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Abstract
We develop and evaluate multilingual scientific documents similarity measurement models in this work. Such
models can be used to find related papers in different languages, which can help multilingual researchers find
and explore papers more efficiently. We propose the first multilingual scientific documents dataset, Open-access
Multilingual Scientific Documents (OpenMSD), which has 74M papers in 103 languages and 778M citation pairs. With
OpenMSD, we develop multilingual SDSM models by adjusting and extending the state-of-the-art methods designed
for English SDSM tasks. We find that: (i) Some highly successful methods in English SDSM yield significantly
worse performance in multilingual SDSM. (ii) Our best model, which enriches the non-English papers with English
summaries, outperforms strong baselines by 7% (in mean average precision) on multilingual SDSM tasks, without
compromising the performance on English SDSM tasks.
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1. Introduction
Although English is the predominant language in
scientific publications (Liu, 2017), diversity and in-
ternationalization in the scientific community has
attracted more attention in recent years (Uzuner,
2008; Márquez and Porras, 2020). Over 75% of
researchers use English as a foreign language
(Baskaran, 2016), and they often need to search
related papers in both their native languages and
in English. Think tanks and decision-making agen-
cies also need to find related works in different
languages on the same topic, e.g., natural re-
source management and biodiversity studies, to
ensure their analyses and decisions are unbiased
and consider all affected countries (Steigerwald
et al., 2022). As the volume of non-English papers
has rapidly grown since 2000, steadily accounting
for 5-10% of all scientific publications (Fortunato
et al., 2018; Bornmann et al., 2021; Moskaleva
and Akoev, 2019), the scientific community has an
ever stronger need for multilingual scientific docu-
ments similarity measurement (SDSM) models, so
as to help researchers find, discover, and explore
scientific publications in different languages more
efficiently. This paper focuses on the development
and evaluation of multilingual SDSM models.
The state-of-the-art SDSM models, e.g, (Cohan
et al., 2020; Ostendorff et al., 2022; Mysore et al.,
2022), use Transformer-based (Vaswani et al.,
2017) text encoders to create dense representa-
tions for the papers. Starting from a pretrained
science-specialized language model (e.g., SciB-
ERT (Beltagy et al., 2019)), they fine-tune a dual
encoder model (Gillick et al., 2018) with contrastive
learning objectives (Chopra et al., 2005; Wu et al.,
2018), by using “related” and “unrelated” pairs of

papers derived from citation-based heuristics or
graph embedding algorithms (Perozzi et al., 2014;
Lerer et al., 2019). These models show promising
performance on several SDSM tasks, e.g., citation
prediction. However, all of these SDSM models are
trained with English data and hence only work for
English papers.
In this paper, we propose both data and novel
methods for the multilingual SDSM problem.
For data, we build the Open-access Multilingual
Scientific Documents (OpenMSD) dataset, with
74M papers and 778M citations. Key statistics of
OpenMSD are presented in Table 1. Three SDSM
tasks – citation, co-citation (Small, 1973), and
bibliographic-coupling (Kessler, 1963) prediction
– are derived from OpenMSD. Compared to
S2ORC (Lo et al., 2020), a widely used English-
only scientific documents dataset, OpenMSD
has a comparable number of papers (74M in
OpenMSD vs 81M in S2ORC) but 3x more
full-content papers (38M in OpenMSD vs 12M
in S2ORC) and 2x more citation pairs (759M in
OpenMSD vs 381M in S2ORC). To the best of
our knowledge, OpenMSD is the first multilingual
scientific documents and citation relations dataset.
Due to copyright and license restrictions, we
cannot directly release the OpenMSD dataset, but
publish the scripts for constructing the dataset at
https://github.com/google-research/
google-research/tree/master/OpenMSD.
With OpenMSD, we develop and evaluate multi-
lingual SDSM models. We derive a training set
from OpenMSD and use it to train two state-of-the-
art SDSM methods, Specter (Cohan et al., 2020)
and SciNCL (Ostendorff et al., 2022), and test their
performance in both English-only (SciDocs, Cohan

https://github.com/google-research/google-research/tree/master/OpenMSD
https://github.com/google-research/google-research/tree/master/OpenMSD
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Papers (74M)

#Papers
• w/ abstracts 74M
• w/ citations 53M
• w/ full content 38M
• in English 65M

#Abstract avg tokens 288
#Content avg tokens 5448
#Total tokens 228B
#Languages 103
#Categories 340

Citation Pairs
(778M)

#En→En 759M
#En→nonEn 6M
#nonEn→En 11M
#nonEn→nonEn 2.5M

Table 1: Key statistics of the OpenMSD dataset.

et al., 2020) and multilingual (test set of OpenMSD)
SDSM tasks. Results suggest that, while Specter
yields strong performance in both English-only and
multilingual SDSM, SciNCL performs poorly in mul-
tilingual SDSM, and we find that it is due to the
poor performance of the graph embedding algo-
rithms (Lerer et al., 2019) on themultilingual citation
graphs. To further improve the multilingual perfor-
mance of Specter, we extend it with several novel
methods, including the use of different citation-
based heuristics to create training examples, and
the use of generative language models to enrich
the non-English papers. Our best model signifi-
cantly outperforms the original Specter in the test
set of OpenMSD by 7% (in terms of mean average
precision), without compromising the performance
on English-only SDSM tasks.

