values
Type disambiguation in resource on, off
Autoencoder loss on, off
Soft gaz. features

. . . at CRF layer on, off

. . . at LSTM layer on, off
LSTM embedding dimension 128, 200, 256
Random seed randint

Table 5: Soft gazetteer feature configurations (top)
and hyperparameters to average over (bottom).
Setting all of the top values to off corresponds to
our baseline configuration.
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