2. Related Works
Scientific documents dataset. Several scien-
tific documents datasets have been compiled with
open-access papers. The arXiv Dataset (arXiv.org,
2023) contains the metadata and PDFs of 1.7M pa-
pers, and thePMCOpen Access Subset (Bethesda,
2003) contains the full contents of 8M papers from
PubMed. Papers on the ACL Anthology1 have also
been used to build datasets, e.g., the ANN dataset
(Radev et al., 2009) with 14K papers and 55K ci-
tations, the ACL ACR dataset (Bird et al., 2008)
with 11K papers, and the ACL 60-60 dataset (Diab
and Yifru, 2022; Salesky et al., 2023), which pro-
vides machine translation of 10K paper titles and
abstracts randomly selected from the ACL Anthol-
ogy from 2017 to 2021, and all the titles and ab-
stracts from ACL 2022 (1.3K) into 60 languages.
The Allen AI Institute has published the S2ORC
dataset (Lo et al., 2020) with 81M papers, the Sci-
Docs dataset (Cohan et al., 2020) with over 120K
papers and several categories of scientific tasks

1https://aclanthology.org/

(classification, SDSM, recommendation), and the
S2AG API (Kinney et al., 2023), which allows reg-
istered users to get access to the metadata (e.g.,
title, authors, abstract, but no full content) of 206M
papers and their citations (2.5B). However, these
datasets either lack citations (the ACL-, PubMed-
and arXiv-based datasets), or only have English
papers (the other mentioned datasets).
Multilingual Language Models. With the suc-
cess of Transformer-based (Vaswani et al., 2017)
language models for English tasks, a number of
multilingual variants have also been proposed.
They follow the same recipe (e.g., architecture,
learning objectives, etc.) as their original English
versions, but are pretrained with multilingual texts.
Popular variants include the encoder-only models
like mBERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020) and mDeBERTa (He et al., 2021),
the encoder-decoder models like mT5 (Xue et al.,
2021) and mBART (Tang et al., 2020), and the
decoder-only models like XGLM (Lin et al., 2021)
and BLOOM (Scao et al., 2022). These mod-
els are benchmarked on multilingual datasets like
XTREME (Hu et al., 2020) and SuperGLUE (Wang
et al., 2019), which include a wide range of tasks
like named entity recognition, natural language in-
ference, and question answering. Some of them
have also been fine-tuned to tackle downstream
science-related tasks, e.g., multilingual acronym
extraction in scientific papers (Veyseh et al., 2022),
and multilingual bias evaluation in social science
papers (Talat et al., 2022). However, there are no
multilingual languagemodels specialized for SDSM
tasks.
SDSMmodels. A classic method to measure the
similarity and relatedness between papers is ci-
tation analysis (Zunde, 1971; Nicolaisen, 2007).
Based on the citation links between papers, heuris-
tics have been developed to find related papers,
e.g., co-citation (two papers both cited by some
common papers (Small, 1973)), and bibliographic-
coupling (two papers both cite some common pa-
pers (Kessler, 1963)). However, these methods
do not work well for papers with sparse citation
links, e.g., papers that are newly published, in less-
studied topics, or in non-English languages.
Neural-based SDSM methods use different strate-
gies to derive “related” and “unrelated” pairs from
the citation relations, and use them to fine-tune
science-specialized language models, e.g., SciB-
ERT (Beltagy et al., 2019). For example, Specter
(Cohan et al., 2020) uses direct and indirect citation
links to derive related unrelated papers, respec-
tively. Ostendorff et al. (2022) proposed the Scien-
tific documents Neighborhood Contrastive Learning
(SciNCL) method, which uses graph embedding
algorithms (Lerer et al., 2019) to measure the “dis-
tance” of papers in the citation graph, and derive

https://aclanthology.org/
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related and unrelated papers based on distance-
based heuristics. More details of Specter and
SciNCL are presented in §4.2. Mysore et al. (2022)
proposed the Aspire method, which considers the
papers that are co-cited in the same sentence as
positive pairs, because close proximity provides a
more precise indication of the relatedness of the pa-
pers. Furthermore, as the citing sentences typically
describe how the co-cited papers are related, they
use the citing sentences as an additional signal to
guide the model to learn on which aspects the pa-
pers are related. However, Aspire requires tools to
parse the citations in papers content, which are un-
available for multilingual scientific documents. Also,
all these methods are designed for English SDSM;
it remains unclear whether they can be used to train
multilingual SDSM models.

3. The OpenMSD Dataset
The scientific documents in OpenMSD are ex-
tracted from two open-access data sources: Un-
paywall snapshot2 (version 202203, with 140M
data entries), and CrossRef Metadata (Crossref,
2022a) (2022 April snapshot, with 134M data en-
tries). Each data entry includes the title, Digital
Object Identifier (DOI), URLs and some additional
meta information for a scientific publication. 130
million papers occur in both data sources, by match-
ing the DOIs. We scrape and clean the contents
from the URLs, and remove the papers for which no
text is extracted; 74M papers are retained, among
which 38M have full content.
Citation relations in OpenMSD are extracted from
OpenCitations (Peroni and Shotton, 2020) (2022
October snapshot). It has 1.4 billion citation pairs,
each pair identified by the DOIs of its citing and
cited paper. 96% of the DOIs in OpenCitations
can be found in Unpaywall or CrossRef. We only
keep citation pairs that have both the citing and
cited papers’ abstract extracted, as papers without
abstracts cannot be used to train SDSM models.
778M citation pairs are kept in the end.
We use cld33 to detect the languages from papers’
titles and abstracts. 103 languages are found, with
English (65M) being the predominant language, fol-
lowed by German (2.6M) and French (1.2M). All
other languages have fewer than 1M papers, and
among them 42 languages have fewer than 100
papers. Fig. 1 shows the the sizes of the top 20 lan-
guages. Papers’ category labels are extracted from
CrossRef Metadata; 76% papers have category la-
bels, and each paper has 1.4 category labels on
average. 340 categories are found in total; the size
of the top 20 categories are presented in Fig. 2.

2https://unpaywall.org/products/
snapshot

3https://github.com/google/cld3.

Figure 1: Top 20 languages in OpenMSD.

Figure 2: Top 20 categories in OpenMSD.

We note that OpenMSD is dominated by English
resources, which account for 88% papers and 98%
citation pairs (see Table 1). A common strategy
to mitigate the data imbalance is to down-sample
the English papers (Conneau et al., 2020), but it
only works well in very large datasets like mC4
(Xue et al. 2021, with 6.6B pages and 6.3T tokens).
Some recent works (e.g., (Wang et al., 2022b)) sug-
gest that the English-predominance in the training
set does not necessarily hurt the multilingual per-
formance, because fine-tuning multilingual models
only with English data can yield strong performance
on multilingual tasks. For these reasons, we do not
perform any down-sampling over the English re-
sources in OpenMSD. Also, as scientific papers
share many common characteristics regardless of
their categories, we do not manipulate the category
distributions in OpenMSD.

4. Multilingual SDSM
In this section, we decribe how we develop and
evaluate multilingual SDSM models. We define the
SDSM task in §4.1, describe our SDSM models
in §4.2, explain how we split OpenMSD into train
and test sets in §4.3, and present the experiment
details and results in §4.4.

https://unpaywall.org/products/snapshot
https://unpaywall.org/products/snapshot
https://github.com/google/cld3
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4.1. Task Definition
The task of SDSM is to find the related papers for
a query paper. The definition of related is task de-
pendent, and many tasks can be viewed as special
cases of SDSM: e.g., in co-citation prediction, two
papers are related if they are co-cited (i.e., both
cited by a third paper); in co-view prediction (Co-
han et al., 2020), two papers are related if they are
often viewed/clicked by the users.
Formally, let D be a set of documents, and let R :
D 7→ 2D be the relatedness relation between them:
For p ∈ D, R(p) ⊆ D is the set of documents that
are related to p. The task of SDSM is to learn a
similarity measurement function s : D × D 7→ R,
so that for documents p, q+, q− ∈ D, s(p, q+) >
s(p, q−) if q+ is a related document for q (i.e., q+ ∈
R(p)) and q− is unrelated (i.e., q− 6∈ R(p)). By
multilingual SDSM, we mean that (i) documents
in D are in different languages, and (ii) the related
document q+ ∈ R(p) can be in a different language
from the query document p.

4.2. SDSM Models
In this section, we describe the methods to de-
velop the multilingual SDSM models. In particu-
lar, we consider two state-of-the-art SDSM meth-
ods, Specter (Cohan et al., 2020) and Scientific
documents Neighborhood Contrastive Learning
(SciNCL, Ostendorff et al., 2022), and adapt them
to the multilingual setup. In addition, we extend
Specter by using different strategies to get the train-
ing examples.
Specter uses a Transformer-based model (e.g.,
SciBERT, Beltagy et al., 2019) as the base model
and fine-tunes it with the triplet hinge loss. For-
mally, given a triplet (pi, q+i , q−i ), where pi is the
query paper, q+i ∈ R(pi) a positive example to the
query, and q−i 6∈ R(pi) a negative example, the loss
function is

LTL = max{0, [s(pi, q−i )− s(pi, q
+
i ) +m]}, (1)

where m is a hyper-parameter. Because labeling
the positive and negative examples is too expen-
sive, in practice, Specter uses the following heuris-
tics to derive them: if paper A cites paper B, B cites
C but A does not cite C, then (A, B) is used as a
positive pair while (A, C) is used as a negative pair.
SciNCL uses the same loss function (Eq. (1))
as Specter in fine-tuning. However, instead of
using heuristics to derive the positive and nega-
tive examples, it uses graph embedding models
to derive them. They first run a graph embed-
ding algorithm (e.g., BigGraph by Lerer et al. 2019)
on the citation graph to learn the embedding for
each node (i.e., paper). With the nodes’ embed-
dings, they use fast nearest neighbor search al-
gorithms (e.g., Xiong et al. 2020) to find the top-
K neighbors for each node, and extract positive

and negative papers with the following strategy: for
each paper, its i-th to (i+ n)-th closest papers are
used as positives, while its k-th to (k + n)-th clos-
est papers are used as (hard) negatives, where
i, k, n ∈ N+ are hyper-parameters. With system-
atic hyper-parameter search, they find that i = 20,
k = 2000 and n = 5 yield the best performance. We
have explored other hyper-parameters when we re-
implement SciNCL, but we find that the ones used
in the original work yield the best performance.
Multilingual Adaptation. The original Specter
and SciNCL use the (English-only) SciBERT model
as the base model. To adapt them to multilingual
SDSM, we develop a multilingual science-tailored
model as their new base. More specifically, we
further pretrain mT5-base (Xue et al., 2021) us-
ing contrastive loss with sampled in-batch negative
(CL) (Henderson et al., 2017). CL encourages the
model to push the positive examples closer and the
negative examples apart. Formally, let {(pi, qi)}ni=1

be a training batch with size n, where (pi, qi) is the
i-th pair of related documents; CL is defined as

LCL =
− exp[s(pi, qi)]∑n
j=1 exp[s(pi, qj))]

. (2)

To construct the training example pairs (pi, qi),
we randomly extract snippets from the documents
in the train set of mC4 (Xue et al., 2021) and
OpenMSD. Snippets from the same document are
treated as positive pairs. The length of each snip-
pet is between 10 and 256 mT5-sentence-piece
tokens. CL is used because it showed strong per-
formance in both pretraining (Lee et al., 2019a)
and fine-tuning (Giorgi et al., 2021; Izacard et al.,
2022) dense representations for information re-
trieval tasks. We call the new base model mT5CL.
With mT5CL, we develop the multilingual versions
of Specter and SciNCL by following their original
fine-tuning recipe but run the training on the train
set of OpenMSD. We call the the resulting mul-
tilingual models Multilingual Specter (mSpt) and
Multilingual SciNCL (mNCL), respectively.
Generalized Specter. Specter uses direct cita-
tions (DCs) to extract positive pairs. But there are
other citation relations, e.g., co-citation (CC) and
bibliographic-coupling (BC), widely used as indica-
tors for related documents (see §2). We extend
the original Specter method by using a mixture of
different citation relations to extract positive training
examples:

• Use the union of DC, CC, and BC pairs. For
example, we can use both DC and CC pairs
as positives, denoted as DC ∪ CC. When the
numbers of different types of pairs are not the
same, we down-sample the over-represented
relations so as to have the same number of
pairs from each relation type.
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Split Languages
Train (53M) En, De, Fr, Ja, Es, Pt, Tr, Ru, Id,

It, Nl, Pl, Uk, Ko, Nn, Zh, Cs, Hu,
Lt, Da, Sv, Hr, Af, Ms, Vi, Sl, Fi,
Ro, Ar, Gl,

Test (85K) En, Sr, De, Fr, He, Es, Pt, Ja, Fa,
Ca, Lv, Tr, La, Sk, Su, Zh, Ru, It,
Eu, Pl, Nl, Id, Et, Ko, Cs, Bg, Hu,
Sq, Is, No, Hi, Uk, Tl, Az, Af, Lt,
Bs, Hr, Ms, Sv, Be, Da, Eo, Mi,
Oc, Vi, Cy, Fi, Ia, Kk, Ku, Mk, Ro,
Sl, Gl, Ga, Aa, Co, Fo, Ka, El, Ky,
Sw, Th, Uz

Table 2: Languages (ISO 639-1 code) in different
splits of OpenMSD, ordered by their sizes in each
split.

• Use the intersection of DC, CC, and BC
pairs. Suppose a paper A cites paper B and
they are both cited by another paper C, then
(A, B) is both a DC and CC pair. We assume
that the pairs falling into multiple relation types
at the same time have higher similarity level,
compared to the pairs that only fall into one
relation type. We consider all (four) possible
intersection combinations of the relation pairs
to build positive pairs: DC ∩ CC, DC ∩ BC,
CC ∩BC, and DC ∩ CC ∩BC.

The negatives are extracted with the same heuris-
tics as in standard Specter. We use subscript to
denote which pairs are used to train mSpt: e.g.,
mSptDC∪CC denotes the mSpt model trained with
the union of the DC and CC pairs as the positive
examples.

4.3. Data Preparation
To use OpenMSD to train and evaluate multilingual
SDSM models, we first remove all papers that do
not have citation links with any other papers, as we
cannot find their “related” papers; this leaves us
with 53M papers in 65 languages. The remaining
papers are split into train (53M papers) and test
(85K papers) sets. The languages in each split
are presented in Table 2. Note that we deliberately
exclude some languages from the train set and only
present them in the test set; this allows us to use
the test set to benchmark the models’ performance
for languages unseen during training.
With the data splits, we derive three types of related
paper pairs in each data split: direct citations, co-
citations and bibliographic-coupling. We remove
pairs between papers across different splits to avoid
data leakage. Also, we remove all English to En-
glish pairs in the test set, to make sure that the
test set is focused on pairs involving non-English
papers. The numbers of mono-lingual and cross-
lingual pairs of each relation type and in each data

Train Test

DC

#En→En 759M 0
#En→nonEn 6M 3K
#nonEn→En 11M 6K
#nonEn→nonEn 3M 3K

CC
#En↔En 12B 0
#En↔nonEn 208M 1K
#nonEn↔nonEn 21M 1K

BC
#En↔En 63B 0
#En↔nonEn 1B 7K
#nonEn↔nonEn 29M 1K

Table 3: Sizes of direct citation (DC), co-citation
(CC) and bibliographic-coupling (BC) pairs in each
data split. Note that DC is a directed relation (de-
noted by→), while CC and BC are non-directional
relations (denoted by↔).

split are presented in Table 3.

4.4. Experiments
Implementation details. When representing a
paper, we use the concatenation of the title and the
abstract of the paper as input (in line with Specter
and SciNCL), and apply average-pooling to the out-
put of the top transformer layer to get the vector rep-
resentation. Document similarities are measured
by the dot product of the document embeddings. To
find the optimal hyper-parameters, we have used
batch sizes 256, 512, 1K, 2K and 4K, and initial
learning rates 10−n, where n = 1, 2, · · · , 7. The
inverse square-root learning rate decay strategy is
used, with decay factor 5× 10−5, and the minimum
learning rate is set to 10−8. We find that batch sizes
≥ 1K yield similar performance, and learning rate
10−2 yields the best performance on the dev set
(0.5% data randomly sampled from the train set).
Each model is fine-tuned for up to 100K steps, in
which the first 1.5K steps are used for warm-up.
Checkpoints with the best performance on the dev
set are used at test time. All our experiments are
performed on a cloud machine with eight TPUv3s.
Performance on English-Only SDSM. We first
test the performance of different models on the
(English-only) SciDocs test set. In addition to mSpt
and mNCL, we consider the following two cate-
gories of models as baselines. (i) Pretrained lan-
guage models, including SciBERT, mT5 and our
newly-prerained mT5CL. (ii) The original (English-
only) Specter and SciNCL models, with implemen-
tations downloaded from their Github repositories.
Comparing against the pretrained models allows
us to understand whether the fine-tuning strategies
in §4.2 are effective or not, and comparing against
the original English-only models allows us to test
whether the multilingual models can yield compara-
ble performance on the English-only SDSM tasks.
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The performance is measured by themean average
precision (MAP) and nDCG@10 scores.
We consider four tasks in SciDocs: cite, co-cite,
co-view and co-read. Each task has a pool of 30K
papers, grouped into 1K clusters. Each cluster has
one query paper, five positive examples (e.g., in
the co-view task, a positive example is a paper that
is often co-viewed with the query paper) and 25
(randomly sampled) negative examples. However,
existing evaluations on SciDocs (Cohan et al., 2020;
Ostendorff et al., 2022; Mysore et al., 2022) have
shown the ceiling effect: their nDCG performance
are all 90%+ and the gaps between different meth-
ods are rather small (less than 2 percentage points).
This is because papers are organized into clusters
at test time: given a query paper, models only need
to find the five positives from the cluster (30 papers).
This setup over-simplifies the SDSM problem, be-
cause in practice, the models often need to find
the related papers from the a large pool of papers
(used as a retriever), or a smaller pool with highly
relevant papers (used as a re-ranker). Hence, to
make the SciDocs evaluation more realistic, we
merge the paper pools of all four tasks and ignore
the clusters at test time; i.e., for each query paper,
the models need to rank all 120K papers in the
merged paper pool to find the five positives.
The results on the merged test set of SciDocs are
presented in Table 4. We make the following obser-
vations. (i) Among the pretrained language mod-
els, mT5CL significantly4 outperforms the other two
pretrained language models, suggesting that fur-
ther pretraining the models using the CL objective
with scientific documents can greatly benefit the
SDSM performance. (ii) Average performance of
all the mSpt models are significantly better than all
the pretrained language models, suggesting that
the positive/negative examples extracted with the
strategies described in §4.2 are effective. (iii) Com-
paring the English-only and multilingual models,
we find that the multilingual models are generally
worse than their English-only counterparts. How-
ever, while the gap between mNCL and SciCNL is
statistically significant, the average performance
gap between the best mSpt models (i.e., all mSpt
models with DC in the subscript) and the original
Specter is not statistically significant. This obser-
vation suggests that the multilingual models can
yield comparable performance on the English-only
SDSM tasks.
Performance on Multilingual SDSM. The per-
formance of different models on the OpenMSD
test set is presented in Table 5. Note that the
performance of SciBERT, (the original versions of)
Specter and SciNCL are not reported in the table,

4We use double-tailed t-test p < 0.05 as the signifi-
cance test throughout this paper.

because they only work for English papers and
hence cannot be applied to the OpenMSD test set.
From the results, we make the following main ob-
servations. (i) All the mSpt models outperform all
the pretrained language models, confirming again
the effectiveness of the Specter-related strategies
presented in §4.2. (ii) The average performance
of all mSpt models is significantly better than the
pretrained models; however, mNCL only marginally
(and not significantly) outperforms the pretrained
models. This observation confirms the success
of mSpt but the ineffectiveness of mNCL. We will
investigate the failure of mNCL in §4.5. (iii) Among
the mSpt models, the versions using DC perform
significantly better than the versions without DC.
In particular, the version using both DC and CC
as positives (i.e., DC ∪ CC) yields the best per-
formance, better than using of any of the relation
types alone or together. This observation suggests
that DC is the most effective heuristic for deriving
positive examples, and using DC with other types
of relations can further improve the performance.
This finding is significant as existing works only
use DC (Cohan et al., 2020) or CC (Mysore et al.,
2022) pairs as positive training examples, but never
consider their combinations.

4.5. Investigate mNCL
We note that mNCL performs significantly worse
than the mSpt models in both English-only (Sci-
Docs) and multilingual (OpenMSD) SDSM tasks.
Because mNCL uses graph embeddings-induced
rankings to derive the training examples (see §4.2),
we look into the quality of the graph embedding
rankings to better understand why mNCL fails.
In particular, we run a popular graph embedding
algorithm, BigGraph (Lerer et al., 2019), on the
train set of OpenMSD to train the graph embed-
der model, and apply it to the test set of Open-
MSD. Table 6 presents the quality of the rankings
derived from the graph embedders with different
embedding dimensions. We find that (i) With larger
embedding dimension, the embedding models per-
formance increase (note that the original SciNCL
work only uses graph embeddings up to 768 di-
mensions). (ii) However, even with dimension size
2048 (the largest dimension size we can run in
reasonable time), the graph embedding’s average
performance is worse than most of the mSpt mod-
els (in MAP; see Table 5). The poor performance
of the graph embeddings will yield low-quality posi-
tive/negatives used in mNCL, hence harming per-
formance of mNCL.
We believe the above results are important, be-
cause (i) they are the first results of applying graph
embedding algorithms to a multilingual citation
graph, (ii) they show that methods work well in
English SDSM tasks may fail in multilingual SDSM.
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Method Citation Co-citation Co-read Co-view Average
MAP nDCG MAP nDCG MAP nDCG MAP nDCG MAP nDCG

Pretrained Language Models
SciBERT 0.52 2.48 0.51 2.58 0.91 3.60 1.21 5.26 0.79 3.48
mT5 0.31 1.41 0.47 2.31 0.49 1.99 0.92 3.89 0.55 2.40
mT5CL 4.21 14.53 3.85 12.71 4.69 13.12 6.23 16.96 4.75 14.33
English-only Models
Specter 5.51 15.96 5.76 16.22 6.96 17.32 9.47 22.43 6.93 17.98
SciNCL 5.92 18.04 5.62 14.37 7.56 16.72 9.24 21.65 7.09 17.70
Multilingual Models
mNCL 3.92 12.74 4.17 12.11 5.27 13.78 7.21 18.05 5.14 14.17
mSptDC 5.60 16.88 5.61 14.87 7.06 16.67 9.16 22.22 6.86 17.66
mSptCC 4.75 14.66 5.43 14.43 6.42 14.94 8.59 20.12 6.30 16.04
mSptBC 4.18 13.48 4.37 13.17 5.84 14.35 7.13 17.56 5.38 14.64
mSptDC∪CC 5.57 16.75 5.80 14.57 7.06 16.27 9.23 22.40 6.92 17.50
mSptDC∪BC 5.86 17.31 5.68 15.27 6.97 16.26 9.06 21.81 6.89 17.66
mSptCC∪BC 4.41 13.62 5.00 14.06 6.31 14.77 8.33 19.73 6.01 15.55
mSptDC∪CC∪BC 5.56 17.03 5.29 14.05 6.98 16.37 8.66 21.38 6.62 17.21
mSptDC∩CC 5.63 17.55 5.55 14.89 7.00 16.75 8.92 22.75 6.78 17.99
mSptDC∩BC 5.67 17.23 5.30 14.82 6.28 15.69 9.19 22.69 6.61 17.61
mSptCC∩BC 4.76 14.72 5.05 14.65 6.65 15.03 8.16 20.13 6.16 16.13
mSptDC∩CC∩BC 5.52 17.25 5.34 14.78 6.61 16.04 8.70 21.57 6.54 17.41
mSptDC∪CC + English Summaries
TopNSumm64 5.40 16.36 5.79 15.84 7.31 16.69 9.32 22.08 6.96 17.74
PaLM2Summ64 5.41 16.40 5.75 15.80 7.26 16.74 9.33 22.07 6.94 17.75
TopNSumm128 5.49 16.38 5.77 15.73 7.44 16.94 9.35 22.38 7.01 17.86
PaLM2Summ128 5.58 16.37 5.79 15.70 7.55 17.13 9.30 22.51 7.06 17.93

Table 4: Performance (in %) on the test set of the merged SciDocs (English-only) dataset. All results are
averaged over 5-10 runs with different random seeds.

More rigorous investigations are required to bet-
ter understand the reasons, e.g., comparing and
analyzing different graph embedding algorithms, in-
vestigating the topological structures of the English-
only and multilingual citation graphs, etc. It is be-
yond the scope of this work and we encourage
future works on this topic (also see §7).

5. Enrich the Non-English
Documents with English

Summaries
Because OpenMSD is dominated by English pa-
pers and pairs (see §3), models trained with Open-
MSD are exposed more to English training exam-
ples. We aim to leverage the model’s English capa-
bilities to improve its performance on non-English
documents. To this end, inspired by the works
on cross-lingual summarization (Zhu et al., 2019;
Wang et al., 2022a), we propose to create En-
glish summaries for the non-English papers, and
concatenate the summaries to the original (non-
English) text to create enriched documents.
As there are no cross-lingual scientific documents
summarization datasets or models available, we de-
cide to use two zero-shot methods to generate En-
glish summaries. (i)Using the English translation of
the top-N tokens as the summary. This is a simple

yet strong baseline widely used in summarization
(Gao et al., 2020; Bao et al., 2022). (ii) Prompting
a large generative language model to write English
summaries. The generative model we use is Flan-
PaLM2 (Anil et al., 2023) (version Otter on Google
Cloud API5); the instruction-tuned (Flan) version
is used because recent works (Zhang et al., 2023)
suggests that even smaller Flan-tuned language
models can generate high-quality summaries, bet-
ter than their larger but non-Flan-tuned counter-
parts. The English summary is then concatenated
to the original text in the following format: Title: {ti-
tle_text}. Abstract: ({English_summary_text}) {orig-
inal_abstract_text}. Note that English papers are
not augmented with any summaries.
We consider summaries with two different lengths:
64 and 128 tokens. To get the top-N translation
summaries, we simply truncate the translated ab-
stracts to the target lengths. To prompt Flan-PaLM2
to generate summaries, we experiment with a few
prompts and finally use two prompts to generate the
short and long summaries, respectively: (i) Sum-
marize the passage below with no more than 30
words in English. (ii) Extract the three most impor-
tant findings from the passage below, and trans-

5https://cloud.google.com/vertex-ai

https://cloud.google.com/vertex-ai
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Method Citation Co-citation Bib-couple Average
MAP nDCG MAP nDCG MAP nDCG MAP nDCG

Pretrained Language Models
mT5 1.62 2.07 0.99 1.73 0.46 0.72 1.02 1.51
mT5CL 7.81 9.45 4.01 5.81 1.77 2.75 4.53 6.00
Multilingual Models
mNCL 7.92 9.62 4.11 6.00 1.76 2.71 4.60 6.11
mSptDC 17.64 21.15 7.15 9.89 3.70 5.33 9.50 12.12
mSptCC 15.21 18.39 6.41 8.92 3.22 4.71 8.28 10.67
mSptBC 11.72 14.35 5.08 7.28 3.00 4.33 6.60 8.65
mSptDC∪CC 18.03 21.63 7.42 10.11 3.65 5.26 9.70 12.33
mSptDC∪BC 17.77 21.35 7.09 9.69 3.73 5.28 9.53 12.11
mSptCC∪BC 14.32 17.32 6.13 8.48 3.22 4.70 7.89 10.17
mSptDC∪CC∪BC 17.03 20.40 6.75 9.34 3.63 5.20 9.14 11.65
mSptDC∩CC 17.29 20.84 6.85 9.55 3.51 5.08 9.22 11.82
mSptDC∩BC 17.51 21.00 6.97 9.69 3.74 5.42 9.41 12.04
mSptCC∩BC 15.19 18.24 6.41 8.75 3.28 4.70 8.29 10.56
mSptDC∩CC∩BC 16.87 20.16 6.59 9.37 3.53 5.10 9.00 11.54
mSptDC∪CC + English Summaries
TopNSumm64 18.30 22.02 7.23 9.87 3.74 5.35 9.76 12.41
PaLM2Summ64 18.85 22.68 7.29 9.97 3.97 5.68 10.04 12.78
TopNSumm128 18.55 22.31 7.23 9.88 3.99 5.72 9.92 12.64
PaLM2Summ128 19.46 23.40 7.64 10.53 4.05 5.81 10.38 13.24

Table 5: Performance (in %) on the test set of OpenMSD. All results are averaged over 5-10 runs with
different random seeds.

GraphEmbd Dim. Citation Co-citation Bib-couple Average
MAP nDCG MAP nDCG MAP nDCG MAP nDCG

128 1.29 1.74 0.51 0.95 2.09 3.15 1.30 1.95
256 1.33 1.78 0.75 1.38 2.79 4.06 1.62 2.41
512 2.89 3.96 1.86 3.69 4.26 6.38 3.00 4.68
1024 4.94 6.69 3.52 7.19 5.94 9.65 4.80 7.84
2048 8.78 11.39 6.32 12.06 8.05 13.96 7.72 12.47

Table 6: Performance (in %) of the BigGraph (Lerer et al., 2019) embeddings on OpenMSD test set, with
different dimension sizes. We have also tried DeepWalk (Perozzi et al., 2014) and InstantEmbedding
(Postăvaru et al., 2020) and they yield similar performance and trend.

late them to English. The model tends to gener-
ate over-length summaries: the average length the
summaries generated with the two prompts above
are 71 and 138 tokens, respectively. Over-length
tokens are removed to get the final summaries.

The enriched documents are used to train and test
mSptDC∪CC , the strongest variant of mSpt. The
results of the proposed method on the English-only
and multilingual SDSM tasks are presented in the
bottom blocks in Table 4 and 5, respectively. Firstly,
we find that using the Flan-PaLM2-generated sum-
maries consistently yields better performance than
the top-N translation summaries; we believe this
is because Flan-PaLM2 considers the whole ab-
stract when generating the summaries, and hence
its summaries are more informative and compre-
hensive than the top-N translation summaries. Sec-
ondly, using the enriched documents yields compa-
rable performance as the other fine-tuned models

on English SDSM (SciDocs), but yields significantly
better performance than all the other considered
methods on multilingual SDSM (OpenMSD), im-
proving the performance of mSptDC∪CC by 7% in
both MAP and nDCG. These results suggest that
enriching the non-English papers with high-quality
English summaries can significantly improve the
multilingual models’ performance for papers in non-
English and unseen languages.

6. Conclusion
In this work, we proposed both datasets and novel
methods for the multilingual scientific documents
similarity measurement (SDSM) problem. For data,
we built OpenMSD, the first multilingual scien-
tific documents dataset, and derived three SDSM
tasks therefrom. For methods, we adapted some
SDSM methods that are highly successful in En-
glish SDSM tasks to the multilingual setup, and
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found that some of them fail to generalize well to
the multilingual SDSM tasks. We also found that
enriching non-English papers with English sum-
maries can yield significantly better performance in
multilingual SDSM tasks, without compromising the
model’s performance in English SDSM. We hope
this work will facilitate and encourage more future
works on multilingual SDSM.

7. Limitations & Future Works
Performance in individual languages. Due to
the space limit and the large number of languages
in OpenMSD, we did not present the performance
of themodels in individual languages or in language
groups (e.g., high-, medium- and low-resource lan-
guages). We leave these more detailed multilingual
studies to future work.
Biases in the data. Biases are often observed
in large scale text corpus (Blodgett et al., 2020;
Hovy and Prabhumoye, 2021). We note that the
languages used in the documents in OpenMSD
may have biases (e.g., gender or ethnicity bias),
and the documents of different languagesmay have
different biases. Studying how the biases in the
scientific documents affect the SDSM models’ per-
formance is a highly important topic, and we call
for more thorough investigations on it.
Graph Embeddings in OpenMSD. In §4.5, we
have shown that the average performance of the
rankings derived from the graph embeddings is
poor, worse than most mSpt models. However,
when looking into the performance in three differ-
ent tasks (DC, CC and BC prediction), we note that
the graph embeddings’ performance is strong in
CC and BC prediction but poor in DC prediction,
and this observation is consistent across graph em-
bedding algorithms and graph embedding dimen-
sions. The reasons remain unclear and we call for
investigations from the wider research community,
including researchers from machine learning and
graph theory.
Generative Language Models. In §5, we
showed that using generative models to enrich
the non-English papers can yield significant
performance improvement on multilingual SDSM.
This finding opens up many interesting directions
yet to be explored, e.g., techniques to create better
cross-lingual summaries with the generative mod-
els (prompt engineering, few-shot demonstrations,
prompt-tuning, and bigger generative language
models), and the impact of the summaries quality
on the SDSM models’ performance.
Diversity of base models. Our proposed mod-
els are based on the mT5-Base model (Xue et al.,
2021). It would be interesting to investigate how
different models sizes (larger or smaller models)

and types (e.g., decoder-only models) affect the
models performance; we leave it for future work.
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